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Abstract

Compressive sensing (CS) is a new approach to simultaneous sensing and compression of
sparse and compressible signals based on randomized dimensionality reduction. To recover a
signal from its compressive measurements, standard CS algorithms seek the sparsest signal in
some discrete basis or frame that agrees with the measurements. A great many applications
feature smooth or modulated signals that are frequency-sparse and can be modeled as a
superposition of a small number of sinusoids; for such signals, the discrete Fourier transform
(DFT) basis is a natural choice for CS recovery. Unfortunately, such signals are only sparse
in the DFT domain when the sinusoid frequencies live precisely at the centers of the DFT
bins; when this is not the case, CS recovery performance degrades significantly. In this
paper, we introduce the spectral CS (SCS) recovery framework for arbitrary frequency-
sparse signals. The key ingredients are an over-sampled DFT frame and a restricted union-
of-subspaces signal model that inhibits closely spaced sinusoids. We demonstrate that SCS
significantly outperforms current state-of-the-art CS algorithms based on the DFT while
providing provable bounds on the number of measurements required for stable recovery. We
also leverage line spectral estimation methods (specifically Thomson’s multitaper method
and MUSIC) to further improve the performance of SCS recovery.
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1. Introduction

The emerging theory of compressive sensing (CS) [1, 2, 3] combines digital data acquisi-
tion with digital data compression to enable a new generation of signal acquisition systems
that operate at a signal’s intrinsic information rate rather than its ambient data rate. Rather
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than acquiring N samples x = [x[1] x[2] ... x[N]]” of a signal, a CS system acquires M < N
measurements via the linear dimensionality reduction y = ®&x, where ¢ is an M x N mea-
surement matrix. When the signal x has a sparse representation x = W6 in terms of an
N x N orthonormal basis matrix ¥, meaning that only K < N out of N signal coefficients
0 are nonzero, then the number of measurements required to ensure that y retains all of the
information in x is just M = O(K log(N/K)) [1, 2, 3]. Moreover, a sparse signal x can be
recovered from its compressive measurements y via a convex optimization or iterative greedy
algorithm. Random matrices play a central role as universal measurements, since they are
suitable for signals sparse in any fixed basis with high probability. The theory also extends
to noisy measurements as well as to so-called compressible signals that are not exactly sparse
but can be closely approximated as such. Compressible signals have coefficients 6 that, when
sorted, decay according to a power law |0[i]| < Ci~'/? for some p < 1; the smaller the decay
exponent p, the faster the decay and the better the recovery performance we can expect from
CS. The theory can also be extended from orthonormal bases ¥ to more general redundant
frames, where we instead require that either the vector of synthesis coefficients € or the
vector of analysis coefficients ¥#x be sparse or compressible [4].

A great many applications feature smooth or modulated signals that can be modeled as
a superposition of K sinusoids [5, 6, 7, 8]

x[n] = Zak e IURn (1)

where wy, are the sinusoid frequencies. When the sinusoids are of infinite extent, such signals
have a K-sparse representation in terms of the discrete-time Fourier transform (DTFT),!
since

[M] =

X(w) = ar 6(w — wg), (2)
k=1

where 0 is the Dirac delta function. We will refer to such signals as frequency-sparse.
Practical applications feature signals of finite length N. In this case, the frequency

domain tool of choice for both signal analysis and CS recovery has been the discrete Fourier

transform (DFT).? The DFT X[I] of N consecutive samples from the signal model (1) can be

obtained from the DTFT (2) by first convolving with a Dirichlet kernel and then sampling:

- 2 (L — Iy)

X[l] = Z: ar, Dn <T) ’ (3)

k=1

'Recall that the DTFT of a signal x is defined as X (w) = > %
x[n] = i ffﬂX(w)ej‘””dw.

2Recall that the DFT of a length-N signal x is defined as X[l] = ij:l x[n]e=72™/N 1 <] < N, with
inverse transformation x[n] = & Zi\;l X[l]e?™/N 1 < n < N.

x[n]e™7“" with inverse transformation
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Figure 1: Compressive sensing (CS) sparse signal recovery from M = 300 noiseless random measure-
ments of a signal of length N = 1024 composed of K = 20 complex-valued sinusoids with arbitrary
real-valued frequencies. We compare the frequency spectra obtained from redundant periodograms
of (a) the original signal and its recovery using (b) root MUSIC on M signal samples (SNR =
0.65dB), (c) standard CS using the orthonormal DF'T basis (SNR = 5.35dB), (d) standard CS
using a 10x redundant DF'T frame (SNR = —4.45dB), (e) spectral CS using SIHT via Algorithm 1
(SNR = 32.40dB), and (f) spectral CS using SIHT via Algorithm 3 (SNR = 32.03dB).

where [, = % and the Dirichlet kernel

o ke __ja(v+1)28in(Nx/2)
DN(QS') = ZGJ = ¢’ ( )/ W
k=1

Unfortunately, the DFT coefficients in (3) do not share the same sparsity property as
the DTFT coefficients in (2), except in the (contrived) case where the sinusoid frequencies in
(1) are integral, that is, when each and every [ is equal to an integer. On closer inspection,
we see that not only are most signals of the form (3) not sparse in the DFT domain, but,
owing to the slow asymptotic decay of the Dirichlet kernel away from its peak, they are just
barely compressible, with a decay exponent of p = 1. As a result, practical CS acquisition
and recovery of frequency-sparse signals does not perform nearly as well as one might expect
(see Fig. 1(c) and the discussions in [8, 9, 10, 11], for example).

The goal of this paper is to develop new recovery algorithms for the standard CS frame-
work (as described in Section 2 and developed in [1, 2, 3]) for general frequency-sparse signals
with non-integral frequencies. The naive first step is to change the signal representation to a
zero-padded DFT, which provides samples from the signal’s DTFT at a higher rate than the
standard DFT. This is equivalent to replacing the DFT basis with a redundant frame [12]
of sinusoids that we will call a DFT frame. Unfortunately, as we quantify in Section 2,



there exists a tradeoff in the use of these redundant frames for sparse approximation and CS
recovery: if we increase the amount of zero-padding / size of the frame, then signals with
non-integral frequency components become more compressible, which improves recovery per-
formance. However, simultaneously, the frame becomes increasingly coherent [13, 14], which
decreases recovery performance (see Fig. 1(d), for example). In order to optimize this trade-
off, we will leverage recent progress on model-based CS [15] (see Section 2 for a summary of
these areas) and marry these techniques with a class of greedy CS recovery algorithms. We
refer to our general approach as spectral compressive sensing (SCS) and describe it in detail
in Section 4.

A key novelty of SCS is the concept of taming the coherence of the redundant DF'T frame
using an inhibition model that ensures the sinusoid frequencies wy of (1) are not too closely
spaced. Such an assumption is pervasive in the spectrum estimation literature [6, 7, 16].
We provide an analytical characterization of the number of measurements M required for
stable SCS signal recovery under the model-based CS approach and study the performance
of the framework under parameter variations. As we see from Fig. 1(e-f) and Fig. 4, the
performance improvement of SCS over standard DFT-based CS can be substantial (up to
25dB in Fig. 4).

While the model-based SCS recovery algorithm is derived using a periodogram spectral
estimate, we also show that more general line spectral estimation methods [5, 6, 7, 16,
17, 18] (described in Section 3) can be integrated into SCS in a straightforward fashion.
The resulting recovery algorithms feature reduced computational complexity and increased
robustness and noise stability, mirroring the advantages of line spectral estimation over
the periodogram. In particular, we showcase two approaches for spectral estimation —
Thomson’s multitaper method [16] and root MUSIC [19] — and experimentally verify the
resulting improvements in SCS recovery performance in Section 5.

