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Abstract—Compressive sensing (CS) is a new approach
to simultaneous sensing and compression for sparse and
compressible signals. While the discrete Fourier transform
has been widely used for CS of frequency-sparse signals,
it provides optimal sparse representations only for signals
with components at integral frequencies. There exist re-
dundant frames that provide compressible representations
for frequency-sparse signals, but such frames are highly co-
herent and severely affect the performance of standard CS
recovery. In this paper, we show that by modifying standard
CS recovery algorithms to prevent coherent frame elements
from being present in the signal estimate, it is possible to
bypass the shortcomings introduced by the coherent frame.
The resulting algorithm comes with theoretical guarantees
and is shown to perform significantly better for frequency-
sparse signal recovery than its standard counterparts. The
algorithm can also be extended to similar settings that use
coherent frames.

I. INTRODUCTION

The emerging theory of compressive sensing (CS)
combines digital data acquisition with digital data com-
pression to enable a new generation of signal acquisition
systems that operate at sub-Nyquist rates. Rather than
acquiring N samples x = [x[1] x[2] . . . x[N ]]T of an
analog signal at the Nyquist rate, a CS system acquires
M < N measurements via the linear dimensionality
reduction y = Φx, where Φ is an M ×N measurement
matrix. When the signal x has a sparse representation
x = Ψθ in terms of an N ×N orthonormal basis matrix
Ψ, meaning that only K � N out of N signal coeffi-
cients θ are nonzero, then the number of measurements
required to ensure that y retains all of the information
in x is just M = O(K log(N/K)) [1, 2]. Moreover, a
sparse signal x can be recovered from its compressive
measurements y via a convex optimization or iterative
greedy algorithm. Random matrices play a central role
as universal measurements, since they are suitable for
signals sparse in any fixed basis with high probability.
The theory also extends to noisy signals as well as to
so-called compressible signals that are not exactly sparse
but can be closely approximated as such. Sparse signals
have coefficients θ that, when sorted, decay according
to a power law |θ[i]| < Ci−1/p, p ≤ 1; the smaller the
decay exponent p, the faster the decay and the better the
recovery performance we can expect from CS.

A great many applications feature smooth or modu-
lated signals that can be modeled as a linear combination
of K sinusoids [3]:

x[n] =
K�

k=1

ak e
jωkn

, (1)

where ak ∈ C are their coefficients and ωk are their
frequencies. When the sinusoids are of infinite extent,
such signals have an exactly K-sparse representation in
terms of the discrete-time Fourier transform (DTFT):

X(ω) =
K�

k=1

ak δ(ω − ωk), (2)

where δ is the Dirac delta function. We will refer to such
signals as frequency-sparse.

Practical applications feature signals of finite length
N . In this case, the frequency domain tool of choice for
analysis and CS recovery has been the discrete Fourier
transform (DFT):

X[l] =
N�

n=1

x[n]e−j2πln/N
, 1 ≤ l ≤ N.

The DFT X[l] of N consecutive samples from the
smooth signal model (1) can be obtained from the DTFT
(2) by first convolving with the Dirichlet kernel and then
sampling:

X[l] =
K�

k=1

ak DN

�
2π(l − lk)

N

�
, (3)

where lk = Nωk
2π and the Dirichlet kernel

DN (x) =
N−1�

k=0

e
jkx = e

jω(N−1)/2 sin(Nx/2)
sin(x/2)

.

Unfortunately, the DFT coefficients in (3) do not share
the same sparsity property as the DTFT coefficients in
(2), except in the (contrived) case when the sinusoid fre-
quencies in (1) are integral, that is, when each and every
lk is equal to an integer. On closer inspection, we see
that not only are most smooth signals not sparse in the



DFT domain, but, owing to the slow asymptotic decay
of the Dirichlet kernel, they are just barely compressible,
with a decay exponent of p = 1. As a result, practical
CS acquisition and recovery of frequency-sparse signals
does not perform nearly as well as one might expect.

