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Abstract—Compressive sensing (CS) is an alternative

to Shannon/Nyquist sampling for acquisition of sparse or

compressible signals; instead of taking periodic samples,

we measure inner products with M < N random vec-

tors and then recover the signal via a sparsity-seeking

optimization or greedy algorithm. Initial research has

shown that by leveraging stronger signal models than

standard sparsity, the number of measurements required

for recovery of an structured sparse signal can be much

lower than that of standard recovery. In this paper, we

introduce a new framework for structured compressible

signals based on the unions of subspaces signal model,

along with a new sufficient condition for their recovery that

we dub the restricted amplification property (RAmP). The

RAmP is the natural counterpart to the restricted isometry

property (RIP) of conventional CS. Numerical simulations

demonstrate the validity and applicability of our new

framework using wavelet-tree compressible signals as an

example.

Index Terms—Compressive sensing, compressible sig-

nals, unions of subspaces

I. INTRODUCTION

Compressive sensing (CS) is a new approach to simul-

taneous sensing and compression that enables a poten-

tially large reduction in the sampling and computation

costs at a sensor for signals having a sparse representa-

tion in some basis. CS builds on the work of Candès,

Romberg, and Tao [1] and Donoho [2], who showed

that a signal having a sparse representation in one basis

can be recovered from a small set of projections onto

a second, measurement basis that is incoherent with

the first.1 Random projections play a central role as a

universal measurement basis in the sense that they are
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1Roughly speaking, incoherence means that no element of one

basis has a sparse representation in terms of the other basis.

incoherent with any fixed basis with high probability.

The CS measurement process is nonadaptive, and the

recovery process is nonlinear, for which a variety of

algorithms have been proposed [1–6].

While this represents significant progress from

Nyquist-rate sampling, it is possible to do even better

by more fully leveraging concepts from state-of-the-

art signal compression and processing algorithms. In

many such algorithms, the key ingredient is a more

realistic signal model that goes beyond simple sparsity

by codifying the inter-dependency structure among the

signal coefficients. Coding the coefficients according to

a model for this structure enables these algorithms to

compress signals close to the maximum amount possi-

ble — significantly better than a naive coder that just

processes each large coefficient independently.

We have previously developed a new model-based

CS algorithmic framework [7] that parallels the conven-

tional theory by establishing an underlying signal model,

favoring certain configurations for the magnitudes and

indices of the significant coefficients of the signal, and

designing recovery algorithms that exploit the knowledge

of such a model. Building on this work, we developed

CS recovery algorithms in [8] for the recently introduced

union-of-subspaces models for strictly sparse signals [9–

11]. We have shown that these algorithms achieve the

same performance as standard CS recovery [8]. In both

cases, by reducing the degrees of freedom of a sparse or

compressible signal, signal models provide two immedi-

ate benefits to CS. First, they enable a reduction in the

number of measurements M required to stably recover a

signal. Second, during signal recovery, they enable us to

better differentiate true signal information from recovery

artifacts, which leads to a more robust recovery.

In this paper, we build on previous work by ex-

panding the union-of-subspaces signal models beyond

strictly sparse signals. To precisely quantify the benefits

of model-based CS, we introduce and study several

new theoretical concepts that could be of more general

interest. We define a class of model-compressible signals

that can be approximated by increasingly complex sig-
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nals under a established union-of-subspaces model with

exponentially decaying error. We also formulate a new

restricted amplification property (RAmP) that guarantees

stable recovery of model-compressible signals. For some

compressible signal models, the number of random mea-

surements M required by the RAmP is independent of

N .

This paper is organized as follows. A review of the

CS theory is given in Section II. Section III develops

the concept of model-sparse signals and introduces the

concept of model-compressible signals. We also quan-

tify how signal models improve the measurement and

recovery process by exploiting the model-based RIP for

model-sparse signals and by introducing the RAmP for

model-compressible signals in Section IV. Section V

then specializes our theory to the case of wavelet tree-

sparse signal models and Section VI reports on a series

of numerical experiments that validate our theoretical

claims. We conclude with a discussion in Section VII.