Although this paper focuses on frequency-sparse signals, the SCS concept generalizes
to other settings featuring signals that are sparse in a parameterized redundant frame, as
discussed in Section 6. Examples include the frames underlying localization problems [20, 21,
22, 23], radar imaging [24, 25, 26], and manifold-based signal models [27, 28] to name just a
few. Additionally, several alternative frameworks to CS have been proposed for the modeling
and acquisition of frequency-sparse signals from a small number of samples, including finite
rate of innovation (FROI) sampling [29, 30, 31, 32] and Xampling [9, 10, 33]. We compare
and contrast these frameworks with ours in more detail in Section 6.

2. Background

2.1. Sparse approximation

A signal x € RY is K-sparse (K < N) in a basis or frame® W if there exists a vector
0 with ||0|lo = K such that x = Wf. Here || - ||o denotes the ¢y pseudo-norm, which simply

3A discrete-time frame is a matrix ¥ € CP*N_ D < N, such that for all vectors x € R Alx[]y <
[UHx|]y < Bljx||2 with 0 < A < B < co. A frame is a generalization of the concept of a basis to sets of
possibly linearly dependent vectors [12].



counts the number of nonzero entries in the vector.

Transform coding is a powerful and hence popular compression approach. In transform
coding, there exists a basis or frame ¥ in which the signal of interest x has a K-sparse
approzimation X in W that yields small approximation error ||x —Xx||2. When W is a basis,
the optimal K-sparse approximation of x in W is trivially found through hard thresholding:
we preserve only the entries of # with the K largest magnitudes and set all other entries
to zero. While thresholding is suboptimal when W is a frame, there exist a bevy of sparse
approximation algorithms that aim to find a good sparse approximation to the signal of inter-
est. Such algorithms include basis pursuit [34] and orthogonal matching pursuit (OMP) [13].
Their approximation performance is directly tied to the coherence of the frame W, defined
as

() := max_[{;,¥;)],

1<ij<N

where 1); denotes the 7" column of ¥ assumed to have unit norm. For example, orthogonal
matching pursuit (OMP) successfully obtains a K -sparse signal representation if [13, 14]

W) <~

= 16(K — 1) (4)

2.2. Compressive sensing

Compressive Sensing (CS) is an efficient acquisition framework for signals that are
sparse or compressible in a basis or frame W. In this paper, we focus on the development
set out in [1, 2, 3|, where the signal x and its representation § are discrete and finite-
dimensional. This framework has successfully been reduced to several practical sensing
architectures [8, 35, 36, 37]. To acquire the signal x, we measure inner products of the
signal against a set of measurement vectors {¢1, ..., ¢y }; when M < N, we effectively com-
press the signal. By collecting the measurement vectors as rows of a measurement matrix
d ¢ RM*N  this procedure can be written as y = &x = ®Uf, with the vector y € RM
containing the CS measurements. We then aim to recover the signal x from the fewest pos-
sible measurements y. Since ®V is a dimensionality reduction, it has a null space, and so
infinitely many vectors x’ yield the same recorded measurements y. Fortunately, standard
sparse approximation algorithms can be employed to recover the signal representation 6 by
finding a sparse approximation of y using the frame T = ®W.

Two parallel mathematical frameworks have emerged for the selection of a CS matrix ®.
One can choose to select the matrix ® by selecting independently at random elements of an
orthonormal basis ® that is mutually incoherent with the basis ¥ [38],% i.e., that the maximal
magnitude for an inner product between an element of ®" and an element of W is close to the
lower bound of 1/v/N. Tt is possible to show that as few as M = O(K log N) measurements
under such a sampling scheme can provide enough information to recover the overwhelming
majority of sufficiently sparse signals [38]. For frequency-sparse signals, this measurement

4This concept of mutually incoherent bases should not be confused with the prior concept of the coherence
of a frame, although they are conceptually related.



selection technique results in a random sampling acquisition scheme [39, 40, 41, 42, 43, 44].
Alternatively, the Restricted Isometry Property (RIP) has been proposed as a measure for
the fitness of a matrix Y for CS [1].

Definition 1. The K-restricted isometry constant for the matriz Y, denoted by d, is the
smallest nonnegative number such that, for all § € CN with ||0)|o = K,

(1= ax)lI015 < 10113 < (1+ o) [101]5- (5)

A matrix has the RIP if dx < 1. Since calculating dx for a given matrix requires a combina-
torial amount of computation, random matrices have been advocated [1, 2]. For example, a
matrix of size M x N with independent and identically distributed (i.i.d.) Gaussian entries
with variance 1/M will have the RIP with very high probability if K < M/log(N/M). The
same is true of matrices following Rademacher (1) or more general subgaussian distribu-
tions. Revisiting our previous example, OMP can recover a K-sparse representation ¢ from
its measurements y = Y10 if the restricted isometry constant dx.; < ﬁ [45]. Additional
algorithms for signal recovery from CS measurements include CoSaMP [46] and iterative
hard thresholding (IHT) [47, 48, 49, 50]. The IHT algorithm can be compactly written in
an iterative form:

0,1 = threshy (6; + Y (y — T6)), (6)

where the algorithm is initialized to 6y = 0, and threshy (x) denotes the hard thresholding
operator on X, setting all but the K entries of x with largest magnitudes to zero. The THT
algorithm can be shown to perfectly recover K-sparse signals when d5x < 1/4/32; it also
offers performance guarantees in the presence of noise and compressibility.

2.3. Frequency-sparse signals

Recall from the introduction that an infinite-length frequency-sparse signal of the form (1)
has a sparse DTFT (2). Unfortunately, however, an N-sample window of such a signal does
not necessarily have a sparse DFT. Indeed, the DFT coefficients will be sparse only when
the sinusoids in (1) have integral frequencies of the form 27n /N, where n is an integer. Oth-
erwise, the situation is decidedly more complicated due to the spectral leakage induced by
the windowing (i.e., convolution by the Dirichlet kernel). To graphically illustrate this issue,
Fig. 2(a) plots the average approximation error of signals of length N = 1024 containing 20
complex sinusoids of both integral and non-integral frequencies when they are approximated
using their best K-term approximation in the DFT basis. As expected, sparse approximation
using the DFT basis fails miserably for signals with non-integral frequencies.

The naive way to combat the spectral leakage caused by nonintegral frequencies is to
employ a redundant DF'T frame. The DFT frame representation provides a finer sampling of
the DTFT coefficients for the signal x observed; it can also be interpreted as an interpolated
version of coefficients of the DFT basis. Let ¢ € N denote the frequency redundancy factor
for the DFT frame, and define the frequency sampling interval A = 27 /c¢N € (0,27 /N]. Let

1 L .
e(w) = —=[1 & & . DT

VN
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Figure 2: Performance of standard and structured K-term sparse approximation algorithms on two
classes of frequency-sparse signals of length N = 1024 and containing 20 sinusoids. Signals in the
first class contain sinusoids at only integral frequencies; signals in the second class contain sinusoids
at arbitrary integral and nonintegral frequencies. We plot the signal approximation error as a func-
tion of the approximation sparsity K. (a) Orthonormal DFT basis approximation performance is
ideal for signals with exclusively integral frequencies and atrocious for signals with non-integral fre-
quencies. (b) Five alternative approximation strategies for sinusoids with non-intgeral frequencies.
Standard sparse approximation using the DFT frame V(c), ¢ = 10, performs even worse than the
DFT basis. Structured sparse approximation based on integer programming (Algorithm 1), heuris-
tic (Algorithm 3), Thomson’s multitaper method, and Root MUSIC spectral estimation perform
much better.

denote a normalized vector containing regular samples of a complex sinusoid with angular
frequency w € [0,27). The DFT frame with redundancy factor ¢ is then defined as

U(c) :=[e(0) e(A) e(2A) ... e(2m — A)],

and the corresponding signal representation § = W(c)”x provides us with ¢N equispaced
samples of the signal’s DTFT. Note that ¥(1) = F, the usual orthonormal DFT basis.

One might presume that we can use the DFT frame ¥(c) to obtain sparser approxi-
mations of frequency-sparse signals with components at nonintegral frequencies, since, as
the frequency redundancy factor ¢ increases, the K-sparse approximation provided by ¥(c)
becomes increasingly accurate. The proof of the following lemma is given in Appendix A.