In this paper, we develop new CS recovery algorithms
for practical frequency-sparse signals (with non-integral
frequencies). The naı̈ve first step is to change the signal
representation to a zero-padded DFT, which provides
samples from the signal’s DTFT at a higher rate than the
standard DFT. This is equivalent to replacing the DFT
basis with a redundant frame of sinusoids that we will
call a DFT frame. Unfortunately, there exists a tradeoff
in the use of these redundant frames for sparse approx-
imation and CS recovery: if we increase the amount of
zero-padding / size of the frame, then signals with non-
integral frequency components become more compress-
ible, which increases recovery performance. However,
simultaneously, the frame becomes increasingly coherent

[4], which decreases recovery performance. In order to
optimize this tradeoff, we leverage the last few decades
of progress in the field of spectral estimation [5] plus
recent progress on model-based CS [6] and marry these
techniques with a new class of greedy CS recovery
algorithms. We refer to our general approach as spectral

compressive sensing (SCS).
The primary novelty of SCS is the concept of taming

the coherence of the redundant DFT frame using an
inhibition model that ensures the sinusoid frequencies ωk

of (1) are not too closely spaced. We will provide an an-
alytical characterization of the number of measurements
M required for stable SCS signal recovery under this
model and will study the performance of the framework
under parameter variations.

This paper is organized as follows. Section II provides
the usual background on CS and model-based CS and
summarizes existing schemes for parameter estimation of
frequency-sparse signals. Section III develops our pro-
posed SCS recovery algorithms, and Section IV presents
our experimental results. Section V summarizes related
work in this area, and Section VI gives conclusions.

II. BACKGROUND

A. Sparse approximation

A signal x ∈ RN is K-sparse (K � N ) in a basis or
frame1 Ψ if there exists a vector θ with �θ�0 = K such
that x = Ψθ. Here � · �0 denotes the �0 pseudo-norm,
which simply counts the number of nonzero entries in the
vector. Signal compression often relies on the existence
of a known basis or frame Ψ such that for the signal
of interest x there exists a K-sparse approximation xK

1Recall that a frame is a matrix Ψ ∈ RD×N , D < N , such that
for all vectors x ∈ RD , A�x�2 ≤ �ΨT x�2 ≤ B�x�2 with 0 <
A ≤ B < ∞. A frame is a generalization of the concept of a basis
to sets of possibly linearly dependent vectors.

in Ψ that yields small approximation error �x − xK�2.
When Ψ is a basis, the optimal K-sparse approximation
of x in Ψ is trivially found through hard thresholding:
we preserve only the entries of θ with the K largest
magnitudes and set all other entries to zero. While
thresholding is suboptimal when Ψ is a frame, there
exist a bevy of sparse approximation algorithms that
aim to find a good sparse approximation to the signal
of interest. Such algorithms include basis pursuit [7],
orthogonal matching pursuit (OMP) [4], and iterative
thresholding [8]. The approximation performance of
these algorithms is directly tied to the coherence of the
frame Ψ, defined as µ(Ψ) = arg max1≤i,j≤N |�ψi,ψj�| ,

where ψi denotes the ith column of Υ. For example,
OMP successfully obtains a K-sparse signal representa-
tion if µ(Ψ) ≤ 1

16(K−1) [4].

B. Compressive sensing

Compressive Sensing (CS) is an efficient acquisition
framework for signals that are sparse or compressible
in a basis or frame Ψ. Rather than uniformly sampling
the signal x, we measure inner products of the signal
against a set of measurement vectors {φ1, . . . ,φM};
when M < N , we effectively compress the signal.
By collecting the measurement vectors as rows of a
measurement matrix Φ ∈ RM×N , this procedure can
be written as y = Φx = ΦΨθ, with the vector y ∈ RM

containing the CS measurements. We then aim to recover
the signal x from the smallest possible measurement
vector y. Since ΦΨ is a dimensionality reduction, it has
a null space, and so infinitely many vectors x� yield the
same recorded measurements y. Fortunately, standard
sparse approximation algorithms can be employed to
recover the signal representation θ by finding a sparse
approximation of y using the frame Υ = ΦΨ.

The Restricted Isometry Property (RIP) [1] has been
proposed to measure the fitness of a matrix Υ for CS.

Definition 2.1: The K-restricted isometry constant

for the matrix Υ, denoted by δK , is the smallest nonneg-
ative number such that, for all θ ∈ RN with �θ�0 = K,

(1− δK)�θ�22 ≤ �Υθ�
2
2 ≤ (1 + δK)�θ�22.

A matrix has the RIP if δK > 0. Since calculating δK

for a given matrix Φ requires a combinatorial amount
of computation, random matrices have been advocated.
For example, a matrix of size M ×N with independent
and identically distributed (i.i.d.) Gaussian entries with
variance 1/M will have the RIP with very high probabil-
ity if K ≤ M/ log(N/M). The same is true of matrices
following Rademacher (±1) or more general subgaussian
distributions.

