Recovery of Compressible Signals in Unions of Subspaces

Marco F. Duarte

Joint work with Chinmay Hegde, Volkan Cevher, Richard Baraniuk

Sparsity / Compressibility

 Many signals are *sparse* or *compressible* in some representation/basis (Fourier, wavelets, ...)

 $K \ll N$ large wavelet coefficients

N wideband signal samples

 $K \ll N$ large Gabor coefficients

• **Sparse** signal: only K out of N coordinates nonzero

 model: union of K-dimensional subspaces aligned with coordinate axes

Compressive Sensing

• **Sensing** with dimensionality reduction

$$y = \Phi x$$

Restricted Isometry Property (RIP)

- Preserve the structure of sparse/compressible signals
- RIP of order 2K implies: for all K-sparse x_1 and x_2

$$(1 - \delta_{2K}) \leq \frac{\|\Phi x_1 - \Phi x_2\|_2^2}{\|x_1 - x_2\|_2^2} \leq (1 + \delta_{2K})$$

Restricted Isometry Property (RIP)

- Preserve the structure of sparse/compressible signals
- Random (i.i.d. Gaussian, Bernoulli) matrix has the RIP with high probability if

$$M = O(K \log(N/K))$$

Beyond Sparse Models

 Sparse/compressible signal model captures simplistic primary structure

wavelets: natural images Gabor atoms: chirps/tones

pixels: background subtracted images

Beyond Sparse Models

- Sparse/compressible signal model captures simplistic primary structure
- Modern compression/processing algorithms capture richer secondary coefficient structure

wavelets: natural images

Gabor atoms: chirps/tones pixels: background subtracted images

Sparse Signals

• Defn: A *K*-sparse signal lives on the collection of *K*-dim subspaces aligned with coord. axes

Model-Sparse Signals

• Defn: A *K*-model sparse signal lives on a particular (reduced) collection of K-dim canonical **Subspaces** [Blumensath and Davies] [Lu and Do] \mathbf{R}^N $m_K K$ -dim planes $m_k \ll \binom{N}{K}$

Model-Based RIP

- Preserve the structure only of sparse/compressible signals that follow the model
- Random (i.i.d. Gaussian, Bernoulli) matrix has the RIP with high probability if

$$M = O(K + \log m_K)$$

Model-Sparse Signals

 Defn: A <u>K-model sparse</u> signal lives on a particular (reduced) collection of K-dim canonical subspaces

 Recovery: Adapt standard CS recovery algorithms to enforce signal model using model-based sparse approximation

[Baraniuk, Cevher, Duarte, Hegde]

Tree-Sparse

 Model: K-sparse coefficients
+ nonzero coefficients lie on a rooted subtree

 Typical of wavelet transforms of natural signals and images (piecewise smooth)

Ex: Tree-Sparse

• **Model:** *K*-sparse coefficients + nonzero coefficients lie on a rooted subtree

- Typical of wavelet transforms of natural signals and images (piecewise smooth)

 Tree-sparse approx: find best rooted subtree of coefficients

- CSSA [Baraniuk], dynamic programming [Donoho]
- Number of measurements that a matrix Φ with i.i.d. Gaussian entries needs to have Tree-RIP:

 $M = O(K) < O(K \log(N/K))$

Simulation

- Recovery performance (MSE) vs. number of measurements
- Piecewise cubic signals + wavelets
- Models/algorithms:
 - sparse (CoSaMP)
 - tree-sparse

Tree-Sparse Signal Recovery

- **Sparse** signal: only *K* out of *N* coordinates nonzero
 - model: union of *K*-dimensional subspaces
- **Compressible** signal:

sorted coordinates decay rapidly to zero

well-approximated by a K-sparse signal (simply by thresholding)

- Sparse signal: only K out of N coordinates nonzero
 - model: union of *K*-dimensional subspaces
- **Compressible** signal:
- sorted coordinates decay rapidly to zero

well-approximated by a K-sparse signal (simply by thresholding)

- **Sparse** signal: only *K* out of *N* coordinates nonzero
 - model: union of *K*-dimensional subspaces
- Compressible signal:

sorted coordinates decay rapidly to zero

– model: weak ℓ_p ball:

$$|x_i| < Si^{-1/p}$$

- **Sparse** signal: only *K* out of *N* coordinates nonzero
 - model: union of *K*-dimensional subspaces
- Compressible signal:

sorted coordinates decay rapidly to zero

– model: weak ℓ_p ball:

$$|x_i| < Si^{-1/p}$$

$$\sigma_K(x) := \|x - x_K\|_2 \le (ps)^{-1/2} SK^{-s}$$

RIP and Recovery

• Using ℓ_1 methods, CoSaMP, IHT

• Sparse signals

- noise-free measurements:
- noisy measurements:

exact recovery

stable recovery

Compressible signals

– recovery as good as K-sparse approximation

$$\|x - \hat{x}\|_{\ell_2} \le C_1 \|x - x_K\|_{\ell_2} + C_2 \frac{\|x - x_K\|_{\ell_1}}{K^{1/2}} + C_3 \epsilon$$

