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ABSTRACT

Sparse regression-based unmixing has received much atten-
tion in recent years; however, its theoretical performance has
not been explored in the literature. In this work, we present
theoretical guarantees for the performance of a sparse regres-
sion based unmixing (in short, sparse unmixing) implemented
in the form of a Lasso optimization with non-negativity con-
straints. We provide a sufficient condition required for the
exact recovery of the endmembers and validate it both theo-
retically and through experiments. In cases in which the con-
dition is not verified, we explore the performance of sparse
unmixing in relation to the exact recovery coefficient (ERC).

Index Terms— sparse regression, unmixing, non-linear
mixing, Hapke model

1. INTRODUCTION

Spectral unmixing (SU) aims at detecting the pure compo-
nents (i.e., endmembers) of mixed spectra and to estimate
endmember fractional abundances. A significant amount of
research has been developed in unmixing methods [1, 2] and,
among them, sparse regression-based unmixing (SRU) ap-
proaches have received much attention in recent years [3–6].
SRU takes the benefit of the availability of a large library (or
dictionary) of candidate endmembers, and then recovers those
contributing to the observed mixed spectra.

Previous attempts at predicting the performance of SRU
algorithms [3] have relied on theoretical results linking the
likelihood of obtaining useful sparse representations of mixed
signals to the low degree of coherence (i.e., the largest nor-
malized correlation) between the columns of the dictionary
matrix and the high degree of sparseness of the abundance
vectors (e.g., [7, 8]). While coherence can be easily com-
puted, it provides pessimistic guarantees in most cases due
to the fact that such guarantees consider all sparse signals.
This pessimism is particularly strong in hyperspectral appli-
cations, where the spectral signatures of the materials tend to
be highly correlated. As a result, to the best of our knowledge,
theoretical guarantees for the performance of SRU algorithms
have not yet been established.

In this paper, we will establish theoretical guarantees
on the performance of SRU algorithms by extending the re-
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sults in [9]. The method is based on the evaluation of the
exact recovery condition (ERC), which is used to provide
performance guarantees of sparse regression algorithms (e.g.,
lasso [10]) that are specific to a given support set. In our
application, each choice of support for the decomposition
of the observed spectra corresponds to a specific mixture of
endmembers being present. We will extend the performance
guarantees in [9] to sparse regression with nonnegative con-
straints on mixed spectra obtained by nonlinear combinations
of endmembers. While we find that the exact recovery condi-
tion (ERC) in the proposed theorems are highly demanding,
we also easily find example cases in which the ERC is not met
and SRU causes errors in endmember selection. Nonetheless,
we find that the degree to which the ERC is met is indicative
of the performance of SRU.

2. BACKGROUND: PERFORMANCE GUARANTEE
FOR LASSO

The lasso is an unconstrained optimization algorithm that reg-
ularizes a least-squares fit penalty with a sparsity-inducing
cost on the abundance vector. When applied to spectral un-
mixing, lasso searches for the endmembers that best describe
the input signal as a linear combination in a least square sense
while reducing the number of contributing endmembers. The
lasso is written as

minimize
x

1

2
‖y −Ax‖22 + γ‖x‖1, (1)

where y ∈ Rp is an input signal, A ∈ Rp×N is a matrix
whose columns corresponds possible endmembers in the dic-
tionary, and x ∈ RN is an abundance vector. An analysis of
the lasso was provided by Tropp [9] and hinges on the exact
recovery coefficient, defined as

ERC(Λ) := 1−max
n/∈Λ
‖A†ΛAn‖1, (2)

where Λ ⊆ {1, . . . , N} are indices for a subset of the columns
of A, AΛ denotes the submatrix of A containing those
columns, M† denotes the pseudoinverse of the matrix M,
and An denotes the nth column of A. Note that it is implic-
itly assumed that the columns of AΛ are linearly independent
so that the pseudoinverse exists. When the columns of A have
unit `2 norm, the condition considers the minimum angle be-
tween endmembers outside of Γ and the subspace spanned by



AΓ. Intuitively, a larger ERC is preferred because it reduces
correlation between AΓ and endmembers outside the set. The
following theorem provides performance guarantees for the
lasso that are specific to a particular support Λ.

Theorem 1 [9, Theorem 8] Let Λ index a linearly indepen-
dent collection of columns of A for which ERC(Λ) ≥ 0. Sup-
pose that y is an input signal whose `2 best approximation
aΛ = AΛA

†
Λy over AΛ satisfies the correlation condition

‖AT (y − aΛ)‖∞ ≤ γERC(Λ). (3)

Let x∗ be the solution of the lasso with parameter γ, We may
conclude the following.