Lemma 1. Let x = Y1, are(wy) be a K-frequency-sparse signal, and let xx = ¥(c)0x be
its best K -sparse approzimation in the frame V(c), with ||0k||o = K. Then the corresponding
best K-term approximation error for x obeys

e = xscll2 < v/1 = [Dw(/eN)/NP]Jal]s, (7)
where a = [a; ... ag]’.

The term on the right hand side of (7) goes to zero as ¢ — oo. Unfortunately, however,
standard sparse approximation algorithms for x in the frame ¥(c) do not perform well when



¢ increases, due to the high coherence between the frame vectors, particularly for large values
of ¢ (see equation (A.2) in Appendix A):

w(¥(e)) = w — 1 as ¢ — 0. (8)

Due to this tradeoff, the frequency redundancy factor required by (4) to successfully find the
sparse representation of a K-sparse signal is

s
c <

N DJ?fl (16(%4))

where Dy'(y) denotes the largest value of o for which |Dy(z)| > y for y € R*. In words,
the sparsity K of the signal limits the maximum size of the redundant DFT frame that we
can employ, and vice-versa. Figure 2(b) demonstrates the performance of standard sparse
approximation of the same signal with arbitrary frequencies as in Fig. 2(a), but using the
redundant frame W(c) instead, with ¢ = 10. Due to the high coherence of the frame ¥(c),
the algorithm cannot obtain an accurate sparse approximation of the signal.

2.4. Model-based compressive sensing

While many natural and manmade signals and images can be described to first-order
as sparse or compressible, the support of their large coefficients often has an underlying
second-order inter-dependency structure. This structure can often be captured by a finite-
dimensional union-of-subspaces model that enables an algorithmic model-based CS framework
to exploit signal structure during recovery [15, 51, 52|. We provide a brief review of model-
based CS below; in Section 4, we will use this framework to overcome the issues of sparse
approximation and CS using coherent frames.

The set Y of all length-N, K-sparse signals is the union of the (%) K-dimensional
subspaces aligned with the coordinate axes in CV. A structured sparsity model endows the
K-sparse signal x with additional structure that allows only certain K-dimensional subspaces
from ¥ and disallows others. The signal model My is defined by the set of mg allowed
supports {4, ..., Q. }. Signals from M are called K-structured sparse. Signals that are
well-approximated as K-structured sparse are called structured compressible.

If we know that the signal x being acquired is K-structured sparse or structured com-
pressible, then we can relax the RIP constraint on the CS measurement matrix T to require
isometry only for those signals in M g and still achieve stable recovery from the compressive
measurements y = Y. The model-based RIP requires for (5) to hold only for signals with
sparse representations 6 € Mg [51, 53]; we denote this new property as M g-RIP to specify
the dependence on the chosen signal model and change the model-based RIP constant from
0k to o for clarity. This a priori knowledge reduces the number of random measurements
required for model-based RIP with high probability to M = O(K + logmy) [51]. For some
models, the reduction from M = O(K log(N/K)) can be significant [15].

The M g-RIP property is sufficient for robust recovery of structured sparse signals using
specially tailored algorithms [15]. These model-based CS recovery algorithms replace the

8



standard optimal K-sparse approximation — performed via thresholding — with a structured
sparse approzimation algorithm M(x, K) that returns the best K-term approximation of the
signal x belonging in the signal model M:

M(x, K) = i —x'|5. 9
(x,K) = arg_pin [x— x5 )

Greedy and thresholding-based algorithms are particularly amenable to structured sparsity.
For example, the IHT algorithm (6) yields the corresponding model-based IHT algorithm:

~

01 = M(0; + YH (y — 16), K). (10)

Other examples include orthogonal matching pursuit, CoSaMP, and subspace pursuit [46,
54, 55].

To summarize, model-based CS consists of the combination of: (i) a structured signal
model that allows only some supports for sparse signals, with a reduction in the number of
measurements proportional to the amount of pruning; and (ii) a structured sparse approxi-
mation algorithm that provides the best approximation in the pruned subset of sparse signals
for an arbitrary vector. These two components enable us to design model-based greedy recov-
ery algorithms that achieve substantial reductions in the number of measurements required
for stable signal recovery.

3. Parameter Estimation for Frequency-Sparse Signals

The goal of CS is to identify the values and locations of the large coefficients of a discrete-
time sparse/compressible signal from a small set of linear measurements. For frequency-
sparse signals, such an identification can be interpreted as a parameter estimation prob-
lem, since each coefficient index corresponds to a sinusoid of a certain frequency. Thus,
in this case, CS aims to estimate the frequencies and amplitudes of the largest sinusoids
present in the signal. In practice, most CS recovery algorithms iterate through a sequence
of increasing-quality estimates of the signal coefficients by distinguishing the signal’s ac-
tual nonzero coefficients from spurious estimates; spurious coefficients are often modeled as
recovery noise.

We now briefly review the extensive prior work in parameter estimation for frequency-
sparse signals embedded in noise [5, 6]. We start with the simple sinusoid signal model,
expressed as x = Ae(w) + n, where n ~ N(0,0°I) denotes a white noise vector with i.i.d.
entries. The model parameters are A and w, the complex amplitude and frequency of the
sinusoid, respectively.

3.1. Periodogram-based methods

The maximum likelihood estimator (MLE) of the amplitude A when the frequency w is
known is given by the DTFT of X, the zero-padded, infinite length version of the length-
N signal x, at frequency w: A = +X(w) = (e(w),x) [5, 6]. Furthermore, since only a
single sinusoid is present, the MLE for the frequency w is given by the frequency of the



largest-magnitude DTFT coefficient of X: @ = argsup, |X(w)| = argsup, |(e(w),x)| [5,
6]. This simple estimator can be extended to the multiple sinusoid setting by performing
combinatorial hypothesis testing [6].

For frequency-sparse signals with components at integral frequencies, the signal’s DF'T
basis coefficients provide sufficient information to compute the MLE above; in this case,
the parameter estimation problem above is equivalent to a 1-sparse approximation in the
DFT basis. This approach is known in the spectral analysis literature as the periodogram
method [6]. The periodogram approach can easily be extended to frequency-sparse signals
whose component frequencies are in the set of frequencies sampled by the DFT frame (i.e.,
frequencies QJ—N”, where ¢ is the redundancy factor and n is any integer).

From the spectral analysis point of view, we can argue that the coherence of the DFT
frame W(c) is simply another manifestation of the spectral leakage problem. The classical
way to combat spectral leakage is to apply a tapered window function to the signal before
computing the DFT [6, 7]. However, windowing degrades spectral resolution, making it more

difficult to identify frequency-sparse signal components with similar frequencies.

3.2. Thomson’s multi-taper method

A revolutionary multitaper approach to spectral estimation proposed by Thomson [16]
forms a weighted average of windowed DTFT's using a special set of windows v;, j =1,...,J
known as discrete prolate spheroidal wave functions (DPSWFs). The DPSWF windows v;
are unit-norm vectors with DTFTs V;(f) that solve the eigenvector/eigenvalue problem

/W sin(N7(f = f))
—w sin(n(f = f'))

where the parameter W controls the bandwidth of the window. By construction, DPSWF
windows are orthogonal, time-limited, and optimally concentrated in the frequency interval
[—W, W]; in fact, a fraction \; of their unit energy is concentrated in this interval, and so
one can sort the DPSWFs according to their corresponding eigenvalues. Hence, they are a
natural tool for optimizing the resolution of the frequency analysis, trading estimation bias
vs. variance [16].