CS recovery error

signal *K*-term approx error

noise

Model-Compressible Signals

- Model-compressible <> well approximated by model-sparse
 - model-compressible signals lie close to a reduced union of subspaces
 - i.e.: model-approx error decays rapidly as $K \to \infty$

$$\sigma_{\mathcal{M}_K}(x) = \|x - x_{\mathcal{M}_K}\|_2 \le CK^{-s}$$

 Nested approximation property (NAP): model-approximations nested in that

 $supp\{x_K\} \subset supp\{x'_K\}, K < K'$

Model-Compressible Signals

- Model-compressible <> well approximated by model-sparse
 - model-compressible signals lie close to a reduced union of subspaces
 - ie: model-approx error decays rapidly as $K \to \infty$

$$\sigma_{\mathcal{M}_K}(x) = \|x - x_{\mathcal{M}_K}\|_2 \le CK^{-s}$$

 Nested approximation property (NAP): model-approximations nested in that

 $supp\{x_K\} \subset supp\{x'_K\}, K < K'$

Model-Compressible Signals

- Model-compressible <> well approximated by model-sparse
 - model-compressible signals lie close to a reduced union of subspaces
 - ie: model-approx error decays rapidly as $K \to \infty$

$$\sigma_{\mathcal{M}_K}(x) = \|x - x_{\mathcal{M}_K}\|_2 \le CK^{-s}$$

 Nested approximation property (NAP): model-approximations nested in that

 $supp\{x_K\} \subset supp\{x'_K\}, K < K'$

Stable Model-Based Recovery

- *K*-**RIP:** controls amt of nonisometry of Φ on all *K*-**dimensional subspaces**
- Can control norm of $\|y \Phi x_K\|_2$, account for contribution as **noise**
- Model-RIP is *not* sufficient for stable model-compressible recovery!

optimal K-term model recovery (error controlled by \mathcal{M}_K -RIP)

optimal 2K-term model recovery (error controlled by \mathcal{M}_K -RIP) $w_{1,0}$ $w_{1,1}$ $w_{2,2}$ w_{2}

residual subspace: *not* in model (error *not* controlled by \mathcal{M}_K -RIP)

Stable Model-Based Recovery

- Properties of model-compressible signals:
 - Structure on sparse approximation also yields structure on residual subspaces $\mathcal{R}_{j,K}$ R_j : Number of subspaces/supports that arise from growing a jK-model-sparse approx. to a (j+1)K-model-sparse approx.
 - Norm of sparse approximation residuals *also has power law decay*

optimal K-term model recovery (error controlled by \mathcal{M}_K -RIP)

optimal 2K-term model recovery (error controlled by \mathcal{M}_K -RIP)

residual subspace: *not* in model (error *not* controlled by \mathcal{M}_K -RIP)

Stable Model-Based Recovery

• RAMP: Restricted Amplification Property controls amount of nonisometry of Φ for the residuals $x_{\mathcal{M}_{jK}} - x_{\mathcal{M}_{(j+1)K}}$

 $w_{1,0}$

 $w_{2,1}$

 w_2

- Still fewer subspaces than RIP, *fewer measurements*
- Can *relax isometry* for subsequent residual subspaces
- Goal: control norm of *projected approximation error* $\|\Phi(x x_{\mathcal{M}_K})\|_2$

 w_2

 w_1

 w_2

optimal K-term model recovery (error controlled by \mathcal{M}_K -RIP)

residual subspace: *not* in model (error *controlled* by RAmP)

A matrix Φ has the (ϵ_K, r) –**RAMP** for the residual subspaces $\mathcal{R}_{j,K}$ of the signal model \mathcal{M} if

$$\|\Phi u\|_2^2 \le (1 + \epsilon_K)j^{2r}\|u\|_2^2$$

for any $u \in \mathcal{R}_{j,K}$ and for each $1 \leq j \leq \lceil N/K \rceil$

optimal K-term model recovery (error controlled by \mathcal{M}_K -RIP)

optimal 2K-term model recovery (error controlled by \mathcal{M}_K -RIP)

residual subspace: *not* in model (error *controlled* by RAmP)

A matrix Φ has the (ϵ_K, r) –**RAMP** for the residual subspaces $\mathcal{R}_{j,K}$ of the signal model \mathcal{M} if

$$\|\Phi u\|_2^2 \le (1 + \epsilon_K)j^{2r}\|u\|_2^2$$

for any $u \in \mathcal{R}_{j,K}$ and for each $1 \leq j \leq \lceil N/K \rceil$

Theorem: Let x be an s-model compressible signal under a signal model \mathcal{M} with the NAP. If Φ has the (ϵ_K, r) -RAmP and r = s - 1, then we have

$$\|\Phi(x - x_{\mathcal{M}_K}))\|_2 \le \sqrt{1 + \epsilon_K} C K^{-s} \ln\left[\frac{N}{K}\right]$$

