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1 Introduction

The use of sparsity as a prior for efficient signal acquisition and processing

has become prevalent in the last decade. In particular, compressed sensing

(CS) [3, 4] uses sparsity to reduce the number of samples/measurements needed

to acquire a signal. The performance of CS hinges on certain properties of the

measurement matrix that maps the input signal to the obtained measurements.

Early results in CS focused on deterministic conditions on the measurement

matrix for the case of arbitrary (deterministic) signals. However, the conditions

are either difficult to verify or provide highly pessimistic bounds on recovery

performance.

Recent results by Tropp [11] have focused on the performance of measure-

ment matrices for sparse signals under a probabilistic signal model where the

support is drawn at random from a uniform distribution over all sparse supports

of a given size. The result exploits the fact that the product of a matrix with a

sparse signal is essentially controlled by the subdictionary corresponding to the

signal support. In this case, recovery performance is tied to the coherence and

spectral norm of the matrix through the calculation of the expected spectral

norm of randomly selected subdictionaries of the matrix.
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In this report, we adapt these results to applications where the signal exhibits

block (or group) sparsity, rather than simple sparsity. That is, the block-sparse

signal has support that is drawn uniformly at random from all block-sparse

supports containing a given number of blocks. In block sparsity, the nonzero

coefficients of the sparse signal are grouped together as intervals in the signal

coefficient vector. The block sparsity model is popular for multiband signals,

fusion frames, and signal ensemble applications [1, 2, 5, 6, 8]. Thus, our results

focus on random block subdictionaries, where the columns selected from the

measurement matrix are grouped together into intervals. The results in this

paper can also have implications on the performance of block-sparse signal re-

covery under the random block-sparse support model.

This report is organized as follows. Section 2 sets up notation and presents

our main theorem. Section 3 provides necessary lemmas, and Section 4 gives

the proof of our main theorem.

2 Notation and Main Result

The measurement matrix (or dictionary) is Φ = [Φ1 Φ2 . . . Φp], where each

block Φi = [φi,1 . . . φi,m] is an n×m matrix. The dictionary has coherence

µ := max
(i,j) �=(k,l)

|�φ(i,j), φ(k,l)�|

and each of its columns φi,j has unit norm. We define random variables δ1, . . . , δp

that are independent and identically distributed (i.i.d.) Bernoulli with param-

eter δ := k/p, and form a block subdictionary X = [Φi : δi = 1]. The hollow

Gram matrix for X is A := X
H

X − I, where I denotes the identity matrix

of appropriate size. To calculate the spectral norm of A, we use a masking

matrix R = S ⊗ Im, where S = diag(δ1, . . . , δp) is a random matrix and ⊗
denotes the standard Kronecker product. We then have �A�2 = �RGR�2 with

G := Φ
H

Φ− I. We denote EqX := [E|X|q]1/q
. We also define the block coher-

ence
1

µB = max
1≤i,j≤p

�ΦH

i
Φj − 1{i=j}I�2.

Finally, we denote T ⊆ {1, . . . , p} to be a subset of the block index set, with

T
C

:= {1, . . . , p} \ T . Using this notation, the main result of this report can

be stated as follows.

Theorem 1. For q = 2 log(pm), we have the bound

Eq�RGR�2 ≤ 20µB log(pm) + 9

�
δ log(pm)(1 + (m− 1)µ)�Φ�2 + δ�Φ�22.

1We recently became aware of [5], which also introduces the term “block coherence” in the

context of recovery of block-sparse signals, defined as maxi�=j �ΦH

i
Φj�2.
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The proof of the theorem uses many lemmas and tools, following the ideas of

the proof in [11]. To begin, we denote the matrix G in block-diagonal fashion:

G = [G1 G2 . . . Gp] =





G1,1 G1,2 . . . G1,p

G2,1 G2,2 . . . G2,p

.

.

.
.
.
.

. . .
.
.
.