In this paper, we are primarily interested in Thomson’s line spectrum estimation tech-
nique [16], which computes a weighted sum of windowed periodograms

Flxu) = S Vi0)X(w)
S VA(0)

where Vj is the DTFT of the DPSWF window v; and X is the DFT of x;(n) := x(n)v;(n).
Assuming an additive white Gaussian background noise model, Thomson forms a statistical
test for whether a sinusoid e(w) is present in the data using the score function

Vi(f)df" = XVi(f), (11)

, (12)

(= DIFw)P S V(07
7 () = Fx )V (0)F

(13)

10



If S(w) exceeds a significance threshold, then we say that a sinusoid exists at frequency w.
The probability of missing a sinusoid increases with the threshold [16].

We can re-formulate the multitaper method as a K-sparse approximation algorithm
{G, ax -, = Ty(x, K) in the frequency domain. First, we obtain the K frequencies within
the oversampled frequency grid {@;} , with the top statistical scores (13); second, we
estimate the values {@;}_, of the corresponding DTFT coefficients for the signal via (12).
Figure 2(b) demonstrates the clear advantages of this approach over a naive periodogram
(DFT frame).

3.3. Figenanalysis-based methods

A modern alternative to classical periodogram-based spectral estimates are line spectral
estimation algorithms based on eigenanalysis of the signal’s correlation matrix [6]. Such
algorithms estimate the principal components of the signal’s autocorrelation matrix in order
to find the dominant signal modes in the frequency domain. Eigenanalysis-based methods
provide improved resolution of the parameters of a frequency-sparse signal. Example al-
gorithms include Pisarenko’s method [56], multiple signal classification (MUSIC) [17], and
estimation of signal parameters via rotationally invariant techniques (ESPRIT) [18]. A line
spectral estimation algorithm LL(x, K) returns a set of dominant K frequencies for the input
signal x, with K being a controllable parameter.

As a concrete but certainly non-exhaustive example of an LL(x, K), consider the MUSIC
algorithm [17], which estimates the parameters of a frequency-sparse signal embedded in
noise. We revisit the model x = s + n, where s is now of the form (1) and n ~ N(0, 02I)

denotes a noise vector. By defining the matrix I' = [e(w;) e(w2) ... e(wk)] and the vector
a=[ay ay ... ag|’, we can rewrite the signal as
x=Ta+n,

with the autocorrelation matrix
Ry = E[xx] = TA’ T + 071, (14)

where A = diag(a). Note that as long as K < N and all frequencies {w;}£ | are distinct,
the matrix TA2DH has rank(TA2TH) = K and K positive sorted cigenvalues {A; }X_,, with
all other eigenvalues being equal to zero. Therefore, for the sorted eigenvalues {\,}\_, of
Ry, we have [7]

Y 2
)\n:{)\n—l—an, n < K, (15)

o? K <n<N\.

n’

Now consider the matrix G that contains the eigenvectors of Ryx corresponding to the N — K
smallest eigenvalues. It follows that

AK+1 0
RG =G =02G =TATHG + %G,
0 A

11



where the last two equalities result from (14) and (15), respectively. It follows then that
I'’G = 0, and so the frequency values {w;}, are the only solutions to the problem
e(w)!GGHe(w) = 0.
The MUSIC algorithm [17] searches for the peaks of the pseudospectrum score function
1
Puavsic(w) = e(w)1GGHe(w)’

(16)

for w € [0, 27, while the Root MUSIC algorithm [19] searches for the roots of the polynomial
p?(2)GGp(z) for z € C, |z| = 1, where p(z) = [1 2z 22 ... 2V71]. The frequencies can
then be established through the relationship e(w) = p(e’*). In practice, MUSIC and Root
MUSIC operate on the sampled autocorrelation matrix

. 1 &
Ry = 2 ;Xix;r

of size L x L, where L € [K, N| denotes a window length and x; = [x[i] x[t + 1] ... x[i +
W — 1]]7 denotes the i*" windowed version of the signal x for i = 1,..., N — L + 1. This
sampling only requires that L > K.

We can also interpret the line spectral estimation process IL as a K-sparse approximation
algorithm {@y, @ }X_, = T,,(x, K) in the frequency domain: first, we obtain the K frequen-
cies {Wp }& | = L(x, K); second, we estimate the values {a}X ;| of the corresponding DTFT
coefficients for the signal as shown in Section 3.1. MUSIC provides a tradeoff between esti-
mation accuracy and computational complexity via the selection of the window size W used
to estimate the autocorrelation matrix Ryx. Figure 2(b) demonstrates the performance of
the sparse approximation algorithm T,,(x, K) for a signal with arbitrary frequencies, once
again improving over the sparse approximation obtained via the periodogram.

4. Spectral Compressive Sensing

We are now in a position to develop new SCS recovery algorithms for the discrete-time
CS framework of [1, 2] that are especially tailored to arbitrary frequency-sparse signals. We
will develop two sets of algorithms based on the periodogram and line spectral estimation
algorithms from Section 3.

4.1. 8CS recovery via structured sparsity

To alleviate the performance-sapping coherence of the redundant DFT frame, we marry
it with the model-based CS framework of Section 2.4 that forces the signal approximation to
contain linear combinations only of incoherent frame elements. In this section, we propose a
structured signal model Tk ., and a structured sparse approximation algorithm T(x, K, ¢, v)
that enables recovery of frequency-sparse signals using a coherent DFT frame. We assume
initially that the components of the frequency-sparse signal x have frequencies in the over-
sampled grid of the redundant frame W(c); we will then extend our treatment to signals with
components at arbitrary frequencies at the end of the subsection.
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Algorithm 1 Coherence-inhibiting structured sparse approximation T(x, K, ¢, V)

Inputs: Signal vector x, target sparsity K, frequency redundancy factor ¢, maximum
coherence v

Outputs: K-structured sparse approximation X

Initialize: 0 = U(c)fx, cqfi] = |0[i]|%>, i =0,...,cN — 1 {calculate entry-wise energy}
Solve s = arg maxge g 1}en cl's such that D,s < 1,871 < K {obtain optimal approximation
support via integer program}

é\[z] < 0[isli],i =0,...,¢cN — 1 {mask coefficient vector}

return X = \I/(c)a

4.1.1. Structured signal model
We begin by defining the following structured signal model for frequency-sparse signals
requiring that the components of the signal are incoherent with each other:

K
Tkenw = {Z ape(dpA) s. t. dp €{0,...,cN — 1}, [(e(dpA),e(d;A))| <v, 1 <k#j <K
k=1

(17)
where v € [0,1] is the maximal coherence allowed and A = 27 /cN as before. The union
of subspaces contained in Tk, , corresponds to all linear combinations of K elements from
the DFT frame W(c) that are pairwise sufficiently incoherent. The coherence restriction
in (17) imposes a resolution limit on the recovery (in the sense of the minimum spacing
between discernible sinusoids) in a manner similar to the classical estimators in Section 3.
To guarantee a separation of x Hz between frequencies present in a signal * € Tg,,, one
should set v = |Dy (k)| /N, cf. (8).

4.1.2. Structured sparse approzrimation algorithm

Following the coherence-inhibiting model 7Tx ., above, we modify a standard sparse
approximation algorithm to avoid selecting highly coherent pairs of elements of the DFT
frame W(c). Our structured sparse approximation algorithm is an adaptation of the refractory
model-based algorithm of [52] and can be implemented as an integer program.

The algorithm X = T(x, K, c,v), shown as Algorithm 1, solves the structured sparse
approximation problem (9) for the structured sparsity model Tk .,. The algorithm relies on
an integer program that employs a cost vector ¢ and a constraint matrix D, € RN>*N_ This
matrix has binary entries that indicate whether each pair of elements from the DFT frame
U(c) are coherent:

DL :{ L if [(e(iA),e(jA))] = 1.

v 0 if [(e(iA),e(JA))| < v.
Since the algorithm operates on the vector of periodogram coefficients of the signal, we
say that Algorithm 1 is a periodogram-based sparse approximation algorithm. Figure 2(b)

demonstrates the performance of T(x, K) for a signal with arbitrary frequencies, improving
over the standard sparse approximations obtained via the DFT frame.