II. BACKGROUND ON COMPRESSIVE SENSING

Given a basis Ψ, we can represent every signal x ∈
R

N in terms of the coefficient vector α as x = Ψα. In

this section we will assume without loss of generality

that the signal x is sparse or compressible in the canoni-

cal domain so that the sparsity basis Ψ is the identity and

α = x. A signal x is K-sparse if only K ≪ N entries of

x are nonzero. We call the set of indices corresponding

to the nonzero entries the support of x and denote it by

supp(x). The set ΣK of all K-sparse signals is the union

of the
(N
K

)
, K-dimensional subspaces aligned with the

coordinate axes in R
N .

While many natural and manmade signals are not

strictly sparse, they can be approximated as such; we

say that such signals are compressible. An example is

a signal x whose coefficients, when sorted in order of

decreasing magnitude, decay according to the power law

∣∣xI(i)

∣∣ ≤ S i−1/r, i = 1, . . . , N, (1)

where I indexes the sorted coefficients. Thanks to the

rapid decay of their coefficients, such signals are well-

approximated by K-sparse signals. Let xK ∈ ΣK

represent the best K-term approximation of x, which

is obtained by keeping just the first K terms in xI(i)

from (1). Denote the error of this approximation as

σK(x) := arg min
x̄∈ΣK

‖x− x̄‖2 = ‖x− xK‖2.

We then have that

σK(x) ≤ (rs)−1/2 SK−s, (2)

with s = 1
r − 1

2 . That is, the signal’s best approximation

error has a power-law decay with exponent s as K
increases. We dub such a signal s-compressible.

Compressive sensing (CS) integrates the signal acqui-

sition and compression steps into a single process [1–3].

In CS we do not acquire x directly but rather acquire

M < N linear measurements y = Φx using an M ×N
measurement matrix Φ. We then recover x by exploiting

its sparsity or compressibility. Our goal is to push M as

close as possible to K in order to perform as much signal

“compression” during acquisition as possible. In order to

recover a good estimate of x from the M compressive

measurements, the measurement matrix Φ should satisfy

the restricted isometry property (RIP).

Definition 1: [1] An M×N matrix Φ has the K-RIP

with constant δK if, for all x ∈ ΣK ,

(1 − δK)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δK)‖x‖2
2. (3)

In words, the K-RIP ensures that all submatrices of Φ
of size M × K are close to an isometry, and therefore

distance (and information) preserving. Practical recov-

ery algorithms typically require that Φ have a slightly

stronger 2K-RIP or higher-order RIP in order to preserve

differences of K-sparse vectors (which are 2K-sparse in

general) and other higher-order structures [1, 6, 12].

While the design of a measurement matrix Φ sat-

isfying the K-RIP is an NP-Complete problem in

general [1], random matrices whose entries are i.i.d.

Gaussian, Bernoulli (±1), or more generally subgaus-

sian2 work with high probability, provided M =
O (K log(N/K)). These random matrices also have a

so-called universality property in that, for any choice

of orthonormal basis matrix Ψ, ΦΨ has the K-RIP

with high probability. This is useful when the signal

is sparse in a basis other than the identity. A random

Φ corresponds to an intriguing data acquisition protocol

in which each measurement yj is a randomly weighted

linear combination of the entries of x.