C. Frequency-sparse signals

Recall from the introduction that frequency-sparse
signals of the form (1) have a sparse DTFT (2). How-
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Fig. 1. Performance of K-term sparse approximation algo-
rithms on a signal containing 20 complex sinusoids. We plot the
approximation error vs. the number of terms in the approxima-
tion. Top: Orthonormal DFT basis approximation performance
is perfect for signals with exclusively integral frequencies and
atrocious for signals with non-integral frequencies. Bottom:
Three potential approximation strategies for sinusoids with ar-
bitrary frequencies. Standard sparse approximation using a DFT
frame Ψ(c), c = 10, performs even worse than the DFT basis.
Structured sparse approximations based on a DFT frame and
Root MUSIC (described in Section III) perform much better.

ever, to exploit sparsity in CS, we require a discrete
signal representation; thus, the DFT has been the tool
of choice for frequency-sparse signals. Additionally, the
fast Fourier transform (FFT) provides a very efficient
algorithm to calculate the DFT coefficients of a signal.
The DFT of an length-N signal x can be obtained as its
representation in the orthonormal DFT basis F, which
has entries F[p, q] = e−j2πpq/N/

√
N , 1 ≤ p, q ≤ N .

The DFT basis preserves the sparsity of the DTFT
for frequency-sparse signals only when the signal com-
ponents have integral frequencies of the form 2πl/N ,
where l is an integer. Otherwise, the situation is de-
cidedly more complicated due to the spectral leakage
induced by windowing (convolution by the Dirichlet
kernel). To illustrate the difficulty, Fig. 1(a) plots the
sparse approximation error of signals of length N =
1024 containing 20 complex sinusoids of both integral
and non-integral frequencies using the DFT basis. As
expected, sparse approximation using a DFT basis fails
miserably for signals with non-integral frequencies.

The naı̈ve way to combat spectral leakage is to employ
a redundant frame, which we term a DFT frame, that
provides a finer sampling of the DTFT coefficients of the
signal x. Let c ∈ N denote the frequency oversampling
factor for the DFT frame, and define the frequency
sampling interval ∆ = 2π/cN ∈ (0, 2π/N ]. Also let
e(ω) = N−1/2[1 ejω . . . ejω(N−1)]T denote a nor-
malized vector containing regular samples of a complex
sinusoid with angular frequency ω ∈ [0, 2π). The DFT
frame with oversampling factor c is then defined as

Ψ(c) = [e(0) e(∆) . . . e(2π−∆)]T ; the corresponding
signal representation θ = Ψ(c)T x provides cN equis-
paced samples of the signal’s DTFT.

We can use the DFT frame Ψ(c) to obtain sparse
approximations for frequency-sparse signals with com-
ponents at arbitrary frequencies; as the frequency over-
sampling factor c increases, the K-sparse approximation
provided by Ψ(c) becomes increasingly accurate. The
following lemma is proven in [9].

Lemma 2.1: Let x =
�K

k=1 ake(ωk) be a K-
frequency-sparse signal, and let xK = Ψ(c)θK be its
best K-sparse approximation in the frame Ψ(c), with
�θK�0 = K. Denote a = [a1 . . . aK ]T . The best K-
term approximation error for x in the frame Ψ(c) obeys

�x− xK�2 ≤
�

1− |DN (π/cN)/N |2�a�1.

Unfortunately, standard sparse approximation algorithms
for x in the frame Ψ(c) do not perform well when c

increases due to the high coherence between the frame
vectors, particularly for large values of c:

µ(Ψ(c)) =
����
DN (π/cN)

N

���� → 1 as c →∞.

Due to this tradeoff, the maximum frequency oversam-
pling factor that still supports sparse representation of
K-sparse signals is

c ≤
π

N D
−1
N

�
N

16(K−1)

� ,

where D
−1
N (·) denotes the inverse of the Dirichlet kernel

within the interval [0, 2π/N ]. In words, the sparsity K of
the signal limits the maximum size of the redundant DFT
frame that we can employ, and vice-versa. Figure 1(b)
demonstrates the performance of standard sparse approx-
imation of the same signal with arbitrary frequencies as
in Fig. 1(a), but using the redundant frame Ψ(c) instead,
with c = 10. Due to the high coherence of the frame
Ψ(c), the algorithm cannot obtain an accurate sparse
approximation of the signal.