• The support of x∗, denoted supp(x∗), is contained in Λ;

• the distance between x∗ and the optimal coefficient vector
cΛ = A†Λy (appropriately zero-padded) satisfies

‖x∗ − cΛ‖∞ ≤ γ‖(AT
ΛAΛ)−1‖∞,∞; (4)

• and supp(x∗) contains the indices λ ∈ Λ for which

|cΛ(λ)| > γ‖(AT
ΛAΛ)−1‖∞,∞. (5)

In words, the theorem states that if the approximation er-
ror of the input over the group Λ of columns of A is suf-
ficiently uncorrelated with all other columns of A, then the
solution of the lasso does not pick any columns outside Λ,
while picking columns corresponding to all sufficiently large
entries of the approximation coefficients for y in AΛ. In
terms of unmixing, this means that the algorithm commits no
false alarms while successfully identifying all endmembers
with sufficiently strong abundances.

3. PERFORMANCE GUARANTEE
FOR SPARSE UNMIXING

In the hyperspectral remote sensing scenario, we use a con-
strained version of Lasso (CLasso) since the abundances to
be estimated are constrained to be non-negative. The opti-
mization problem is defined by

minimize
x

1

2
‖y −Ax‖22 + γ ‖x‖1

subject to x � 0
(6)

Note that when the solution to problem (1) is nonnegative
then it is also the solution to problem (6). We exploit this
equivalence and the guarantee for the Lasso to provide the
following guarantee for CLasso, proven in [11].

Theorem 2 Let y = Aθ + e denote the input to CLasso,
where the abundance vector θ � 0 (� denoting entry-wise
inequality), Γ = supp(θ) indexes a linearly independent col-
lection of columns of A, and e represents a departure from
linearity (e.g., the effect of noise or nonlinear mixing). Let x∗

be the solution of CLasso with parameter γ. If ERC(Γ) ≥ 0,
the vector e obeys

‖ATPA⊥
Γ
e‖∞ ≤ γERC(Γ), (7)

where PA⊥
Γ

is the projector onto the orthogonal complement
of the span of AΓ, and

θΓ � γ‖(AT
ΓAΓ)−1‖∞,∞ −A†Γe, (8)

then we have that supp(x∗) = supp(θ) = Γ.

The theorem can be interpreted as follows. Under the assump-
tion of the ERC condition being met, it is possible to find
a value of γ > 0, dependent on the disturbance, for which
CLasso will successfully identify all of the endmembers in
the mixture that are sufficiently large.

The correlation condition (7) provides an insight into the
types of errors that can violate the assumptions required for
the exact recovery of endmembers. From the right hand side
in (7), the endmembers inAΓ are correctly recovered as long
as the projection of the error on the orthogonal complement
of span(AΓ) is small enough. Even if the error has a signifi-
cant components orthogonal to this subspace, the assumption
still holds as long as no other endmember in A is sufficiently
correlated to the error projection.

Noting that no assumption is made on the distribution of
errors in Theorem 2, a signal y = Aθ + e obtained by non-
linearly mixing the endmembers can be modeled via a depar-
ture e from a linear combination of the endmembers Aθ. If
such deviation is small enough to meet the conditions (7) and
(8), the endmembers are correctly recovered by CLasso, as
we will demonstrate in the next section.

4. EXPERIMENTAL RESULTS

In this section, we will verify Theorem 2 and study the gen-
eral performance of CLasso. To solve the CLasso problem,
the sparse unmixing by variable splitting and augmented La-
grangian (SUnSAL) [6] is employed.

In our experiments we are not concerned with the estima-
tion of abundances. The reason is that we will use a linear
model to reconstruct non-linearly mixed spectra. As a result,
the estimated abundances will be unequivocally biased. We
focus instead on the detection of endmembers and we eval-
uate algorithm performance using common metrics used in
detection problems. In particular, we use recall, defined by
Recall = TP/(TP + FN) and false alarm rate (FAR), de-
fined by FAR = FP/(FP + TN), where TP, FP, TN, and
FN denote true/false positive and true/false negative counts,
respectively.