A number of different CS signal recovery algorithms,

both from optimization and greedy approaches [1–3, 5,

6], offer provably stable signal recovery with perfor-

mance close to optimal K-term approximation. For a

matrix Φ that has the 2K-RIP and noisy measurements

y = Φx+ n, the recovered signal x̂ holds the guarantee

‖x− x̂‖2 ≤ C1‖x− xK‖2 +
C2√
K

‖x− xK‖1

+C3‖n‖2, (4)

2A random variable X is called subgaussian if there exists c > 0

such that E
`
eXt

´
≤ ec2t2/2 for all t ∈ R. Examples include the

Gaussian and Bernoulli random variables, as well as any bounded

random variable.
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with C1 and C2 denoting constants. This result has many

implications. Under noiseless measurements, K-sparse

signals are recovered perfectly; under noisy measure-

ments, an s-compressible signal has recovery error

‖x− x̂‖2 ≤ C1SK
−s

√
2s

+
C2SK

−s

s− 1/2
+ C3‖n‖2. (5)

III. MODEL-SPARSE AND COMPRESSIBLE SIGNALS

While many natural and manmade signals and images

can be described to first-order as sparse or compressible,

the support of their large coefficients often has an under-

lying inter-dependency structure. This phenomenon has

received only limited attention by the CS community to

date [9–11, 13–16]. In this section, we present a theory

of CS that captures such structure using a union-of-

subspaces model. Such a model reduces the degrees of

freedom of a sparse/compressible signal by permitting

only certain configurations of supports for the large

coefficients. As we will show, this allows us to reduce,

in some cases significantly, the number of compressive

measurements M required to stably recover a signal.

A. Model-sparse signals

Recall from Section II that a K-sparse signal vector

x lives in ΣK ⊂ R
N , which is a union of

(N
K

)
subspaces

of dimension K. Other than its K-sparsity, there are

no further constraints on the support or values of its

coefficients. A union-of-subspaces signal model (a signal

model in the sequel for brevity) endows the K-sparse

signal x with additional structure that allows certain K-

dimensional subspaces in ΣK and disallows others [9,

10]. More formally, let x|Ω represent the entries of x
corresponding to the set of indices Ω ⊆ {1, . . . , N}, and

let ΩC denote the complement of the set Ω. A signal

model MK is then defined as the union of mK canonical

K-dimensional subspaces

MK =

mK⋃

m=1

Xm, s.t. Xm := {x : x|Ωm
∈ R

K , x|ΩC
m

= 0};

each subspace Xm contains all signals x with supp(x) ∈
Ωm. Thus, the signal model MK is defined by the set

of possible supports {Ω1, . . . ,ΩmK
}. Signals from MK

are called K-model sparse. Clearly, MK ⊆ ΣK and

contains mK ≤
(N
K

)
subspaces. In the sequel, we will

use an algorithm M(x,K) that returns the best K-term

approximation of the signal x under the signal model

MK .

If we know that the signal x being acquired is K-

model sparse, then we can relax the RIP constraint on

the CS measurement matrix Φ and still achieve stable

recovery from the compressive measurements y = Φx. A

model-based RIP requires that (3) holds only for signals

x ∈ MK [9, 10]; we denote this new property as MK -

RIP to specify the dependence on the chosen signal

model, and change the model-based RIP constant from

δK to δMK
for clarity. Blumensath and Davies [9] have

quantified the number of measurements M necessary

for a subgaussian CS matrix to have the MK -RIP with

constant δMK
and with probability 1 − e−t to be

M ≥ 2

cδ2MK

(
ln(2mK) +K ln

12

δMK

+ t

)
. (6)

This bound can be used to recover the conventional

CS result by substituting mK =
(
N
K

)
≈ (Ne/K)K .

The MK -RIP property is sufficient for robust recovery

of model-sparse signals using recovery algorithms like

model-based CoSaMP [8].

B. Model-compressible signals

Just as compressible signals are “nearly K-sparse”

and thus live close to the union of subspaces ΣK in

R
N , model-compressible signals are “nearly K-model

sparse” and live close to the restricted union of subspaces

MK . To make this new concept rigorous, recall from

(2) that we defined compressible signals in terms of the

decay of their K-term approximation error. The ℓ2 error

incurred by approximating x ∈ R
N by the best model-

based approximation in MK is given by

σMK
(x) := inf

x̄∈MK

‖x− x̄‖2 = ‖x− M(x,K)‖2.