13



Algorithm 2 Spectral iterative hard thresholding (STHT)

Inputs: CS Matrix ®, measurements y, structured sparse approx. algorithm T(-, K, ¢, v).
Outputs: K-sparse signal estimate X.
initialize: Xg =0, r=y,i=0
while halting criterion false do
14 1+1
X;  T(X;_1 + ®'r, K, c,v) {prune signal estimate using structured sparsity model}
r <y — ®X; {update measurement residual}
end while
return X < 0

When the matrix D, is totally unimodular, the integer program within Algorithm 1 has

the same solution as its noninteger relaxation
S = arg max cgs such that D,s < 1,871 < K,
seReN

which is a linear program [57]. One class of totally unimodular matrices are interval matrices,
which are binary matrices in which the ones appear consecutively in each row. While the
matrix D, we use in our case is not an interval matrix — since each row of D,, contains several
intervals — it is possible to relax the integer program by using a modified matrix D,,. To
obtain this new matrix, we decompose each row s,, of D, into a set of rows s, 1, S;.2, ... that
contain only one interval each and for which ) s, ; = s,. The number of rows of D, is then
at most ;—I\V[ If there is conflict within the vector obtained by the modified constraints, then
the expansion from D, to D, can be reversed accordingly to remove the conflicts by merging
the intervals onto a single connected interval containing the conflicting smaller intervals.®

4.1.3. Recovery algorithm

The model-based IHT algorithm (10) is particularly amenable to modification to in-
corporate our frequency-sparse approximation algorithms. The modified algorithm, which
we dub spectral iterative hard thresholding (SIHT), is unfurled in Algorithm 2 and uses the
structured sparse approximation algorithm T(-) introduced in Algorithm 1.

SIHT inherits a strong performance guarantee from standard IHT; we apply the result
of [15, Theorem 4] to obtain the following.

Theorem 1. If the matriz ®V has T3 c,-RIP with 6, ., < 0.1, the signal x = ¥(c)f €
Tk.cw (i-e., |00 < K and 0 invokes the coherence-inhibiting structure described earlier), and
y = ®x + n, then the estimate X; from the it" iteration of Algorithm 2 meets the guarantee

I — Rill2 < 27[10]]2 + 4[n]]>. (18)

5In our implementation of the algorithm, and for simplicity, we implemented the integer program with
the original matrix D, instead of performing the expansion/merger provided here. The experimental results
show that the resulting structured sparse recovery algorithm still has good recovery performance.
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4.1.4. Required number of CS measurements

To calculate the number of random CS measurements needed for stable signal recovery
using Algorithm 2, we exploit the incoherence of the elements composing a signal z € Tk .,
and the count of the number of subspaces tx that compose the signal model Tx.,. In a
slight abuse of notation, we express the signal model 7k ., as the set of the signal supports
2 = supp(#) that are allowed for the coefficient vector 6 so that = = ¥(c)f € Tk, and
tx = |Tk.c| is the total number of possible supports.

To begin, we adapt [14, Lemma 2.3] to our coherence-inhibiting model.

Lemma 2. For a support Q C {1,...,cN}, define the subdictionary V(c)q as the submatriz
of ¥(c) with columns indexed by ). Further, define the isometry constant of ¥(c)q, denoted
dq, as the smallest value such that for all x € CX, (1—36q)||z||3 < | ¥(c)az||3 < (1+6q)]|x|3,
and define the structured isometry constant for U and the model T as 0y 7 = maxqger dq.
Then we have éy 1., < (K —1)v.

Lemma 2 is proved in Appendix B and can be combined with a modified version of [14,
Theorem 2.2|, reproduced below for completeness.

Theorem 2. Let U be a redundant frame, Mg a structured sparsity model, and ® € RM*N

be a matriz with 1.1.d. Gaussian entries. Assume that
M > C62 (log |Mg| + K log(2e(1 +12/6)) + p)

for some 6 € (0,1) and p > 0. Then with probability at least 1 — e~”, the matriz ®V has
M -RIP with constant o, < dw iy + 0(1 + S rp)-

Proof sketch. The proof is nearly identical to that of [14, Theorem 2.2|, except that (i) we

use the structured isometry constant of ¥ instead of its standard isometry constant, and

(77) we change the number of supports/subspaces from (Cg) to Mgl O
We can then combine these two results to obtain an analog of [14, Corollary 2.4]:

Corollary 1. Let ® € RM*N be a matriz with i.i.d. Gaussian entries. Assume that
M > Cy(logty + CoK + p), (19)

for some p > 0 and fixed constants C, Cy, and that K —1 < 16%. Then with probability at
least 1 — e~ the matriz @Y has Tk, -RIP with constant o7, ., < 1/3.

We can leverage this measurement bound by counting the number tx = |Tx ., | of K-
dimensional subspaces generated by subsets of the frame W(c) where no two vectors in a
subspace have frequencies closer than x = |Dy'(vN)| radians/sample. From [52], we know
the number of subspaces to be

e (CN — (K — 1)(ck — 1)).

K Y
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plugging this count into (19), we obtain

M=0 (Klog (C(N;KK“)» . (20)

The measurement bound (20) states that the number of measurements required for stable
recovery using the redundant DFT frame (containing ¢N elements) is essentially of the same
order as the number of measurements required for stable recovery using an orthonormal
basis with ¢N elements. In other words, the coherence inhibition effectively neutralizes
the influence of the frame’s coherence on the required number of measurements for stable
recovery. We will demonstrate below in Section 5 that, in practice, SCS offers significant
reductions in the number of measurements required for accurate recovery of frequency-sparse
signals compared to standard CS using both the orthonormal DFT basis and DFT frames.

4.2. Alternatives to structured sparsity

4.2.1. Computationally efficient heuristics

The computational complexity of the structured sparse approximation in Algorithm 1
is O(c2N3) due to the linear program for finding s. This complexity is significantly higher
than the O(cN log(cN)) complexity of sorting-based thresholding. A heuristic alternative to
structured sparse approximation X = Ty (x, K, ¢,v) is given in Algorithm 3. To obtain the
heuristic structured sparse approximation to the coefficient vector § = W(c)?x, we greedily
search for the vector entry 6(dm.x) with the largest magnitude. Once a coefficient is se-
lected, we inhibit all coefficients corresponding to coherent sinusoids (i.e., indices d for which
|{(e(dA), e(dmaxA))| > v) by setting those coefficients to zero. This will include all coefficients
for frequencies within x radians/sample of the one selected. We then repeat the process by
searching for the next largest coefficient in magnitude until K coefficients are selected or
all coefficients are zero. This heuristic has computational complexity O(cK N log(¢N)) and
offers very good average performance for sparse approximation of arbitrary frequency-sparse
signals, as shown in Section 5.

We subsequently can obtain a more computationally efficient version of STHT simply of
swapping T(-) (Algorithm 1) with Tp(-) (Algorithm 3) in Algorithm 2. This modified heuris-
tic algorithm, although more computationally efficient, does not inherit the performance
guarantee of Theorem 1.