Gp,1 Gp,2 . . . Gp,p





where Gi,j = Φ
H

i
Φj − 1{i=j}I for 1 ≤ i, j ≤ p. We then split G = H +D, where

D contains the diagonal blocks Gi,i, and H contains only the non-diagonal

blocks. We also define the following “norms” for block matrices:

• when we group only the columns, we define �G�B,1 := max1≤i≤p �Gi�2;

• when we group both columns and rows, we define �G�B,2 := max1≤i,j≤p �Gi,j�2.

Finally, we will make use of the following standard inequalities:

• Cauchy-Schwarz Inequality: |E(XY )|2 ≤ E(X
2
)E(Y

2
).

• Hölder’s Inequality: �fg�1 ≤ �f�p�g�q, 1 ≤ p, q ≤ ∞ and 1/p + 1/q = 1.

• Jensen’s Inequality for a convex function f : f(EX) ≤ Ef(X).

• Scalar Khintchine Inequality: Let {ai} be a finite sequence of complex

numbers and {�i} be a Rademacher (random ±1 binary) sequence. For

each q ≥ 0, we have

Eq

�����
�

i

�iai

����� ≤ Cq

�
�

i

|ai|2
�1/2

,

where Cq ≤ 2
1/4

�
q/e.

• Noncommutative Khintchine Inequality [12]: Let {Xi} be a finite sequence

of matrices of the same size and {�i} be a Rademacher sequence. For each

q ≥ 2,

Eq

������

�

j

�jXj

������
Sq

≤ Wq max






�������




�

j

XjX
H

j




1/2

�������
Sq

,

�������




�

j

X
H

j
Xj




1/2

�������
Sq





,

where �X�Sq = �σ(X)�q denotes the Schatten q-norm for a matrix (equal

to the �q-norm of the vector containing its singular values) and Wq ≤
2
−1/4

�
πq/e.
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3 Lemmata

We use the following lemmas in our proof of Theorem 1. The first two lemmas

are used to prove later ones.

Lemma 1. Let X = [X1 . . . Xp] be a block matrix and DX be its block di-

agonalization, i.e., a block-diagonal matrix DX = diag(Xi)
p

i=1 containing the

square matrices Xi in its diagonal, with all other elements being equal to zero.

Then, we have

�DX�2 ≤ �X�B,1.

Proof. For a vector a of appropriate length, we evaluate the ratio
�DXa�22
�a�22

. We

partition a = [a1 a2 . . . ap] into pieces matching the number of columns of the

blocks Xi, 1 ≤ i ≤ p. Then, we will have

�DXa�22
�a�22

=

�
p

i=1 �Xiai�22�
p

i=1 �ai�22
≤

�
p

i=1 �Xi�22�ai�22�
p

i=1 �ai�22

≤
max1≤i≤p �Xi�22

�
p

i=1 �ai�22�
p

i=1 �ai�22
≤ max

1≤i≤p

�Xi�22.

Thus, the spectral norm obeys

�DX�2 = max
a

�DXa�2
�a�2

≤ max
1≤i≤p

�Xi�2 = �X�B,1.

The next lemma is adapted from [9].

Lemma 2. Let X = [X1 X2 . . . Xp] be a block matrix where each block Xi has

m columns. For any q ≥ 2 log(pm), we have

Eq

�����

p�

i=1

�iXiX
H

i

�����
2

≤ 1.5
√

q�X�B,1�X�2,

where {�i} is a Rademacher sequence.

Proof. We start by bounding the spectral norm by the Schatten q-norm:

E := Eq

�����

p�

i=1

�iXiX
H

i

�����
2

≤ Eq

�����

p�

i=1

�iXiX
H

i

�����
Sq

.

Now use the noncommutative Khintchine inequality (noting that the two terms

in the inequality’s max are equal) to get

E ≤ Wq

������

�
p�

i=1

XiX
H

i
XiX

H

i

�1/2
������

Sq

.
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We can bound the Schatten q-norm by the spectral norm by paying a multi-

plicative penalty of (pm)
1/q

, where pm is the maximum rank of the matrix sum.

By the hypothesis, this penalty does not exceed
√

e.