The decay of this approximation error defines the model-

compressibility of a signal; we define the set of s-model-

compressible signals as

Ms = {x ∈ R
N : σMK

(x) ≤ SK−1/s,

1 ≤ K ≤ N,S <∞},
i.e., those signals whose model-based approximation

error has a power-law decay with exponent s as K
increases.

IV. THE RESTRICTED AMPLIFICATION PROPERTY

(RAMP)

In conventional CS, the same requirement (RIP) is a

sufficient condition for the stable recovery of both sparse

and compressible signals. In model-based recovery, how-

ever, the class of compressible signals is much larger

than that of sparse signals, since the set of subspaces

containing model-sparse signals does not span all K-

dimensional subspaces. Therefore, we need to introduce

some additional tools to develop a sufficient condition

for the stable recovery of model-compressible signals.
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We will pay particular attention to signal models MK

that generate nested approximations, since they are more

amenable to analysis. In words, a signal model generates

nested approximations if the support of the best K ′-

term model-based approximation contains the support

of the best K-term model-based approximation for all

K < K ′. An important example of a signal model

that generates nested approximations is the standard

compressible signal model of (2).

When a signal model generates nested approximations,

the support of the difference between the best jK-term

model-based approximation and the best (j + 1)K-term

model-based approximation of a signal can be shown

to lie in a small union of K-dimensional subspaces,

thanks to the structure enforced by the signal model. This

structure is captured by the set of residual subspaces

that are included in each subsequent approximation. We

group them under the notation

Rj,K(M) = {u ∈ R
N s.t. for some x ∈ R

N ,

u = M(x, jK) − M(x, (j − 1)K)},

for j = 1, . . . , ⌈N/K⌉. Each signal x in a signal

model can be partitioned into its best K-term ap-

proximation xT1
, the additional components present in

the best 2K-term approximation xT2
, and so on, with

x =
∑⌈N/K⌉

j=1 xTj
and xTj

∈ Rj,K(M) for each j.
Each signal partition xTj

is a K-sparse signal, and thus

Rj,K(M) is a union of subspaces of dimension K. We

will denote by Rj the number of subspaces that compose

Rj,K(M), omitting the dependence on M for brevity.

For exactly K-model-sparse signals, we discussed in

Section III that the number of measurements M required

for a random matrix to have the MK-RIP is determined

by the number of canonical subspaces mK via (6).

Unfortunately, such model-sparse concepts and results do

not immediately extend to model-compressible signals.

Thus, we develop a generalization of the MK -RIP that

we will use to quantify the stability of recovery for

model-compressible signals.

To analyze the robustness of compressible signal re-

covery in conventional CS, we can consider the tail

of the signal outside its K-term approximation as con-

tributing additional “noise” to the measurements of size

‖Φ(x−xK)‖2 [6, 12]. Consequently, the conventionalK-

sparse recovery performance result can be applied with

the augmented noise n + Φ(x − xK). This technique

can also be used to quantify the robustness of model-

compressible signal recovery. The key quantity we must

control is the amplification of the model-based approxi-

mation residual through Φ. The following property is a

new generalization of the RIP and model-based RIP.

Definition 2: A matrix Φ has the (ǫK , r)-restricted

amplification property (RAmP) for the residual sub-

spaces Rj,K of the signal model M if

‖Φu‖2
2 ≤ (1 + ǫK)j2r‖u‖2

2

for any u ∈ Rj,K and for each 1 ≤ j ≤ ⌈N/K⌉.

Intuitively, the norms of the partitions ‖xTj
‖2 decay

as j increase for signals that are compressible under

the signal model. This observation is instrumental in

relaxing the isometry restrictions on the measurement

matrix Φ and bounding the recovery error for s-model-

compressible signals. The regularity parameter r > 0
caps the growth rate of the amplification of u ∈ Rj,K

as a function of j. Its value can be chosen so that the

growth in amplification with j balances the decay of the

norm in each residual subspace Rj,K with j.
We can quantify the number of rows M required for a

random measurement matrix Φ to have the RAmP with

high probability; we prove the following in [8].

