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Sparsity / Compressibility

e Many signals are sparse or compressible in

some representation/basis (Fourier, wavelets, ...)
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Concise Signal Structure

e Sparse signal: only K out of V
coordinates nonzero

- model: union of K-dimensional subspaces
aligned with coordinate axes
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Compressive Sensing

e Sensing with dimensionality reduction
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Restricted Isometry Property (RIP)

e Preserve the structure of sparse/compressible signals

e RIP of order 2K implies: for all K-sparse x, and z,
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Restricted Isometry Property (RIP)

e Preserve the structure of sparse/compressible signals

e Random (i.i.d. Gaussian, Bernoulli) matrix has the
RIP with high probability if

M = O(K log(N/K))
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Beyond Sparse Models

e Sparse/compressible signal model captures
simplistic primary structure

pixels:
background subtracted
images

wavelets: Gabor atoms:
natural images chirps/tones



Beyond Sparse Models

e Sparse/compressible signal model captures
simplistic primary structure

e Modern compression/processing algorithms capture
richer secondary coefficient structure

pixels:
background subtracted
images

wavelets: Gabor atoms:
natural images chirps/tones



Sparse Signals

e Defn: A K-sparse signal lives on the collection of
K-dim subspaces aligned with coord. axes
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Model-Sparse Signals

e Defn: A K-model sparse signal lives on a

particular (reduced) collection of K-dim canonical

Su bSpaceS [Blumensath and Davies]
[Lu and Do]




Model-Based RIP

e Preserve the structure only of sparse/compressible
signals that follow the model

e Random (i.i.d. Gaussian, Bernoulli) matrix has the
RIP with high probability if

M = O(K + logmy)
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Model-Sparse Signals

e Defn: A K-model sparse signal lives on a

particular (reduced) collection of K-dim canonical
subspaces

v

e Recovery: Adapt standard CS recovery algorithms to
enforce signal model using
model-based sparse approximation

[Baraniuk, Cevher, Duarte, Hegde]



Tree-Sparse

e Model: K-sparse coefficients
4+ nonzero coefficients w2,0
lie on a rooted subtree

e Typical of wavelet
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of natural signals
and images

(piecewise smooth)
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Ex: Tree-Sparse

Model: K-sparse coefficients

4+ nonzero coefficients
lie on a rooted subtree

Typical of wavelet transforms TN N

of natural signals and images (piecewise smooth)

Tree-sparse approx: find best rooted subtree
of coefficients
— CSSA [Baraniuk], dynamic programming [Donoho]

Number of measurements that a matrix @ with i.i.d.
Gaussian entries needs to have Tree-RIP:

M = O(K) < O(K log(N/K))



Simulation

e Recovery performance (MSE)
vS. number of measurements

e Piecewise cubic
signals +
wavelets

- \Model-based recovery
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e Models/algorithms:
— sparse (CoSaMP)
— tree-sparse
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Tree-Sparse Signal Recovery

N=1024
M=80

AVAV.

- CoSaMP,
target signal (RMSE=1.12)
/1-minimization Tree-based CoSaMP

(RMSE=0.751) (RMSE=0.037)



Concise Signal Structure

e Sparse signal: only K out of V
coordinates nonzero

- model: union of K-dimensional subspaces

e Compressible signal: sorted coordinates decay
rapidly to zero

well-approximated

by a K-sparse signal
(simply by thresholding)
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Concise Signal Structure

e Sparse signal: only K out of V
coordinates nonzero

- model: union of K-dimensional subspaces

e Compressible signal: sorted coordinates decay
rapidly to zero

well-approximated

by a K-sparse signal
(simply by thresholding)

nested approximations




Concise Signal Structure

e Sparse signal: only K out of V
coordinates nonzero

- model: union of K-dimensional subspaces

e Compressible signal: sorted coordinates decay
rapidly to zero

— model: weak Zp ball: ‘sz‘ < Si_l/P

power-law
decay \




Concise Signal Structure

e Sparse signal: only K out of V
coordinates nonzero

- model: union of K-dimensional subspaces

e Compressible signal: sorted coordinates decay
rapidly to zero

— model: weak Zp ball: ‘sz‘ < Si_l/P

ox(z) = |z — 2K < (ps) *SK*

power-law
decay \




RIP and Recovery

e Using ¢1 methods, CoSaMP, IHT

e Sparse signals
- noise-free measurements: exact recovery
— Noisy measurements: stable recovery

e Compressible signals
— recovery as good as K-sparse approximation
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Model-Compressible Signals

e Model-compressible <> well approximated
by model-sparse

- model-compressible signals lie close to a
reduced union of subspaces

- i.e.: model-approx error decays rapidly as K — oo
oM (@) = [[2 —2pmyllz < CKT7

e Nested approximation property (NAP):
model-approximations nested in that

supp{zx} C supp{ziy}, K <K’

