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Sparsity / Compressibility 
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•  Many signals are sparse or compressible in  
some representation/basis (Fourier, wavelets, …) 



•  Sparse signal: only K out of N  
       coordinates nonzero 

–  model:  union of K-dimensional subspaces 
           aligned with coordinate axes 

Concise Signal Structure 
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Compressive Sensing 

•  Sensing with dimensionality reduction 
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Restricted Isometry Property (RIP) 
•  Preserve the structure of sparse/compressible signals 

•  RIP of order 2K implies: for all K-sparse x1 and x2 

K-planes 
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Beyond Sparse Models  

•  Sparse/compressible signal model captures  
simplistic primary structure 
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Beyond Sparse Models  

•  Sparse/compressible signal model captures  
simplistic primary structure 

•  Modern compression/processing algorithms capture  
richer secondary coefficient structure 

wavelets: 
natural images 

Gabor atoms: 
chirps/tones 

pixels: 
background subtracted 

images 



Sparse Signals 

•  Defn:  A K-sparse signal lives on the collection of  
K-dim subspaces aligned with coord. axes 



Model-Sparse Signals 

•  Defn:  A K-model sparse signal lives on a 
particular (reduced) collection of K-dim canonical 
subspaces [Blumensath and Davies] 

[Lu and Do] 

mK K-dim planes 



Model-Based RIP 
•  Preserve the structure only of sparse/compressible 

signals that follow the model 

•  Random (i.i.d. Gaussian, Bernoulli) matrix has the 
RIP with high probability if  

mK K-dim planes 
[Blumensath and Davies] 



Model-Sparse Signals 

•  Defn:  A K-model sparse signal lives on a 
particular (reduced) collection of K-dim canonical 
subspaces 

•  Recovery: Adapt standard CS recovery algorithms to 
        enforce signal model using 
       model-based sparse approximation 

[Baraniuk, Cevher, Duarte, Hegde] 



Tree-Sparse 

•  Model:  K-sparse coefficients  
+  nonzero coefficients  

 lie on a rooted subtree 

•  Typical of wavelet 
transforms 
of natural signals 
and images 
(piecewise smooth) 



Ex: Tree-Sparse 

•  Model:  K-sparse coefficients  
         +  nonzero coefficients  

     lie on a rooted subtree 

•  Typical of wavelet transforms 
of natural signals and images (piecewise smooth) 

•  Tree-sparse approx:   find best rooted subtree  
             of coefficients  

–  CSSA [Baraniuk], dynamic programming [Donoho] 

•  Number of measurements that a matrix      with i.i.d. 
Gaussian entries needs to have Tree-RIP: 



Simulation 

•  Recovery performance (MSE)  
vs. number of measurements 

•  Piecewise cubic  
signals + 
wavelets 

•  Models/algorithms: 
–  sparse (CoSaMP) 
–  tree-sparse 



Tree-Sparse Signal Recovery 

target signal  CoSaMP, 
(RMSE=1.12) 

   -minimization 
(RMSE=0.751) 

Tree-based CoSaMP 
(RMSE=0.037) 

N=1024 
M=80 



•  Sparse signal: only K out of N  
       coordinates nonzero 

–  model:  union of K-dimensional subspaces 

•  Compressible signal:    sorted coordinates decay 
     rapidly to zero 

     well-approximated  
     by a K-sparse signal 
     (simply by thresholding)   

sorted index 

Concise Signal Structure 



•  Sparse signal: only K out of N  
       coordinates nonzero 

–  model:  union of K-dimensional subspaces 

•  Compressible signal:    sorted coordinates decay 
     rapidly to zero 

     well-approximated  
     by a K-sparse signal 
     (simply by thresholding)   

–   

        nested approximations 

Concise Signal Structure 



•  Sparse signal: only K out of N  
       coordinates nonzero 

–  model:  union of K-dimensional subspaces 

•  Compressible signal:    sorted coordinates decay 
     rapidly to zero   

–  model: weak        ball: 

power-law 
decay 
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•  Sparse signal: only K out of N  
       coordinates nonzero 

–  model:  union of K-dimensional subspaces 

•  Compressible signal:    sorted coordinates decay 
     rapidly to zero   

–  model: weak        ball: 

power-law 
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RIP and Recovery 
•  Using     methods, CoSaMP, IHT 