Theorem 1: Let Φ be an M × N matrix with i.i.d.

subgaussian entries and let the set of residual subspaces

Rj,K of the signal model M contain Rj subspaces of

dimension K for each 1 ≤ j ≤ ⌈N/K⌉. If

M ≥ max
1≤j≤⌈N/K⌉

2K + 4 ln RjN
K + 2t

(
jr
√

1 + ǫK − 1
)2 ,

then Φ has the (ǫK , r)-RAmP with probability 1− e−t.

The crux of the theorem is that if the sequence {Rj} has

slow growth, then a small number of measurements will

suffice for robust recovery of model-compressible sig-

nals. The order of the bound of Theorem 1 is lower than

O (K log(N/K)) as long as the number of subspacesRj

grows slower than NK . Armed with the RaMP, we can

state the following result, which will provide robustness

for the recovery of model-compressible signals; see [8]

for the proof.

Theorem 2: Let x ∈ Ms be an s-model compressible

signal under a signal model M that generates nested

approximations. If Φ has the (ǫK , r)-RAmP and r =
s− 1, then we have

‖Φ(x− M(x,K))‖2 ≤
√

1 + ǫKSK
−s ln

⌈
N

K

⌉
. (7)

This result, combined with (4), provides us with a

recovery guarantee for compressible signals:

‖x−x̂‖ ≤ C1S

K−s
+C2

(
‖n‖2 +

√
1 + ǫKSK

−s ln

⌈
N

K

⌉)
,

with C1 and C2 denoting constants. For matrices having

the RAmP, the model-based recovery algorithms of [8]

provide guarantees for model-compressible signals that

are similar to that of standard algorithms in (5).
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V. EXAMPLE: WAVELET TREE MODEL

Wavelet decompositions have found wide application

in the analysis, processing, and compression of smooth

and piecewise smooth signals because these signals are

K-sparse and compressible, respectively [17]. Moreover,

the wavelet coefficients can be naturally organized into

a tree structure, and for many kinds of natural and

manmade signals the largest coefficients cluster along

the branches of this tree. This motivates a connected

tree model for the wavelet coefficients. We first describe

tree sparsity in the context of sparse wavelet decompo-

sitions. We focus on one-dimensional signals and binary

wavelet trees, but all of our results extend directly to

d-dimensional signals and 2d-ary wavelet trees.

Consider a signal x of length N = 2I , for an integer

value of I . The wavelet representation of x is given by

x = v0ν +

I−1∑

i=0

2i−1∑

j=0

wi,jψi,j ,

where ν is the scaling function and ψi,j is the wavelet

function at scale i and offset j. The wavelet transform

consists of the scaling coefficient v0 and wavelet coef-

ficients wi,j at scale i, 0 ≤ i ≤ I − 1, and position j,
0 ≤ j ≤ 2i − 1. In terms of our earlier matrix notation,

x has the representation x = Ψα, where Ψ is a matrix

containing the scaling and wavelet functions as columns,

and α = [v0 w0,0 w1,0 w1,1 w2,0 . . .]
T is the vector

of scaling and wavelet coefficients. We are, of course,

interested in sparse and compressible α.

The nested supports of the wavelets at different scales

create a parent/child relationship between wavelet coef-

ficients at different scales. We say that wi−1,⌊j/2⌋ is the

parent of wi,j and that wi+1,2j and wi+1,2j+1 are the chil-

dren of wi,j . Wavelet functions act as local discontinuity

detectors; using the nested support property of wavelets

at different scales, it is straightforward to see that a signal

discontinuity will give rise to a chain of large wavelet

coefficients along a branch of the wavelet tree from a

leaf to the root. Moreover, smooth signal regions will

give rise to regions of small wavelet coefficients. This

“connected tree” property has been well-exploited in a

number of wavelet-based processing and compression

algorithms [18, 19]. In this section, we will specialize

the theory from Section III to a connected tree model

T .