E ≤ Wq

√
e

������

�
p�

i=1

XiX
H

i
XiX

H

i

�1/2
������

2

≤ Wq

√
e

�����

p�

i=1

XiX
H

i
XiX

H

i

�����

1/2

2

We note that the sum term is a quadratic form that can be expressed in terms

of X and its block diagonalization, as follows:

E ≤ Wq

√
e�XD

H

X
DXX

H�1/2
2 ≤ Wq

√
e�DXX

H�2
≤ Wq

√
e�DX�2�X�2

≤ Wq

√
e�X�B,1�X�2,

where the last step used Lemma 1. Now replace Wq ≤ 2
−1/4

�
πq/e to complete

the proof.

The next lemma is adapted from [11].

Lemma 3. Let H be a a Hermitian matrix with zero block diagonal. Then

Eq�RHR�2 ≤ 2Eq�RHR
��2, where R

�
= S

� ⊗ Im with S
�
denoting an indepen-

dent realization of the random matrix S.

Proof. We establish the result for q = 1 for simplicity. Denote Hi,j = Φ
H

i
Φj −

1{i=j}I for 1 ≤ i, j ≤ p. Further, denote �Hi,j as the masking of the matrix H

that preserves only the subblock Hi,j .

E�RHR�2 = E

������

�

1≤i<j≤p

δiδj(
�Hi,j + �Hj,i)

������
2

.

Let ηi be i.i.d. Bernoulli random variables with parameter 1/2. Here, we use

Jensen’s inequality on the new random variable η = {ηi}1≤i≤p: we define

Mi,j(η) = ηi(1− ηj)+ ηj(1− ηi), and note that EηMi,j(η) = 1/2 for all i, j. We

also define the function

f(Mi,j(η)) = Eδ

������

�

1≤i<j≤p

2δiδjMi,j(η)( �Hi,j + �Hj,i)

������
2

.

Thus, by applying Jensen’s inequality to f(·), we obtain

E�RHR�2 ≤ 2EηEδ

������

�

1≤i<j≤p

[ηi(1− ηj) + ηj(1− ηi)]δiδj(
�Hi,j + �Hj,i)

������
2

.
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There is a 0-1 vector η
∗

for which the expression exceeds its expectation over η.

Let T = {i : η
∗
i

= 1}.

E�RHR�2 ≤ 2Eδ

������

�

i∈T,j∈T C

δiδj(
�Hi,j + �Hj,i)

������
2

= 2Eδ

������

�

i∈T,j∈T C

δiδj
�Hi,j

������
2

≤ 2Eδ

������

�

i∈T,j∈T C

δiδ
�
j
�Hi,j

������
2

,

where {δ�
j
} is an independent realization of the sequence {δi}. The first equality

follows from a standard identity for block counter-diagonal Hermitian matrices.

Now the norm of a submatrix does not exceed the norm of the matrix, so we

re-introduce the missing blocks to complete the argument:

E�RHR�2 ≤ 2Eδ

������

�

1≤i,j≤p,i �=j

δiδ
�
j
�Hi,j

������
2

= 2Eδ�RHR
��2.

The next lemma is adapted from [10, 12].

Lemma 4. Let B = [B1 . . . Bp] be a matrix with p column blocks, and suppose

q ≥ 2 log(pm) ≥ 2. Then

Eq�BR�2 ≤ 3
√

qEq�BR�B,1 +

√
δ�B�2.

Proof. We denote E := Eq�BR�2, and have

E
2

= Eq/2�BRB
H�2 = Eq/2

������

�

1≤i≤p

δiBiB
H

i

������
2

≤ Eq/2

������

�

1≤i≤p

(δi − δ)BiB
H

i

������
2

+ δ

������

�

1≤i≤p

BiB
H

i

������
2

Here we replace δ = Eδ
�
i
, with {δ�

i
} denoting an independent copy of the sequence

{δi}. We then take the expectation out of the norm with Jensen’s inequality to

get

E
2 ≤ Eq/2

������

�

1≤i≤p

(δi − δ
�
i
)BiB

H

i

������
2

+ δ�BB
H�2.
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We symmetrize the distribution by introducing a Rademacher sequence {�i},
noticing that the expectation does not change due to the symmetry of the ran-

dom variables δi − δ
�
i
:

E
2 ≤ Eq/2

������

�

1≤i≤p

�i(δi − δ
�
i
)BiB

H

i

������
2

+ δ�B�22.