D. Model-based compressive sensing

While many natural and manmade signals and images
can be described to first-order as sparse or compress-
ible, the support of their large coefficients often has
an underlying second-order inter-dependency structure.
This structure can be leveraged by an algorithmic model-

based CS framework to exploit signal structure during
recovery [6]. The framework has three components:

1) Structured sparsity model: The set ΣK of all N -
length, K-sparse signals is the union of the

�N
K

�
, K-

dimensional subspaces aligned with the coordinate axes
in RN . A structured sparsity model MK endows the K-
sparse signal x with additional structure that allows only
certain K-dimensional subspaces from ΣK and disallows
others. Signals from MK are called K-structured sparse.
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2) Measurement reduction: If we know that the signal
x being acquired is K-structured sparse, then we can
relax the RIP constraint on the CS measurement matrix
Υ so that it holds only for signals in MK . We denote
this new property as MK-RIP; it is sufficient to achieve
stable recovery from the measurements y = Υθ. We
can thus reduce the number of random measurements
required to M = O(log mK), where mK is the number
of subspaces in MK .

3) Structured sparse approximation: The MK-RIP is
sufficient for robust recovery of structured sparse signals
using model-based CS recovery algorithms. These algo-
rithms replace the standard optimal K-sparse approxima-
tion performed by thresholding with a structured sparse

approximation algorithm M(x,K) that returns the best
K-term approximation of the signal x belonging in the
signal model MK .

E. Parameter estimation for frequency-sparse signals

The goal of CS is to identify the values and locations
of the nonzero coefficients of a sparse signal from a small
set of linear measurements. For frequency-sparse signals,
such an identification can be interpreted as a parameter
estimation problem, since each coefficient index corre-
sponds to a sinusoid of a certain frequency. Thus, in this
case, CS aims to estimate the frequencies and amplitudes
of the largest sinusoids present in the signal. In practice,
most CS recovery algorithms iterate through a sequence
of increasing-quality estimates of the signal coefficients
by differentiating the signal’s actual nonzero coefficients
from spurious estimates; such spurious coefficients are
often modeled as recovery noise.

Thus, we now briefly review the extensive prior work
in parameter estimation for frequency-sparse signals
embedded in noise [5]. We start with the simple sinusoid
signal model, expressed as x = Ae(ω) + n, where
n ∼ N (0,σ2I) denotes a white noise vector with i.i.d.
entries. The model parameters are A and ω, the complex
amplitude and frequency of the sinusoid, respectively.

1) Periodogram-based methods: The maximum like-
lihood estimator (MLE) of the amplitude A of a single
sinusoid when the frequency ω is known is given by
the DTFT of x, the zero-padded, infinite length version
of the signal x, at frequency ω: �A = 1

N X(ω) =
�e(ω),x�. [5] Furthermore, since only a single sinusoid
is present, the MLE for the frequency ω is given by the
frequency of the largest-magnitude DTFT coefficient of
x: �ω = arg supω |X(ω)| = arg supω |�e(ω),x�|. This
approach is often described as the periodogram method

for parameter estimation [5]. This simple estimator can
be extended to the multiple sinusoid setting by perform-
ing combinatorial hypothesis testing [5].

For frequency-sparse signals with components at inte-
gral frequencies, the signal’s representation in the DFT
basis provides the information needed by the MLEs

above; in this case, the parameter estimation problem
is equivalent to sparse approximation in the DFT basis.
This equivalence can also be extended to frequency-
sparse signals whose component frequencies are in-
cluded in an oversampled DTFT sampling grid by using
a DFT frame instead.

2) Window-based methods: From the spectral analy-
sis point of view, we can argue that the coherence of the
DFT frame Ψ(c) is simply another manifestation of the
spectral leakage problem. The classical way to combat
spectral leakage is to apply a tapered window function
to the signal before computing the DFT [5]. However,
windowing can also degrade the spectral analysis resolu-
tion, making it more difficult to identify frequency-sparse
signal components with similar frequencies.