A set of wavelet coefficients Ω forms a connected

subtree if, whenever a coefficient wi,j ∈ Ω, then its

parent wi−1,⌊j/2⌋ ∈ Ω as well. Each such set Ω defines

a subspace of signals whose support is contained in Ω;

that is, all wavelet coefficients outside Ω are zero. In this

way, we define the signal model TK as the union of all

K-dimensional subspaces corresponding to supports Ω
that form connected subtrees.

For tree-compressible signals, we apply Theorem 1 to

find that a subgaussian random matrix has the (ǫK , s)-
RAmP for the signal model T and all s > 0.5, with

probability 1−e−t, if the number of measurements obeys

M ≥ 20K + 4 ln 601N
K3 + 2t

(√
1 + ǫK − 1

)2 (8)

when K ≥ log2N , or

M ≥
20K + 4 ln N

2K3+3K2+K + 2t
(√

1 + ǫK − 1
)2 (9)

when K < log2N ; see [8] for the proofs. Both cases

give a simplified bound on the number of measurements

required as M = O (K), which is a substantial im-

provement over the M = O (K log(N/K)) required

by conventional CS recovery methods. Thus, when Φ
satisfies (8-9), we have the guarantee (7) for s-tree-

compressible signals.

VI. EXPERIMENTS

We now present the results of a number of numerical

experiments that illustrate the effectiveness of model-

based recovery. Our consistent observation is that explicit

incorporation of the tree model during recovery signifi-

cantly improves its performance for a given number of

measurements.

We study one-dimensional piecewise polynomial sig-

nals that match the connected wavelet-tree model de-

scribed above. We employ the CoSaMP recovery al-

gorithm of [6] and the model-based CoSaMP recovery

algorithm of [8] using CSSA, a tree-based approximation

algorithm [20], in all experiments.

Standard CS recovery algorithms require that the

overmeasuring factor M/K is approximately logarithmic

in N . In contrast, (8) suggests that stable CS recovery

of wavelet tree-compressible signals can be performed

with only M = O (K) measurements; thus, the over-

measuring factor does not increase with the signal length

N . Figure 1 shows the growth of the overmeasuring

factor with the signal length N for conventional CS

and model-based recovery. We generated 50 sample

piecewise cubic signals and numerically computed the

minimum number of measurements M required for the

recovery error ‖x − x̂‖2 ≤ 2.5σTK
(x), the best tree-

approximation error, for every sample signal. The figure

shows that while doubling the signal length increases the

number of measurements required by standard recovery

by K, the number of measurements required by model-

based recovery is constant for all N . These experimental
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Fig. 1. Required overmeasuring factor M/K to achieve a target

recovery error ‖x − bx‖2 ≤ 2.5σTK
(x) as a function of the signal

length N for standard and model-based recovery of piecewise smooth

signals. While standard recovery requires M to increase logarithmi-

cally with N , the required M is essentially constant for model-based

recovery.

results verify the theoretical performance described in

Section V.

VII. CONCLUSIONS

In this paper, we have shown that significant perfor-

mance gains can be obtained by exploiting more realistic

and richer signal models beyond the simplistic sparse

and compressible models that dominate the CS literature.

Building on the unions of subspaces results of [9–11], we

have taken some of the first steps towards what promises

to be a general theory for model-based CS by intro-

ducing the notion of a model-compressible signal and

the associated restricted amplification property (RAmP)

condition it imposes on the measurement matrix Φ. For

the volumes of natural and manmade signals and images

that are wavelet-sparse or compressible, model-based

CS offers performance that significantly exceeds today’s

state-of-the-art, requiring only M = O (K) rather than

M = O (K log(N/K)) random measurements. Such

savings become significant for high-dimensional signals

such as high resolution images.
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