(see paper for details)

A matrix Φ has the (ϵ_K, r) –**RAMP** for the residual subspaces $\mathcal{R}_{j,K}$ of the signal model \mathcal{M} if

$$\|\Phi u\|_2^2 \le (1 + \epsilon_K)j^{2r}\|u\|_2^2$$

for any $u \in \mathcal{R}_{j,K}$ and for each $1 \leq j \leq \lceil N/K \rceil$

Theorem: Let x be an s-model compressible signal under a signal model \mathcal{M} with the NAP. If Φ has the (ϵ_K, r) -RAmP and r = s - 1, then we have

$$\|x - \hat{x}\| \le \frac{C_1 S}{K^{-s}} + C_2 \left(\|n\|_2 + \sqrt{1 + \epsilon_K} S K^{-s} \ln\left\lceil \frac{N}{K} \right\rceil \right),$$

(see paper for details)

A matrix Φ has the (ϵ_K, r) –**RAMP** for the residual subspaces $\mathcal{R}_{j,K}$ of the signal model \mathcal{M} if

$$\|\Phi u\|_2^2 \le (1 + \epsilon_K)j^{2r}\|u\|_2^2$$

for any $u \in \mathcal{R}_{j,K}$ and for each $1 \leq j \leq \lceil N/K \rceil$

Theorem: Let x be an s-model compressible signal under a signal model \mathcal{M} with the NAP. If Φ has the (ϵ_K, r) -RAmP and r = s - 1, then we have

$$\|x - \hat{x}\|_{\ell_2} \le C_1 \|x - x_{\mathcal{M}_K}\|_{\ell_2} + C_2 \frac{\|x - x_{\mathcal{M}_K}\|_{\ell_1}}{K^{1/2}} + C_3 \epsilon$$

CS recovery error signal *K*-term approx error

noise

A matrix Φ has the (ϵ_K, r) –**RAMP** for the residual subspaces $\mathcal{R}_{j,K}$ of the signal model \mathcal{M} if

$$\|\Phi u\|_2^2 \le (1 + \epsilon_K)j^{2r}\|u\|_2^2$$

for any $u \in \mathcal{R}_{j,K}$ and for each $1 \leq j \leq \lceil N/K \rceil$

Theorem: A matrix Φ with i.i.d. subgaussian entries has the (ϵ_K, r) -RAmP with probability $1 - e^{-t}$ if

$$M \ge \max_{1 \le j \le \lceil N/K \rceil} \frac{2K + 4 \ln \frac{R_j N}{K} + 2t}{\left(j^r \sqrt{1 + \epsilon_K} - 1\right)^2}$$

for each $1 \leq j \leq \lceil N/K \rceil$

(see paper for details)

Tree-RIP, Tree-RAmP

Theorem: An $M \times N$ i.i.d. subgaussian random matrix has the Tree(K)-RIP with constant $\delta_{\mathcal{T}_K}$ if

$$M \geq \begin{cases} \frac{2}{c\delta_{T_K}^2} \left(K \ln \frac{48}{\delta_{T_K}} + \ln \frac{512}{Ke^2} + t \right) & \text{if } K < \log_2 N \\ \frac{2}{c\delta_{T_K}^2} \left(K \ln \frac{24e}{\delta_{T_K}} + \ln \frac{2}{K+1} + t \right) & \text{if } K \geq \log_2 N \end{cases}$$
with probability $1 - e^{-t}$

Theorem: An $M \times N$ i.i.d. subgaussian random matrix has the Tree(K)-RAmP with constant if

$$M \ge \begin{cases} \frac{2}{\left(\sqrt{1+\epsilon_{K}}-1\right)^{2}} \left(10K+2\ln\frac{N}{K(K+1)(2K+1)}+t\right) & \text{if } K \le \log_{2} N\\ \frac{2}{\left(\sqrt{1+\epsilon_{K}}-1\right)^{2}} \left(10K+2\ln\frac{601N}{K^{3}}+t\right) & \text{if } K > \log_{2} N \end{cases}$$

with probability $1 - e^{-t}$

Simulation

- Number samples for guaranteed recovery
- Piecewise cubic signals + wavelets
- Models/algorithms:
 - sparse (CoSaMP)
 - tree-sparse

Conclusions

- Why CS works: stable embedding for signals with concise geometric structure
- Concise models require even fewer measurements for recovery than simple sparsity models
- Model-sparse and compressible signals using correlations between coefficient values and locations
 - Can modify standard algorithms
 - Can obtain robustness, recovery guarantees
 - Further work: stochastic models, graphical models, optimization-based recovery