3) Eigenanalysis-based methods: A modern alterna-
tive to classical periodogram-based spectral estimates are
line spectral estimation algorithms based on eigenanal-
ysis of the signal’s correlation matrix [5]. Such algo-
rithms provide improved resolution of the parameters
of a frequency-sparse signal by estimating the principal
components of the signal’s autocorrelation matrix in
order to find the dominant signal modes in the fre-
quency domain. Example algorithms include Pisarenko’s
method, MUSIC, root MUSIC, and ESPRIT. A line
spectral estimation algorithm L(x,K) returns a set of
dominant K frequencies for the input signal x, with K

being a controllable parameter.
We can interpret the line spectral estimation process

L as a K-sparse approximation algorithm Tl(x,K) in
the frequency domain: first, we obtain the K frequencies
{�ωk}

K
k=1 = L(x,K); second, we estimate the coefficient

values using the DTFT as described earlier. We note
that most line spectral estimation algorithms provide a
tradeoff between estimation accuracy and computational
complexity in the selection of the window size used to
estimate the autocorrelation matrix Rxx.

III. SPECTRAL COMPRESSIVE SENSING

We are now in a position to develop new SCS recovery
algorithms that are especially tailored to frequency-
sparse signals of arbitrary frequencies. We will develop
two sets of algorithms based on the periodogram and
line spectral estimation algorithms from Section II-E.

A. SCS via periodogram

To alleviate the performance-sapping coherence of the
redundant DFT frame, we marry it with the model-based
CS framework of Section II-D that forces the signal
approximation to contain linear combinations of only
incoherent frame elements.

1) Structured signal model: Our structured signal
model TK,c,µ requires that the components of the
frequency-sparse signal are incoherent with each other;
i.e., x =

�K
i=1 aie(di∆), with di ∈ {0, . . . , cN − 1}
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and |�e(di∆), e(dj∆)�| ≤ µ, the maximal coherence
allowed, for all 1 ≤ i, j ≤ K. The coherence restriction
imposes a lower bound on the frequency spacing be-
tween any two sinusoids present in a recoverable signal.
We note that the limitations on the sparse approximation
algorithms discussed in Sect. II-A require the use of a
signal model TK,c,µ obeying µ ≤

1
16(K−1) . In words,

the signals in the model must have components that are
mutually incoherent; however, the frame µ(Ψ(c)) used
for recovery can be much more coherent.

2) Structured sparse approximation: We can modify
standard sparse approximation algorithms to avoid se-
lecting highly coherent pairs of elements of the DFT
frame Ψ(c). Our structured sparse approximation algo-
rithm �θ = T(θ, K, c, µ) is an adaptation of that used for
the refractory model of [10] and can be implemented as
an integer program.

To reduce the computational complexity of
T(θ, K, c, µ), we propose a heuristic that relies on
frequency inhibition. The heuristic Th(θ, K, c, µ)
obtains the projection of x on the elements of the DFT
frame θ = Ψ(c)T x and searches for the coefficient
θ(d) with the largest magnitude. Once a coefficient
is selected, the algorithm inhibits all coefficients
for neighboring sinusoids (i.e., indices d� for which
DN (∆(d − d�)) < µ) by setting those coefficients to
zero. We then repeat the process by searching for the
next largest coefficient in magnitude until K coefficients
have been selected or all coefficients are zero. This
heuristic has complexity O(cKN log(cN)) and offers
very good performance for sparse approximation
of arbitrary frequency-sparse signals, as shown in
Fig. 1(b). Our experimental results in Sect. IV employ
this heuristic.

3) Model-based recovery algorithm: The model-
based IHT algorithm of [6] is particularly amenable
to modification to incorporate our heuristic frequency-
sparse approximation algorithm. Due to the redundancy
of the frame Ψ(c), we perform some minor surgery on
the algorithm: we replace the matrix Φ by the matrix
product ΦΨ and multiply the signal estimate b by the
Gramian matrix of the frame each time so that coherent
frame elements featuring coefficients of opposing signs
can cancel each other. The modified algorithm, which
we dub spectral iterative hard thresholding (SIHT), is
unfurled in Algorithm 1. It inherits a strong performance
guarantee from standard IHT [8]: If the matrix Φ has the
T2K,c,µ-RIP, then we have

�x− �x�2 ≤ C0
�x−ΨT(ΨT x,K, µ)�2

K1/2
+ C1�. (4)

We note that for signals that are frequency-sparse and
composed of incoherent sinusoids with frequencies of
the form l∆, we have ΨT(ΨT x,K, c, µ) = x, meaning
that recovery from noiseless measurements is exact.