4.2.2. Frequency interpolation

Up to this point, we have focused on recovery algorithms that return estimates having
sinusoidal components with frequencies belonging to a fixed grid. We now address the
case where the components have frequencies w that are not exactly on that grid; that is,
cases where the ratios w/A are not necessarily integer. We can modify the structured
sparse approximation algorithm T(x, K, ¢, v) used within Algorithm 2 to include frequency
and magnitude estimation steps. In this case, the modified approximation algorithm X =
T;(x, K,c,v) uses the frequency value estimates given by the sparse support of 6 within
Algorithms 1 and 3. The indices in the support {d;,...,dx} C {1,...,cN} identify the grid
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Algorithm 3 Heuristic coherence-inhibiting sparse approximation Ty (x, K, ¢, V)

Inputs: Signal vector x, target sparsity K, frequency redundancy factor ¢, maximum
coherence v

Outputs: K-structured sparse approximation X

Initialize: 0 = ¥(c)fx, 0[d] =0, d=0,...,cN —1

while ||6]jo < K and ||f]|> > 0 do

dmax = arg maxo<g<cn |0(d)| {search for entry with largest magnitude}

-~

0dmax) < O]dmax] {copy largest magnitude entry to output estimate}
for d=0tocN —1do
if |(e(dA), e(dmaxA))| > v then
0[d] <— 0 {inhibit entries for coherent dictionary elements}
end if
end for
end while R
return X = W(c)d

frequencies closest to the frequencies of the components of the signal x. It is then possible to
refine these component frequency estimates by performing a least squares fit: for each index
dj, selected, we fit the frame analysis coefficients #’ = W#X for a set of indices neighboring
dj to the functional form of the Dirichlet kernel-shaped frequency response of a windowed
sinusoid. By considering the Taylor series expansion of a translated Dirichlet kernel

(N3 = N)(w—-w)? (BN*—10N% +T7)(w—w)*

D —o)~1- — ...
v(w =) 6 * 360 ’

we see that a quadratic fit works well for frequencies near the peak of its main lobe [16]; see
Fig. 3 for an example. The least squares fit then proceeds as follows. For each index dj in
the support of 8, we find the coefficients (¢ 1, Ck,2, Ck,3) that minimize

1

(/C\k’l,/c\kg,/c\k,g) = arg min Z (61A2(dk — l)2 -+ CQA(dk — l) + C3 — é\l(dk — l))Q,
c1,c2,c3€R

which provides us with the coefficients for the least-squares quadratic fit to the samples
0/ (dy, — 1) 0'(dy) €'(dg + 1)] in the neighborhood of the sample #'(d;). We then identify a
new estimate of the corresponding frequency value as the frequency returning the maximum
value of the quadratic fit

—~ ~ ~ ~ Ck,2
Wy = arg max ck71w2 + Crow + Cp3 = ———.
weR 20;{,1

The corresponding sinusoid’s amplitude can be estimated using the DTF'T as described in
Section 3.1.
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Figure 3: Approximation of windowed sinusoid’s frequency response (Dirichlet kernel) in the main
lobe by a quadratic function. The Dirichlet kernel’s maximum/peak is located at w = 1.9775 radi-
ans/second. The maximum/peak of the quadratic least-squares fit to three samples of a redundant
DFT of the signal (with N = 1024 and ¢ = 10) around its peak is located at w = 1.9775, i.e., it is
an accurate estimate of the sinusoid’s frequency with precision to four decimals.

4.2.8. SCS using alternative spectral estimation methods

While the combination of a redundant frame and a coherence-inhibiting structured spar-
sity model yields an improvement in the performance of STHT over standard CS recovery
techniques, the algorithm still suffers from a limitation in the resolution of neighboring
frequencies that it can distinguish. This limitation is inherited from the frequency and co-
efficient estimation methods used by SIHT (in Algorithms 1 and 3), which are based on the
periodogram.

Fortunately, we can leverage the alternative multitaper and eigenanalysis-based spectral
estimation methods described in Sections 3.2 and 3.3, respectively; recall that these methods
return a set of detected dominant K frequencies for the input signal, where K is a controllable
parameter. Since these methods do not rely on redundant frames, we do not need to leverage
the features of SIHT that control the effect of coherence. We simply employ the structured
sparse approximation algorithms T, (x, K') (alternatively, T,,(x, K)) within IHT, resulting in
Algorithm 4.

5. Experimental Results

In this section, we perform a range of computational experiments to test the limits of
SCS and validate the theoretical guarantees developed above. We compare the performance
of the STHT algorithm variants (based on the periodogram in Algorithm 2 and on line spec-
tral estimation in Algorithm 4) to the standard CS recovery paradigm of [1, 2] implemented
using the IHT algorithm (6). We probe the robustness of the algorithms to varying amounts
of measurement noise and varying frequency redundancy factors c. We also test the algo-
rithms on a real-world communications signal. Throughout this section, the two metrics of
performance we use are the normalized error E = ||x — X||2/||x||2 and the signal to noise
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Algorithm 4 SIHT using Line Spectral Estimation

Inputs: CS Matrix ®, measurements y, line approximation algorithm T, (-, K).

Outputs: K-sparse approximation {@y,, ay}~_,, signal estimate X.

initialize: Xg =0, r=y,i=0

while halting criterion false do
11+ 1
{Or, AR} |+ Ty(X;_1 + T (y — X;_1), K) {obtain parameter estimates}
Xi < ) poq age(Wy) {form signal estimate}

end while

return X < X;, {@, ap }X_,

ratio SNR = —20log,, F, averaged over all independent iterations of each experiment. A
Matlab toolbox containing implementations of the SCS recovery algorithms, together with
scripts that generate all figures in this paper, is available at http://dsp.rice.edu/scs.

Our first experiment compares the performance of standard IHT using the orthonor-
mal DFT basis against that of the SIHT algorithms. Our experiments use signals of length
N = 1024 samples (chosen for computational efficiency) containing K = 20 complex-valued
sinusoids. For varying M, we executed 100 independent trials using random measurement
matrices @ of size M x N with i.i.d. Gaussian entries and signals x = Zszl e(wy), where
each pair of frequencies w;, w;, 1 <1i,7 < K, i # j are spaced by at least x = 107/1024 ra-
dians/sample (i.e., two sidelobes away from one another in the Dirichlet kernel). For each
CS matrix/sparse signal pair we obtain the measurements y = ®x and calculate estimates
of the signal X using ITHT with the orthonormal DFT basis, SIHT using the periodogram
(Algorithm 2) via both integer programming (Algorithm 1) and heuristic approximation (Al-
gorithm 3) with frequency redundancy factor ¢ = 10, maximum allowed coherence v = 0.1
(so that v > |Dy(k)| /N), and quadratic parametric frequency interpolation as described in
Section 4.2.2; and SIHT using line spectral estimation (Algorithm 4) via both Root MUSIC
and Thomson’s multitaper method. We use a window size W = N/10 in Root MUSIC to
estimate the autocorrelation matrix Ryxx and set W = 5/2N in the multitaper method. For
reference, we also evaluate the performance of the standard root MUSIC spectral estimation
algorithm applied to M regular samples of the signal obtained by reducing the sampling rate
by a factor of M/N, i.e., we obtain fewer samples from the same signal duration to match the
equivalent sampling rate obtained in CS. We study the performance of the IHT algorithm
with the DFT basis in three different regimes: (i) the average case, in which the frequencies
are selected randomly to machine precision; (4i) the best case, in which the frequencies are
randomly selected and rounded to the closest integral frequency, resulting in zero spectral
leakage; and (iiz) the worst case, in which each sinusoid frequency is midway between two
consecutive integral frequencies, resulting in maximal spectral leakage. We focus on the
average case analysis for root MUSIC and for all four SIHT algorithms.

The results of this experiment are summarized in Fig. 4 and show first that the average-
case performance of IHT with the DFT basis is very close to its worst-case performance,
and second that all STHT algorithms perform significantly better on the same signals. Note
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Figure 4: Performance of standard CS signal recovery via IHT with the orthonormal DFT basis (6),
SIHT Algorithm 2 (periodogram) implemented via integer program (Algorithm 1) and heuristic
(Algorithm 3), and SIHT Algorithm 4 (line spectral estimation) via Root MUSIC and Thomson’s
multitaper method. We use signals of length N = 1024 containing K = 20 complex-valued sinu-
soids. The dotted lines indicate the performance of IHT via the orthonormal DFT basis for the
best case (when the frequencies of the sinusoids are integral) and the worst case (when each fre-
quency is half way in between two consecutive integral frequencies). We also compare against the
performance of the root-MUSIC' algorithm applied to M regular signal samples. The performance
of IHT for arbitrary frequencies is close to its worst-case performance, while all SIHT algorithms
perform significantly better for arbitrary frequencies, with the Root MUSIC-based approach pro-
viding best performance. Recovery from low-rate sampled versions of the signals performs poorly
due to aliasing. All quantities are averaged over 100 independent trials.

that the SIHT algorithms work well in the average case even though the resulting signals do
not exactly match the sparse-in-DFT-frame assumption. Thus, our proposed algorithms are
robust to mismatch in the values for the frequencies in the signal model (1). Note also that
when we operate on M signal samples directly, the performance of spectral estimation for
signal recovery suffers greatly due to the resulting aliasing of higher frequencies (also known
as Nyquist folding, evident in Fig. 1(b)), with the performance improving as M increases
but never matching that of the CS-based methods.