w20



Model-Compressible Signals

e Model-compressible <> well approximated
by model-sparse

- model-compressible signals lie close to a
reduced union of subspaces

— ie: model-approx error decays rapidly as K — oo
oM (@) = [[2 —2pmyllz < CKT7

e Nested approximation property (NAP):
model-approximations nested in that

supp{zx} C supp{z)}, K <K’

wW1.0

w20



Model-Compressible Signals

e Model-compressible <> well approximated
by model-sparse

- model-compressible signals lie close to a
reduced union of subspaces

— ie: model-approx error decays rapidly as K — oo
oM (@) = [[2 —2pmyllz < CKT7

e Nested approximation property (NAP):
model-approximations nested in that

supp{zx} C supp{z)}, K <K’

w10

w2,0



Stable Model-Based Recovery

e I{-RIP: controls amt of nonisometry of &P on all
K-dimensional subspaces

e Can control norm of |y — ®zx]|2,
account for contribution as noise

e Model-RIP is not sufficient for stable
model-compressible recovery!

optimal K-term optimal 2K-term residual subspace:
model recovery model recovery not in model
(error controlled (error controlled (error not controlled

by Mg-RIP) by Mx-RIP) by Mg-RIP)



Stable Model-Based Recovery

e Properties of model-compressible signals:
— Structure on sparse approximation
also yields structure on residual subspaces Rj, K
Rj: Number of subspaces/supports that arise from growing a
1K -model-sparse approx. to a (j—l—l)K—modeI—sparse approx.

— Norm of sparse approximation residuals
also has power law decay

optimal K-term optimal 2K-term residual subspace:
model recovery model recovery not in model
(error controlled (error controlled (error not controlled

by Mg-RIP) by Mx-RIP) by Mg-RIP)



Stable Model-Based Recovery

e RAMP: Restricted Amplification Property
controls amount of nonisometry of ¢
for the residuals T, — T4k

- Still fewer subspaces than RIP, fewer measurements
— Can relax isometry for subsequent residual subspaces
— Goal: control norm of projected approximation error

1P(z — za, )2

optimal K-term optimal 2K-term residual subspace:
model recovery model recovery not in model
(error controlled (error controlled (error controlled

by Mx-RIP) by Mxk-RIP) by RAmP)



Restricted Amplification Property

A matrix ¢ has the (ex,r) - RAmMP for the residual
subspaces R, i of the signal model M if

| Pull; < (1+ ex )i [ull3

forany u € R, k and for each 1 <j < [N/K]|

optimal K-term optimal 2K-term residual subspace:
model recovery model recovery not in model
(error controlled (error controlled (error controlled

by Mx-RIP) by Mxk-RIP) by RAmP)



Restricted Amplification Property

A matrix ¢ has the (ex,r) - RAmMP for the residual
subspaces R, i of the signal model M if

[Pullz < (1 +ex)5™" [|ull3
forany u € R, k and for each 1 <j < [N/K]|

Theorem: Let x be an s-model compressible signal
under a signal model M with the NAP. If @ has the

(ex,7)-RAMP and r = s — 1, then we have

N
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(see paper for details)



Restricted Amplification Property
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Theorem: Let x be an s-model compressible signal
under a signal model M with the NAP. If @ has the
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Restricted Amplification Property

A matrix @ has the (ex,r)-RAmMP for the residual
subspaces R, i of the signal model M if

|[Pullz < (1 + ex)5*" [|ull3
forany u € R, k and for each 1 <j < [N/K]|

Theorem: Let x be an s-model compressible signal
under a signal model M with the NAP. If @ has the

(ex,m)-RAMP and r = s — 1, then we have
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Restricted Amplification Property

A matrix P has the(ex,r) -RAmMP for the residual
subspaces R, i of the signal model M if

[Pullz < (1 +ex)5™" [|ull3
forany u € R, k and for each 1 <j < [N/K]|

Theorem: A matrix ¢ with i.i.d. subgaussian entries
has the (ex,r)-RAMP with probability 1 — e~ if
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foreach 1 < j < [N/K]

(see paper for details)



Tree-RIP, Tree-RAmMP

Theorem: An M x N i.i.d. subgaussian random
matrix has the Tree(K)—RIP with constant 6, if
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Theorem: An M x N i.i.d. subgaussian random
matrix has the Tree( /X )-RAmMP with constant if
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Simulation

Number samples for guaranteed recovery

Piecewise cubic
signals +
wavelets

Models/algorithms:
— sparse (CoSaMP)
— tree-sparse
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Conclusions

e Why CS works:  stable embedding for signals
with concise geometric structure

e Concise models require even fewer measurements
for recovery than simple sparsity models

e Model-sparse and compressible signals using
correlations between coefficient values and locations
— Can modify standard algorithms
— Can obtain robustness, recovery guarantees

— Further work: stochastic models, graphical models,
optimization-based recovery
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