4.1. Spectrum Database: Base Library
We constructed a base dataset using RELAB database [12].
We choose 360 spectra from 14 mineral classes. Each spec-
trum was acquired in the VNIR-SWIR range (300-2600 nm)
with 5 nm spectral resolution. In order to obtain the same
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Fig. 1. Performance on the dataset with 14 endmembers from
different classes.

number of spectra in each class, we mixed the elements of
each class according to a nonlinear mixing model introduced
by Hapke [13]. The resulting dataset contains 43 spectra in
each class and 14 classes.

In order to test the performance of CLasso, we select a
spectrum from the classes actinolite, gypsum, and montmoril-
lonite to form the submatrix AΓ that generates the observed
mixtures. In the following three sections, we construct the
complement dictionary AΓC in three different ways to illus-
trate our results. In all experiments, we construct test signals
y using the Hapke model. The abundances for the three end-
members used in the mixtures are sampled uniformly from the
probability simplex. In total, we generate 1000 test mixtures.

4.2. Experiment 1: Dataset with one endmember per
class

In the first experiment, we construct the AΓC library matrix
by selecting one spectrum from each of the 11 classes not
included in AΓ. The dictionary A constructed in this example
exhibits ERC = −0.6 for the support set Γ, which means
that no test spectrum y meets the assumption of the theorem
because the left hand side of the inequality (7) requires ERC
to be positive.

SUnSAL is applied to this data set with its trade-off pa-
rameter set at γ = 0.001 for best performance. Figure 1
shows the performance on this data set by showing in green
the recall and in red the FAR over the 1000 test spectra. The
first three selected endmember spectra (from the left) corre-
sponds to the correct endmembers in AΓ. Although ERC <
0, almost all true endmembers are correctly detected even
though there are some false alarms. In addition, the false
alarms appear to occur with endmembers that show higher
correlation with the spectra in AΓ as is the case of enstatite
and fayalite (similar to actinolite) and nontronite (similar to
montmorillonite).

4.3. Experiment 2: Dataset with positive ERC

In this experiment, we construct the dictionary matrix and the
synthetic mixtures so that they satisfy the sufficient condition
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Fig. 2. Performance on a dataset with positive ERC.

required by Theorem 2. We first consider the library A for
which ERC becomes positive. Unfortunately, only spectra
from the enstatite class can be added to AΓC to obtain rea-
sonable ERC, as the spectra in the base library are highly
correlated to each other. We include one enstatite spectrum in
AΓC and consider the same three endmembers from the acti-
nolite, gypsum, and montmorillonite classes in AΓ, resulting
in four endmembers in the library A. First, we assess whether
each tested spectrum fulfills the assumptions in Theorem 2.
The ERC for this dataset is 0.06 and 310 points (out of 1000)
satisfy the conditions (7) and (8). We apply SUnSAL with
γ = 0.001, and the performance is evaluated in the same way
as the last experiment and reported in Figure 2. All the spectra
that fulfill the sufficient condition of Theorem 2 are correctly
retrieved without any false alarm, while for the other points
the recall is 99% and the FAR is 1%. This result validates
the sufficiency of Theorem 2 in guaranteeing perfect detec-
tions. Furthermore, it suggests a positive correlation between
ERC and detection performance. Even if for some spectra the
(strict) conditions in the theorem are violated, a positive ERC
does result in good performance on them as well.

4.4. Experiment 3: Dataset with multiple endmembers
per class

In this experiment, we augment the library considered in Sec-
tion 4.2 by including in AΓC one additional spectrum from
each of the classes present in AΓ. 17 members are contained
in the new library. Obviously, the first condition (7) is violated
because the addition of new spectra with respect to the library
from Experiment 1 cannot increase the already negative ERC.
We discuss the performance of the CLasso on the incremented
dictionary when SUnSAL is applied with γ = 0.001. Figure 3
illustrates the performance of the CLasso. The three endmem-
bers in the fourth to sixth columns from the left are the aug-
mented spectra. It is easy to see that the these three addi-
tional endmembers are falsely detected with high probability.
However, the trend of the false detection for the other classes
is similar to that in the first experiment shown in Figure 1.
These results indicate that if we include spectra from the same
classes used to generate the test mixtures, the CLasso tends to
preferentially identify them as present in the mixtures as op-
posed to members of the other classes.
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Fig. 3. Performance on the augmented dataset with three
classes with multiple endmembers.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

R
 (

R
e

c
a

ll)

FA (False Alarm Rate)

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

R
 (

R
e

c
a

ll)

FA (False Alarm Rate)

(b)
Fig. 4. Performance of the CLasso (a) class by class, and (b)
element by element. Different curves are associated with dif-
ferent trade-off parameters γ over [1.0× 10−5, 100] at almost
fixed intervals in log-scale.