We repeat the same experimental setup in the rest of this section, but restrict it only
to the average case regime. Since Figs. 1, 2, and 4 show that the performances of SIHT via
integer programming (Algorithm 1) and heuristic approximation (Algorithm 3) are roughly
equivalent, we focus in the sequel on the computationally simpler heuristic approach.

Our second experiment tests the robustness of the SIHT algorithms to additive noise in
the measurements. We set the experiment parameters to N = 1024, K = 20 and M = 300,
and we add i.i.d. Gaussian noise of variance o to each measurement. For each value of
o, we fix the matrix ® (drawn randomly as before) and perform 1000 independent trials;
in each trial, we generate the signals x randomly as in the previous experiment. Figure 5
shows the average norm of the recovery error as a function of the noise variance o; the
linear relationship indicates stability to additive noise in the measurements, confirming the
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Figure 5: Performance of SIHT Algorithm 2 (via heuristic) and SIHT Algorithm 4 (via Root MUSIC
and Thomson’s multitaper method) for CS signal recovery from noisy measurements. We use signals
of length N = 1024 containing K = 20 complex-valued sinusoids and take M = 300 measurements.
We add noise of varying variances o and calculate the average normalized error magnitude over
1000 independent trials. The linear relationship between the noise variance and the recovery error
indicates the robustness of the recovery algorithm to noise.
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Figure 6: Performance of SIHT Algorithm 2 via heuristic under varying grid spacing resolutions
A =27 /cN. We use signals of length N = 1024 containing K = 20 complex-valued sinusoids and
take M = 300 measurements. We average the recovery error over 10000 independent trials. There
is a linear dependence between the granularity of the DFT frame and the norm of the recovery
error.

guarantee given in Theorem 1.

Our third experiment studies the impact of the frequency redundancy factor ¢ on the
performance of STHT (Algorithm 2). We use the same matrix ® and signal setup as in
the previous experiment and execute 10000 independent trials for each value of ¢. The
results, shown in Fig. 6, indicate a linear dependence between the granularity of the DFT
frame A and the norm of the recovery error. This sheds light on the tradeoff between
the computational complexity and the performance of the recovery algorithm, as well as
between the redundancy factor M/K (dependent on logc) and the recovery performance.
These results also experimentally confirm Lemma 1.

Our fourth experiment tests the capacity of standard CS and SCS recovery algorithms
to resolve closely spaced frequencies in frequency-sparse signals. For this experiment, the
signal consists of two real-valued sinusoids (i.e., K = 4) of length N = 1024 with frequencies
that are separated by a value d,, varying between 0.1 — 5 cycles/sample (27r/100N — 107 /N
rad/sample); we obtain M = 100 measurements for each signal. We measure the performance
of standard THT via DFT (6), SIHT via heuristic (Algorithm 3) with frequency redundancy
factor ¢ = 10 and maximum allowed coherence v = 0.1, and STHT via Thomson’s multitaper
method and Root MUSIC (Algorithm 4), all as a function of the frequency spacing 9.
For this experiment, we modify the window size parameter of the Root MUSIC algorithm to
W = N/3 to improve its estimation accuracy at the cost of higher computational complexity.
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Figure 7: Performance of standard CS recovery via IHT versus SIHT via heuristic (Algorithm 2)
and SIHT via Root MUSIC and Thomson’s multitaper method (Algorithm 4) for frequency-sparse
signals with components at closely spaced frequencies. We use signals of length N = 1024 containing
two real sinusoids (K = 4) with frequencies separated by d,, and measure the signal recovery
performance of IHT (6) and the SIHT algorithms (Algorithms 2 and 4) from M = 100 measurements
as a function of d,. The results verify the limitations of periodogram-based methods and the
markedly improved performance of line spectral estimation methods used by the different versions
of SIHT. Additionally, we see that standard IHT outperforms the SIHT algorithms only when the
observed frequency-sparse signal contains highly coherent components (that is, very small frequency
spacing d, ).

For each value of 4, we execute 100 independent trials as detailed in previous experiments.
The results, shown in Fig. 7, verify the limitation of periodogram-based methods as well as
the improved resolution performance afforded by line spectral estimation methods like Root
MUSIC. Standard IHT outperforms the SIHT algorithms only in the case where the signal
does not belong in the class of frequency-sparse signals with incoherent components (that is,
for very small frequency spacing d,,).

Our fifth and last experiment tests the performance of standard CS and SCS recovery
algorithms on a real-world signal. We use the amplitude modulated (AM) signal from |8,
Figure 7] that was digitized in the lab at its Nyquist rate to create the signal x. Rather
than a Gaussian measurement matrix ¢, we employ a completely discrete-time version of the
random demodulator from [8] that measures x using a banded, lower triangular CS matrix
®. The signal x has length N = 32768 samples; for computational expediency, we recover
the signal in half-overlapping blocks of length N” = 1024. We compare five different recovery
algorithms as a function of the number of measurements M: standard CS via IHT (6) in the
DFT basis, standard CS via ¢;-norm minimization in the DFT basis (so that we can directly
compare our results with those in [8]), and SIHT via heuristic (Algorithm 3) with frequency
redundancy factor ¢ = 10 and maximum allowed coherence v = 0.1, Thomson’s multitaper
method, and Root MUSIC (Algorithm 4). We set the target signal sparsity to K = 10 in the
IHT and SIHT algorithms. The AM signal estimates are then demodulated, and the recovery
performance is measured in terms of the distortion against the message signal obtained by
demodulating x. We average the performance over 20 trials for the random demodulator
chipping sequence. The results in Fig. 8 shows that Algorithm 4 consistently outperforms
its standard CS counterparts. For example, at a measurement rate of M = N/10, SIHT
provides a 8dB improvement in performance over the ¢;-norm minimization approach of [8].

To summarize, our experiments have shown that SCS achieves significantly improved
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Figure 8: Performance of {1-norm minimization, IHT via DF'T basis, and SIHT via heuristic, Thom-
sons’ multitaper method, and Root MUSIC (Algorithms 2 and 4) on a real-world AM communica-
tions signal of length N = 32768 for a varying number of measurements M. The SIHT algorithms
(in particular, SIHT via Root MUSIC) significantly outperform their standard CS counterparts.

signal recovery performance for the overwhelming majority of frequency-sparse signals when
compared with standard CS recovery approaches. Our SCS recovery algorithms inherit
some attractive properties from their standard counterparts, including robustness to model
mismatch and measurement noise.

6. Related Work and Extensions

We now review several avenues of related work on the intersection of sparse approxima-
tion, compressive sensing, and spectral estimation. We also summarize new results that have
appeared since the original distribution of this manuscript as a preprint [58, 59].

A recent paper [11] independently studied the poor performance of DET-based CS re-
covery on frequency-sparse signals. The paper provides a generic framework for studying
sparsity basis mismatch in which an inaccurate sparsity basis is used for CS recovery and
determines a bound for the approximation error as a function of the basis mismatch. The
paper shows that in the noiseless setting, CS via the DFT basis provides lower accuracy
that linear prediction methods on subsampled sinusoids. However, such linear prediction
methods are very sensitive to noise and thus are not suitable for the CS recovery approach
in Section 4.