Algorithm 1 Spectral Iterative Hard Thresholding
inputs: CS Matrix Φ, DFT frame Ψ = Ψ(c),
structured sparse approx. algorithm T(·,K, c, µ),
measurements y
outputs: K-sparse approx. �θ, signal estimate �x
initialize: �θ0 = 0, r = y, i = 0
while halting criterion false do

i ← i + 1
b← �θi−1 + T(ΨT ΦT r, N, c, µ) {estimate signal}
�θi ← T(ΨT Ψb,K, c, µ) {prune signal estimate}
r← y − ΦΨ�θi {update measurement residual}

end while
return �θ ← �θi, �x← Ψ�θ

4) Required number of measurements: By counting
the number of subspaces tK that compose the signal
model TK,c,µ, we calculate the required number of
random measurements to be M = O (K log(cN/K))
[9]. In words, the number of measurements needed
corresponds to that required by standard CS for a K-
sparse, cN -dimensional signal. That is, SIHT can em-
ploy a coherent DFT frame without paying the penalty
on the number of measurements required for stable
signal recovery. We demonstrate below in Sect. IV that,
in practice, SIHT offers a significant reduction in the
number of measurements over standard CS recovery
algorithms.

B. SCS via line spectral estimation

While the combination of a redundant frame and the
coherence-inhibiting structured sparsity model yields an
improvement in the performance of SIHT, the algo-
rithm still suffers from a limitation in the resolution
of neighboring frequencies that it can distinguish. This
limitation is inherited from the frequency and coefficient
estimation methods used by SIHT, which are based on
the periodogram.

Fortunately, we can leverage the now-classical line
spectral estimation methods [5] that return a set of K

dominant frequencies for the input signal, with K being
a controllable parameter. Since these methods do not
rely on redundant frames, we do not need to leverage
the features of model-based CS that control the effect
of coherence. We simply employ the spectral estimator-
based sparse approximation algorithm �x = Tl(x,K)
from Section II-E3 instead of thresholding in the stan-
dard IHT algorithm, and we dub the result SIHT via

line spectral estimation. While analytical results for
this modification have proven difficult to establish, we
show experimentally below that its performance matches
that of the periodogram-based SIHT algorithm while
exhibiting a much simpler implementation. We choose
to use the root MUSIC algorithm in this paper.
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IV. EXPERIMENTAL RESULTS

In this section, we report experimental results for the
performance of the periodogram-based and root MUSIC-
based SIHT recovery algorithms as compared to standard
CS recovery using the IHT algorithm. This compari-
son effectively illustrates the performance improvement
afforded by the structured sparsity model. We probe
the robustness of the algorithms to varying amounts of
measurement noise and varying frequency oversampling
factors c. We also test the algorithms on a real-world
communications signal. A Matlab toolbox containing im-
plementations of the SIHT recovery algorithms, together
with scripts that generate all figures in this paper, is
available at http://dsp.rice.edu/scs.

Our first experiment compares the performance of
standard IHT using the orthonormal DFT basis against
that of the SIHT algorithms. Our experiments use signals
of length N = 1024 samples containing K = 20
complex-valued sinusoids. For each M , we executed 100
independent trials using random measurement matrices
Φ of size M × N with i.i.d. Gaussian entries and
signals x =

�K
k=1 e(ωk), where each pair of frequencies

ωi, ωj , 1 ≤ i, j ≤ K, i �= j are spaced apart by at
least 10π/1024 radians/sample. For each CS matrix /
sparse signal pair we obtain the measurements y = Φx
and calculate estimates of the signal �x using IHT with
the orthonormal DFT basis, SIHT via periodogram with
frequency oversampling factor c = 10 and maximum
allowed coherence µ = 0.1 (Algorithm 1), and SIHT
via Root MUSIC. We use a window size W = N/10 in
Root MUSIC to estimate the autocorrelation matrix Rxx.
We study three different regimes: (i) the average case, in
which the frequencies are selected randomly to machine
precision; (ii) the best case, in which the frequencies are
randomly selected and rounded to the closest integral
frequency, resulting in zero spectral leakage; and (iii) the
worst case, in which each frequency is half-way in
between two consecutive integral frequencies, resulting
in maximal spectral leakage. The results are summarized
in Fig. 2 and show first that the average performance of
standard IHT is very close to its worst-case performance,
and second that both SIHT algorithms perform signifi-
cantly better on the same average case regime. We also
note that SIHT works well in the average case regime
even though the resulting signals do not exactly match
the sparse-in-DFT-frame assumption. Thus, the proposed
algorithms are robust to mistmatch in the values for
the frequencies in the signal model (1). We use this
experimental setup in the rest of this section, but we
restrict ourselves to the average case regime.