We apply the triangle inequality to separate δi and δ
�
i
, and by noticing that they

have the same distribution, we obtain

E
2 ≤ 2Eq/2

������

�

1≤i≤p

�iδiBiB
H

i

������
2

+ δ�B�22.

Writing Ω = {i : δi = 1}, we see that

E
2 ≤ 2Eq/2,Ω

�
Eq/2,�

�����
�

i∈Ω

�iBiB
H

i

�����
2

�
+ δ�B�22.

Here we have split the expectation on the random variables Ω and {�j}. Now

we use Lemma 2 on the term in parentheses to get

E
2 ≤ 3

√
qEq/2(�BR�B,1�BR�2) + δ�B�22.

Using the Cauchy-Schwarz inequality, we get

E
2 ≤ 3

√
qEq�BR�B,1Eq�BR�2 + δ�B�22.

This inequality takes the form E
2 ≤ bE+c. We bound E by the largest solution

of this quadratic form:

E ≤ b +
√

b2 + 4c

2
≤ b +

√
c,

proving the lemma.

The last lemma is adapted from [12].

Lemma 5. Let

B = [B1 B2 . . . Bp] =





B1,1 B1,2 . . . B1.p

B2,1 B2,2 . . . B2.p

.

.

.
.
.
.

. . .
.
.
.

Bp,1 Bp,2 . . . Bp.p





be a block matrix, where each block Bi,j has size m×m. Assume q ≥ 2 log p.Then

we have

Eq�RB�B,1 ≤ 2
1.5√

q�B�B,2 +

√
δ�B�B,1.
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Proof. We begin by seeing that

E
2

:= (Eq�RB�B,1)
2

= Eq

�
max

1≤j≤p

�RBj�22
�

= Eq/2

�
max

1≤j≤p

p�

i=1

δi�Bi,j�22

�

In the sequel, we abbreviate t = q/2 and yi,j = �Bi,j�22. We continue by using

the same technique as in the proof of Lemma 4: we split a term for the mean

value of the sequence {δi}, then replace the term by Eδ
�
i

— an independent

copy of the sequence, then exploit symmetrization by introducing a Rademacher

sequence {�i}, and then finish by merging the two terms due to their identical

distributions:

E
2 ≤ Et

�
max

1≤j≤p

p�

i=1

(δi − δ)yi,j

�
+ δ max

1≤j≤p

p�

i=1

�Bi,j�22

≤ Et

�
max

1≤j≤p

p�

i=1

(δi − δ
�
i
)yi,j

�
+ δ�B�2

B,1

= Et

�
max

1≤j≤p

p�

i=1

�i(δi − δ
�
i
)yi,j

�
+ δ�B�2

B,1

≤ 2Et

�
max

1≤j≤p

p�

i=1

�iδiyi,j

�
+ δ�B�2

B,1.

Now we bound the maximum by the sum and separate the expectations on the

two sequences:

E
2 ≤ 2Et,δ




p�

j=1

�
Et,�

p�

i=1

�iδiyi,j

�t



1/t

+ δ�B�2
B,1.

For the inner term, we can use the scalar Khintchine inequality to obtain

E
2 ≤ 2CtEt,δ




p�

j=1

�
p�

i=1

δiy
2
i,j

�t/2



1/t

+ δ�B�2
B,1.

We continue by bounding the outer sum by the maximum term:

E
2 ≤ 2Ctp

1/tEt,δ



 max
1≤j≤p

�
p�

i=1

δiy
2
i,j

�t/2



1/t

+ δ�B�2
B,1.