The CS framework was also recently extended to signals having a sparse representation in
a redundant and coherent frame through the use of analysis sparsity [4]. While the standard
CS framework is based on the sparsity of the synthesis coefficients 8 of a signal x = ¥ in the
frame W, it is also possible to recover signals with sparse or compressible analysis coefficient
vectors § = UHx by making a small modification to the recovery algorithm. For signals that
have sparse synthesis coefficients (such as our frequency-sparse signals using DFT frames),
one can express the analysis coefficients as §/ = Ux = G, where G = ¥V is the Gram
matrix for the frame W. Under this formulation, the coherence (i.e., the maximum entry of
G in magnitude) can be arbitrarily large, and ¢’ may still be sparse or approximately sparse
as long as the matrix G has few nonzero entries outside of the diagonal. Unfortunately, for
a DFT frame W, the Gram matrix G is dense — each row and column corresponds to a
sampling of the Dirichlet kernel — and so the analysis coefficient vector ¢ will not be sparse,
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in general. This behavior of the Gram matrix G can be interpreted as a manifestation of
the spectral leakage problem in oversampled spectral analysis.

Sparse approximation algorithms for frames characterized by continuously varying pa-
rameters have also been considered [60]. Here, one designs a frame composed of vectors
corresponding to a sampling of the parameter space; this sampled frame can be used with a
modified greedy algorithm to obtain an initial estimate of the parameter value, followed by
a refinement via gradient descent. To date the analysis of such approaches has been limited
to the convergence rate of the sparse approximation error ||y — ®X||5, which is not exactly
relevant to CS applications where we instead seek low error in the sparse representation (i.e.
% —X]J2).

We have focused our efforts in this paper towards frequency-sparse signals consist-
ing of a sparse sum of sinusoids, a model that has been also termed sparse multitone in
the literature [61] and for which compressive analog-to-digital converters have been devel-
oped [8, 36, 37, 62, 63]. A parallel frequency-sparse signal model known as a sparse multiband
model has emerged as an alternative [9, 33, 61, 64]. In contrast with the sparse multitone
model, the sparse multiband model partitions the observable spectrum into a number of
bins and assumes that the spectral content of the observed signal occupies a small number
of bins in the partition, without making further assumptions as to the contents of each bin.
The sparse multiband model has driven the design of recovery algorithms [9, 10, 64] and
additional compressive analog-to-digital converters (dubbed Xampling in [65]) that leverage
the additional structure of the model. In particular, the approach of [64] builds a dictionary
composed of modulated discrete prolate spheroidal sequences (cousins of the DPSWFs used
in (12) above by the multitaper method of [16]) that yields group-sparse representations for
multiband signals. When applied to multitone signals, the multiband framework is agnostic
to the exact values of their frequencies; however, the number of measurements required for
successful recovery is proportional to the size of the spectral bins. Comparisons between the
benefits and shortcomings of both signal models can be found in [33, 61].

Finite rate of innovation (FROI) sampling [29], which predates the development of CS,
enables uniform sampling of analog signals governed by a small number of parameters using
a specially designed sampling kernel. These samples are processed to obtain an annihilating
filter, which is used to estimate the values of the parameters. The application of FROI to
multitone signals results in the linear prediction method used in [11], where the arguments of
the complex roots of an annihilating filter reveal the frequencies wy, of the signal components
in (1). In fact, noise-tolerant line spectral estimation algorithms [66, 67] have been proposed
to extend FROI to noisy sampling settings [30, 31, 32], albeit without performance guarantees
to date.

The coherence inhibition concept behind our SCS framework can be extended to other
signal recovery settings where each component of the signal’s sparse representation is gov-
erned by a small set of parameters. While such classes of signals are well suited for manifold
models when the signal consists of a known number of parameterized components [27, 28],
they fall short for arbitrary linear combinations of a varying number of components; in this
case, we must estimate both the model order (number of components) and the parameter
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values (choice of components).

A recent paper proposes sparse approximation in a frame whose elements are drawn from
a manifold and correspond to a sampling of the manifold’s parameter space [68]. However,
when the manifold model is very smooth, the resulting frame will be highly coherent, limiting
the performance of standard sparse approximation algorithms. Following the SCS ethos, we
can impose a coherence-inhibiting models such as that of (17) to enable accurate recovery of
sparse signals with such a coherent frame, as originally discussed in [58, 59] and subsequently
developed in [69]. We expect such an approach algorithms to have performance guarantees
similar to those given for STHT. Similarly to [60], we can also refine the parameter estimates
obtained from a frame sampling through the use of gradient descent or a least squares fit to
a parametric manifold approximation. Immediate applications of this formulation include
sparsity-based localization [20, 21, 22, 23, 70|, radar imaging [24, 25, 26|, and sparse time-
frequency representations [12].

7. Conclusions

In this paper we have developed a new framework for CS recovery of frequency-sparse
signals, which we have dubbed spectral compressive sensing (SCS). The framework uses a
redundant frame of sinusoids corresponding to a redundant frequency grid together with a
coherence-inhibiting structured signal model that prevents the usual loss of performance due
to the frame coherence. We have provided both performance guarantees for SCS signal recov-
ery and a bound on the number of random measurements needed to enable these guarantees.
We have also presented adaptations of standard line spectral estimation methods to achieve
recovery of combinations of sinusoids with arbitrarily close frequencies while achieving low
computational complexity. As Fig. 4 indicates, SCS recovery significantly outperforms CS
recovery based on the orthonormal DFT basis (up to 25dB in the figure).

Further work includes integrating our frequency inhibition and line spectral estimation
approaches into more powerful greedy [46], iterative [71], and ¢;-norm minimization [72]
recovery algorithms, as well as obtaining a full performance characterization for the line
spectral estimators used in the algorithms of Section 4. The performance of these algo-
rithms (accuracy, robustness, and resolution) might be different when they are applied to
signal estimates obtained from compressive measurements. A very recent contributions in
the direction of optimization-based approaches shows promising results [73]. We are also
interested in extensions to other CS recovery algorithms to be used in conjunction with pa-
rameterized frame models. SCS can also be applied to signal ensembles; when a microphone
or antenna array is used and the emitter is static, the dominant frequencies are the same for
each of the sensors, following the common sparse supports joint sparsity model [74]. For mo-
bile emitters, the changes in the frequency values can be modeled according to the Doppler
effect, which increases the number of parameters for the signal ensemble observed from two
(for emitter position) to four (for emitter position and velocity).
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Appendix A. Proof of Lemma 1

Proof of Lemma 1. We start with a K-term approximation in the frame ¥(c):

x\
I
(]~

™~

ae(wy),

B
Il

1

where aj, = ayby, with by to be defined, and wj, = Around(w;/A). We then have

K K
I — xxll2 < [lx = x'[l2 = || are(wi) — > aje(wy)||
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Now we replace |le(ws)||2 = 1 and minimize (A.1) by setting by = D (wi — w},)/N. We then
obtain

K K
ESENIESY Iak|\/1 — | Dy (wr = @) /N2 < Y la]y/T = [Dn(A/2)/N]?
k=1 =

< V/1—Dn(n/eN)/N? Y |ax] = /1 = [Dn(r/eN) /N |al|,

proving the lemma. 0

In the process of proving Lemma 1, we calculated the coherence of the DFT frame:

H(U(0)) = ang e (), e(GAN] = [{elid),el(i + NA))]| = | Y- o] = PR
_ |Dn(2m/cN)|
= el (A.2)
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Appendix B. Proof of Lemma 2

Proof of Lemma 2. Fix Q € Tk .,. We begin by noting that
19 (c)oz|2 = 2" (HW(e)or — o G,

where Gg = ¥(c)d¥(c)q denotes the partial Gram matrix of ¥(c). Therefore, we must have
1—60 < Anin(Ga) and 14+90q > Anax(Ga), where Apin(Go) and Apax(Gg) are the minimal and
maximal eigenvalues of Gg. A straightforward application of Gersgorin’s circle theorem [75]
shows that, since the elements of W(c)y have inner products bounded in magnitude by v
(due to € Tkn), we must have 1 — (K — 1) < A\pyin(Ga) < Amax(Ga) < 1+ (K — 1)v.
Therefore, it follows that we can pick dg < (K — 1)v, proving the lemma. O
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