Our second experiment tests the robustness of SIHT
to additive noise in the measurements. We set the
experiment parameters to N = 1024, K = 20, and
M = 300, and we add i.i.d. Gaussian noise of variance
σ2 to each measurement. For each value of σ, we
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Fig. 2. Performance of CS signal recovery via IHT using the
orthonormal DFT basis, SIHT via periodogram, and SIHT via
Root MUSIC. We use signals of length N = 1024 containing
K = 20 complex-valued sinusoids. The dotted lines indicate
the performance of IHT via the orthonormal DFT basis for the
best case (when the frequencies of the sinusoids are integral)
and the worst case (when each frequency is half way in between
two consecutive integral frequencies). The performance of IHT
for arbitrary frequencies is close to its worst-case performance,
while both SIHT algorithms perform significantly better for
arbitrary frequencies. All quantities are averaged over 100 in-
dependent trials.
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Fig. 3. Performance of SIHT via periodogram and SIHT via
Root MUSIC for signal recovery from noisy measurements.
We use signals of length N = 1024 containing K = 20
complex-valued sinusoids and take M = 300 measurements.
We add noise of varying variances σ and calculate the average
normalized error magnitude over 1000 independent trials. The
linear relationship between the noise variance and the recovery
error indicates the robustness of the recovery algorithm to noise.

perform 1000 independent noise trials; in each trial, we
generate the matrices Φ and signals x randomly as in
the previous experiment. Fig. 3 shows the average norm
of the recovery error as a function of the noise variance
σ; the linear relationship indicates stability to additive
noise to the measurements, as predicted in (4).

Our third experiment studies the impact of the fre-
quency oversampling factor c on the performance of
SIHT. We use the same matrix and signal setup as in
the previous experiment: we execute 10000 independent
trials for each value of c. The results, shown in Fig. 4,
indicate a linear dependence between the granularity of
the DFT frame ∆ and the norm of the recovery error.
This sheds light on the tradeoff between the computa-
tional complexity and the recovery performance, as well
as between the oversampling factor M/K (dependent on
log c) and the recovery performance. These results also
experimentally confirm Lemma 2.1.

Our fourth experiment tests the capacity of the IHT
and SIHT algorithms to resolve neighboring frequencies
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Fig. 4. Performance of SIHT via periodogram for signal
recovery under varying grid spacing resolutions ∆ = 2π/cN .
We use signals of length N = 1024 containing K = 20
complex-valued sinusoids and take M = 300 measurements.
We average the recovery error over 10000 independent trials.
There is a linear dependence between the granularity of the DFT
frame and the norm of the recovery error.
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SIHT via Root MUSIC

SIHT via Algorithm 2

IHT via FFT

Fig. 5. Performance of IHT and SIHT algorithms for frequency-
sparse signals with components at closely spaced frequencies.
The signal has length N = 1024 and contains 2 real sinusoids
(K = 4) with frequencies separated by δω . IHT and SIHT are
used to recover the signal from M = 100 measurements. The
use of line spectral estimation in SIHT significantly improves
its performance. Additionally, standard IHT outperforms SIHT
only when the signal of interest is not contained in the class of
frequency-sparse signals with incoherent components.

in frequency-sparse signals. For this experiment, the
signal consists of 2 real-valued sinusoids (i.e., K = 4)
of length N = 1024 with frequencies that are separated
by a value δω varying between 0.1 − 5 cycles/sample
(2π/100N − 10π/N rad/sample); we obtain M = 100
measurements of the signal. We measure the perfor-
mance of standard IHT with the DFT basis, SIHT via
periodogram with frequency oversampling factor c = 10
and maximum allowed coherence µ = 0.1, and SIHT via
Root MUSIC, all as a function of the frequency spacing
δω. For this experiment, we modify the window size
parameter of the Root MUSIC algorithm to W = N/3
to improve its estimation accuracy at the cost of higher
computational complexity. For each value of δω, we
execute 100 independent trials as detailed in previous
experiments. The results, shown in Fig. 5, verify the
limitation of periodogram-based methods as well as
the improved resolution performance afforded by line
spectral estimation methods like Root MUSIC. Standard
IHT only outperforms the SIHT algorithms when the
signal does not belong in the class of frequency-sparse
signals with incoherent components (that is, very small
frequency spacing δω).
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Fig. 6. Performance of �1-norm minimization, IHT via or-
thonormal DFT, and SIHT via Root MUSIC algorithms on a
real-world AM communications signal of length N = 32768
for a varying number of measurements M . SIHT significantly
outperforms its standard counterparts.