4.5. Experiment 4: Entire Base Library

The observation from Experiment 3 is important because it
can be used to explain the performance of CLasso in more
general examples with multiple endmembers per class. In
particular, we conducted an experiment using the whole base
dictionary where all possible ternary class combinations were
considered to produce test mixtures. Fifty mixed spectra were
generated for each set of three endmembers. Figure 4 shows
the overall performance of the SUnSAL algorithm. The per-
formance is measured for different values of γ correspond-
ing to each curve. SUnSAL exhibits high performance when
the detection metrics are considered on a class-by-class basis,
while the performance is noticeably poorer when it is mea-
sured on individual elements. This result reinforces the argu-
ment that most of the false alarms are committed with mem-
bers of the same classes used to generate the test mixtures.

5. CONCLUSION

In this work, we presented a theoretical performance guaran-
tee for CLasso. The performance theorem is verified math-
ematically and experimentally on mixtures from a fixed set
of endmembers. As shown in the experiments, ERC plays

an important role to infer if we can correctly detect endmem-
bers. Future work includes the development of the more re-
laxed condition for exact recovery of the endmembers for
more practical situations, and theoretical performance when
multiple endmembers are included in the library.

6. REFERENCES

[1] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente,
Q. Du, P. Gader, and J. Chanussot, “Hyperspectral Unmixing
Overview: Geometrical, Statistical, and Sparse Regression-
Based Approaches,” IEEE J. Sel. Topics Appl. Earth Obser-
vations Remote Sens., vol. 5, no. 2, pp. 354–379, Apr. 2012.

[2] R. Heylen, D. Burazerovic, and P. Scheunders, “Non-linear
spectral unmixing by geodesic simplex volume maximization,”
IEEE J. Selected Topics in Signal Processing, vol. 5, no. 3, pp.
534–542, Mar. 2011.

[3] M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Sparse Un-
mixing of Hyperspectral Data,” IEEE Trans. Geosci. Remote
Sens., vol. 49, no. 6, pp. 2014–2039, June 2011.

[4] M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Total Vari-
ation Spatial Regularization for Sparse Hyperspectral Unmix-
ing,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11, pp.
4484–4502, Nov. 2012.

[5] M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Collabo-
rative Sparse Regression for Hyperspectral Unmixing,” IEEE
Trans. Geosci. Remote Sens., vol. 52, no. 1, pp. 341–354, Jan.
2014.

[6] J. M. Bioucas-Dias and M. A. T. Figueiredo, “Alternating di-
rection algorithms for constrained sparse regression: Applica-
tion to hyperspectral unmixing,” in Proc. IEEE GRS Work-
shop Hyperspectral Image Signal Process.: Evolution in Re-
mote Sens. (WHISPERS), June 2010, pp. 1–4.

[7] D. L. Donoho and J. Tanner, “Sparse nonnegative solution
of underdetermined linear equations by linear programming,”
Proc. Nat. Acad. Sci. USA, vol. 102, no. 27, pp. 9446–9451,
July 2005.

[8] A. M. Bruckstein, M. Elad, and M. Zibulevsky, “On the
Uniqueness of Nonnegative Sparse Solutions to Underdeter-
mined Systems of Equations,” IEEE Trans. Inf. Theory, vol.
54, no. 11, pp. 4813–4820, Nov. 2008.

[9] J. A. Tropp, “Just relax: Convex programming methods for
identifying sparse signals in noise,” IEEE Trans. Inf. Theory,
vol. 52, no. 3, pp. 1030–1051, Mar. 2006.

[10] R. Tibshirani, “Regression shrinkage and selection via the
lasso,” Journal of the Royal Statistical Society B, vol. 58, no.
1, pp. 267–288, 1996.

[11] Y. Itoh, M. F. Duarte, and M. Parente, “Perfor-
mance guarantees for sparse regression-based unmixing,”
2015, Available at http://www.ecs.umass.edu/

˜mduarte/images/CLassoTR.pdf.
[12] NASA Reflectance Experiment Laboratory, “Relab spec-

tral database,” available at http://www.planetary.
brown.edu/relabdocs/relab.htm, 2014.

[13] B. Hapke, Theory of Reflectance and Emittance Spectroscopy,
Cambridge University Press, Jan. 2012.