Since t ≥ log p, it holds that p
1/t ≤ e, which implies that 2Ctp

1/t ≤ 4
√

t. We

now use Hölder’s inequality inside the sum term δiy
2
i,j

= yi,j · δiyi,j with p = ∞,
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q = 1:

E
2 ≤ 4

√
t

�
max

1≤i,j≤p

yi,j

�1/2

Et,δ



 max
1≤j≤p

�
p�

i=1

δiyi,j

�t/2



1/t

+ δ�B�2
B,1

≤ 4

√
t

�
max

1≤i,j≤p

yi,j

�1/2

Et,δ



 max
1≤j≤p

�
p�

i=1

δiyi,j

�t



1/2t

+ δ�B�2
B,1.

Now we recall that t = q/2 and yi,j = �Bi,j�22, to get

E
2 ≤ 2

1.5√
q max

1≤i,j≤p

�Bi,j�2Eq/2



 max
1≤j≤p

�
p�

i=1

δi�Bi,j�22

�q/2



1/q

+ δ�B�2
B,1

≤ 2
1.5√

q max
1≤i,j≤p

�Bi,j�2Eq/2

�
max

1≤j≤p

p�

i=1

δi�Bi,j�22

�1/2

+ δ�B�2
B,1

≤ 2
1.5√

q�Bi,j�B,2Eq max
1≤j≤p

�RBj�2 + δ�B�2
B,1

≤ 2
1.5√

q�Bi,j�B,2Eq�RB�B,1 + δ�B�2
B,1

and notice that E has appeared on the right hand side. By following the same

argument that ends the proof of Lemma 4, we comlpete the proof.

4 Proof of Theorem 1

We can now prove the main theorem. Split G into its diagonal blocks D (con-

taining X
H

i
Xi − I, 1 ≤ i ≤ p) and off-diagonal blocks H (containing X

H

i
Xj ,

1 ≤ i �= j ≤ p) and apply Lemma 3:

Eq�RGR�2 ≤ 2Eq�RHR
��2 + Eq�RDR�2.

To estimate the first term, we apply Lemma 4 twice: once for R, and once for

R
�
:

Eq�RHR
��2 ≤ 3

√
qEq�RHR

��B,1 +

√
δEq�R�

H�2
≤ 3

√
qEq�RHR

��B,1 + 3

�
δqEq�HR

��B,1 + δ�H�2.

By applying Lemma 5 on the first term, we obtain

Eq�RHR
��2 ≤3

√
q

�
2
1.5√

qEq�HR
��B,2 +

√
δEq�HR

��B,1

�
+ 3

�
δqEq�HR

��B,1

+δ�H�2.

Since R and R
�
have the same distribution, we can collect terms to get

Eq�RHR�2 ≤ 9qEq�HR�B,2 + 6

�
δqEq�HR�B,1 + δ�H�2 + Eq�RDR�2.
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To bound �HR�B,1, we denote Φ{i}C = [Φ
H

1 . . . Φ
H

i−1 Φ
H

i+1 . . . Φ
H

p
]
H

; we then

have

�HR�B,1 ≤ �H�B,1 = max
1≤i≤p

�ΦH

i
Φ{i}C�2 ≤ max

1≤i≤p

�ΦH

i
Φ�2 ≤ max

1≤i≤p

�Φi�2�Φ�2.

Using the Geršgorin circle theorem [7], we can show that for each 1 ≤ i ≤ p

�Φi�2 ≤
�

1 + (m− 1)µ, so that �HR�B,1 ≤
�

1 + (m− 1)µ�Φ�2. Now we use

the facts �HR�B,2 ≤ µB , �H�2 ≤ �G�2 + �D�2 = �Φ�22 + �D�2 and

Eq�RDR�2 ≤ �D�2 = max
1≤i≤p

�ΦH

i
Φi − I�2 ≤ µB

(from Lemma 1) to prove the theorem:

Eq�RGR�2 ≤ 9qµB + 6

�
δq(1 + (m− 1)µ)�Φ�2 + δ(�Φ�22 + µB) + µB

≤ 20µB log(pm) + 9

�
δ log(pm)(1 + (m− 1)µ)�Φ�2 + δ�Φ�22.
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