Our last experiment tests the performance of the IHT
and SIHT algorithms on a real-world signal. We use the
amplitude modulated (AM) signal from [3, Figure 7],
measured in a lab, and simulate its acquisition using
the random demodulator [3]. The signal has length
N = 32768 samples. We recover the signal in half-
overlapping blocks of length N � = 1024 using the
IHT and SIHT algorithms; we also use the �1-norm
minimization algorithm used in [3] for reference. We
set the target signal sparsity to K = N/100 in the
IHT and SIHT algorithms. The recovered AM signals
are then demodulated, and the recovery performance is
measured in terms of the distortion against the message
obtained by demodulating the signal at Nyquist rate. We
average the performance over 20 trials for the random
demodulator chipping sequence. The results in Fig. 6
shows that SIHT consistently outperforms standard CS
recovery algorithms.

To summarize, our experiments have shown that SIHT
achieves significantly improved signal recovery perfor-
mance for the overwhelming majority of frequency-
sparse signals when compared with standard CS recovery
algorithms and sparsity bases. The two SIHT algo-
rithms we introduced and tested inherit some attractive
properties from their standard counterparts, including
robustness to model mismatch and measurement noise.

V. RELATED WORK

A recent paper [11] independently studied the poor
performance of standard CS recovery algorithms on
frequency-sparse signals when the DFT basis is used.
The paper provides a generic framework for sparsity
basis mismatch in which an inaccurate sparsity basis is
used for CS recovery and determines a bound for the
approximation error as a function of the basis mismatch.
The paper shows that in the noiseless setting, CS via the
DFT basis provides lower accuracy that linear prediction
methods on subsampled sinusoids. However, such linear
prediction methods are very sensitive to noise, and thus
are not suitable for use in SCS.
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There also exists a related body of related work on
compressive acquisition of signals governed by a small
number of continuous-valued parameters. The Xampling
framework [12] enables recovery of analog signals from
sampling rates below those dictated by the Nyquist
theorem by using sparsity coupled with sampling the-
ory and analog signal processing tools. In finite rate
of innovation (FROI) sampling [13], certain classes of
signals governed by a small number of parameters can be
acquired by uniformly sampling them using a specially
designed kernel; the samples are then processed to
obtain an annihilating filter, which in turn is used to
estimate the values of the parameters. The application
of FROI to frequency-sparse signals results in the linear
prediction method used in [11], where the arguments
of the complex roots of an annihilating filter reveal the
frequencies ωk of the signal components in (1). In fact,
line spectral estimation algorithms have been proposed
to extend FROI to noisy sampling settings [14], albeit
without performance guarantees.

In contrast to the Xampling and FROI frameworks,
which focus on analog signal representations, our work
in this paper aims to augment the standard CS frame-
work [1, 2], which works on signal samples directly, to
succeed for a wider class of frequency-sparse signals.

VI. CONCLUSIONS

In this paper we have developed a new framework for
CS recovery of frequency-sparse signals, which we have
dubbed spectral compressive sensing (SCS). The frame-
work fuses a redundant frame of sinusoids corresponding
to an oversampled frequency grid with a coherence-
inhibiting structured signal model that prevents the usual
loss of performance due to the frame coherence. We
have provided both performance guarantees for the SIHT
algorithms and a bound on the number of random
measurements needed to enable these guarantees. We
have also presented adaptations of standard line spectral
estimation methods to recover frequency-sparse signals
containing arbitrarily close frequencies with low com-
putational complexity. As Fig. 2 indicates, the SIHT
algorithms significantly outperform SIHT using the or-
thonormal DFT basis (up to 25dB in the figure).

Our SCS framework can be extended to other signal
recovery settings where each component of the signal’s
sparse representation is governed by a small set of pa-
rameters. While such signals are well suited for manifold
models when only one component is present in the
signal [15], they fall short for linear combinations of a
varying number of components. Following SCS, we can
construct a frame whose elements represent a uniform
sampling of the manifold in parameter space. However,
when the manifold is very smooth, the resulting frame
will be highly coherent, limiting the performance of
sparse approximation algorithms. By posing coherence-

inhibiting models, we can enable accurate recovery of
sparse signals under the redundant frame.
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