•  Sparse signals 
–  noise-free measurements:  exact recovery  
–  noisy measurements:  stable recovery 

•  Compressible signals 
–  recovery as good as K-sparse approximation 

CS recovery 
error 

signal K-term 
approx error 

noise 



Model-Compressible Signals 

•  Model-compressible  <> well approximated 
         by model-sparse 

–  model-compressible signals lie close to a  
reduced union of subspaces 

–  i.e.:  model-approx error decays rapidly as 

•  Nested approximation property (NAP): 
model-approximations nested in that    
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Model-Compressible Signals 

•  Model-compressible  <> well approximated 
         by model-sparse 

–  model-compressible signals lie close to a  
reduced union of subspaces 

–  ie:  model-approx error decays rapidly as 

•  Nested approximation property (NAP): 
model-approximations nested in that    



Stable Model-Based Recovery 
• K-RIP:  controls amt of nonisometry of      on all 

      K-dimensional subspaces 
•  Can control norm of                  , 

account for contribution as noise 
•  Model-RIP is not sufficient for stable  

model-compressible recovery! 

optimal K-term 
model recovery 
(error controlled 

by       -RIP) 

optimal 2K-term 
model recovery 
(error controlled 

by       -RIP) 

residual subspace: 
not in model 

(error not controlled 
by       -RIP) 



Stable Model-Based Recovery 
•  Properties of model-compressible signals: 

–  Structure on sparse approximation  
also yields structure on residual subspaces 
Rj: Number of subspaces/supports that arise from growing a  

     jK-model-sparse approx. to a (j+1)K-model-sparse approx. 

–  Norm of sparse approximation residuals  
also has power law decay 

optimal K-term 
model recovery 
(error controlled 

by       -RIP) 

optimal 2K-term 
model recovery 
(error controlled 

by       -RIP) 

residual subspace: 
not in model 

(error not controlled 
by       -RIP) 



Stable Model-Based Recovery 
•  RAmP:  Restricted Amplification Property 

       controls amount of nonisometry of       
       for the residuals 

–  Still fewer subspaces than RIP, fewer measurements 
–  Can relax isometry for subsequent residual subspaces 
–  Goal: control norm of projected approximation error 

optimal K-term 
model recovery 
(error controlled 

by       -RIP) 

optimal 2K-term 
model recovery 
(error controlled 

by       -RIP) 

residual subspace: 
not in model 

(error controlled 
by RAmP) 



Restricted Amplification Property 
A matrix     has the         –RAmP for the residual 
subspaces         of the signal model      if 

for any                and for each   

optimal K-term 
model recovery 
(error controlled 

by       -RIP) 

optimal 2K-term 
model recovery 
(error controlled 

by       -RIP) 

residual subspace: 
not in model 

(error controlled 
by RAmP) 



Restricted Amplification Property 
A matrix     has the         –RAmP for the residual 
subspaces         of the signal model      if 

for any                and for each 

Theorem: Let x be an s-model compressible signal 
under a signal model      with the NAP. If     has the 
        -RAmP and                 , then we have 

(see paper for details) 
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Restricted Amplification Property 
A matrix     has the         –RAmP for the residual 
subspaces         of the signal model      if 

for any                and for each 

Theorem: A matrix     with i.i.d. subgaussian entries 
has the         -RAmP with probability             if 

for each 

(see paper for details) 



Tree-RIP, Tree-RAmP 

 Theorem:  An            i.i.d. subgaussian random 
matrix has the Tree(K)-RIP with constant      if 

 with probability   

Theorem:  An            i.i.d. subgaussian random 
matrix has the Tree(K)-RAmP with constant      if 

with probability  



Simulation 

•  Number samples for guaranteed recovery 

•  Piecewise cubic  
signals + 
wavelets 

•  Models/algorithms: 
–  sparse (CoSaMP) 
–  tree-sparse 



Conclusions 

•  Why CS works:     stable embedding for signals  
       with concise geometric structure 

•  Concise models require even fewer measurements 
for recovery than simple sparsity models 

•  Model-sparse and compressible signals using 
correlations between coefficient values and locations 
–  Can modify standard algorithms  
–  Can obtain robustness, recovery guarantees 
–  Further work: stochastic models, graphical models,  

         optimization-based recovery 

dsp.rice.edu/cs 


