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Abstract—We propose a new spectral unmixing method using
a semantic spectral representation, which is produced via non-
homogeneous hidden Markov chain (NHMC) models applied to
wavelet transforms of the spectra. Previous studies have shown
that the representation is robust to spectral variability in the
same materials because it can automatically detect the diagnostic
spectral features in the training data. Therefore, our method
can successfully detect materials while automatically extracting
diagnostic features, showing high resilience to spectral variability.

Simulations indicate that our unmixing method could be
effectively used on Hapke mixtures.

I. INTRODUCTION
Spectral unmixing aims at estimating the fractional abun-

dances of pure spectral signatures (also called as endmembers)
in each mixed pixel collected by an imaging spectrometer.
Both linear [1] and nonlinear approaches [2] to unmixing
have been proposed. In many situations, the identification
of the endmember signatures in the original data set may
be challenging due to insufficient spatial resolution, mixtures
happening at different scales, and unavailability of completely
pure spectral signatures in the scene.

However, the unmixing problem can also be approached
by assuming that the observed image spectra can be expressed
in the form of combinations of a number of pure spectral
signatures known in advance (e.g., spectra collected on the
ground by a field spectroradiometer or in the laboratory from
field samples). Unmixing then amounts to finding the optimal
subset of signatures in a (potentially very large) spectral library
that can best model each mixed pixel in the scene. In particular,
approaches based on sparse regression have received attention
in the literature [3–5].

At their core, hyperspectral unmixing methods based on
sparsity assume a linear mixing model. However, several
aspects of the physical measurement introduce nonlinearities
in the mixing process. While detailed nonlinear mixing mod-
els have been proposed for specific scenarios (e.g the ones
introduced by Hapke that describes the scattering behavior of
intimate particulate mixtures Hapke [6]), in many practical sce-
narios, it is difficult to assess the specific nonlinear parametric
shape of mixed hyperspectral data clouds and a method for
detecting endmembers that does not rely on a particular mixing
model would be desirable.

Mixed spectra retain most of the diagnostic spectral infor-
mation present in the endmember spectra, and this information
can be leveraged in unmixing by identifying the endmember
only through a set of diagnostic features. Diagnostic features
are routinely manually defined by practitioners to discriminate
spectral families (e.g. the Tetracorder algorithm [7]). It would
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be desirable to automate the process of extraction of diagnostic
representations of the endmembers directly from the data.

It has been recently shown that training data in the form of
material spectra can be used to automatically identify relevant
diagnostic features [8, 9]. Specifically, a non-homogeneous
hidden Markov chain (NHMC) model can be applied to
the wavelet-domain representation of hyperspectral signatures,
which automatically detects diagnostic features of each spec-
tra in the training data set while suppressing uninformative
information. Therefore, the NHMC representation enables us
to identify materials independently of the mixtures observed,
while automatically detecting a set of characteristic features of
each material in the mixtures.

In this paper, we develop a new unmixing method using
spectral representations obtained from the NHMC model. The
model provides binary labels marking significant portions of
the spectrum, some of which are shown to be preserved by
the mixture process. We design an unmixing algorithm that
searches for such discriminating labels, and is constituted by
a set of endmember detectors. The algorithm makes therefore
no assumptions on the mixing model that generated the data.

II. NHMC-BASED SPECTRAL UNMIXING
Assuming that we have a large spectral library, we consider

the problem of detecting materials (endmembers) that are
present in each observed mixture from its spectral signature.
In our method, one detector is designed for each endmember,
making the method independent from the pre-defined number
of endmembers undergoing testing.

Our method is composed of three steps, described below,
with the last two steps being illustrated in Fig. 1.

A. NHMC Model Labeling
We begin by training NHMC models using Daubechies-

1 wavelet representations of a training set of mixture spec-
tra [8–10]. Using the learned NHMC model, we obtain binary
labels [8–10] for a set of pure and attenuated spectra of the
endmembers. Each binary label matrix has size S×N , where
S is the number of wavelet scales and N is the length of
the spectrum, and marks significant portions of the spectrum
using “large” labels (illustrated in red) for the wavelet coeffi-
cients at the corresponding bands and scales, while assigning
“small” labels (illustrated in blue) to wavelet coefficients that
correspond to non-informative regions of the spectrum.

B. Learning Endmember Features
In the second stage, we identify dominant features that

persist in the NHMC binary labels for an endmember even
as it is attenuated. For that purpose, we build a dataset
for each endmember consisting of attenuated versions of its
spectra. The attenuations are multiplicative and range between
0.1 and 1, and so the dataset includes all of the original



Fig. 1. Schematic of our algorithm. (A) illustrates the stage where learning features and (B) describes how to detect materials from observations.

endmember spectra (cf. Fig. 1(A)(a)). We then use the NHMC
model to obtain binary labels Hj

i for each one of the spectra
i = 1, 2, . . . in the attenuated dataset for the jth endmember
(cf. Fig. 1(A)(b)). The obtained labels are then aggregated
through averaging, which effectively provides the percentage
of samples among the attenuated spectra for which each label
is marked as “large”, i.e., Pj = 1

M

∑M
i=1 H

j
i , where M is the

number of samples in the attenuated endmember dataset. After
that, we normalize each matrix Pj by dividing its entries by the
value of the largest entry in the matrix. Thus, we can treat Pj

as a normalized probability matrix that provides the likelihood
of the “large” state for each wavelet coefficient among the jth
endmember dataset (cf. Fig. 1(A)(c)).

In order to focus on the prevalent discriminant features in
the endmember spectra, we consider only the labels for those
band and scale combinations whose probability of a “large”
state in Pj are larger than the specified threshold value τ ,
which are then considered as the diagnostic features for the
endmember binary labels (cf. Fig. 1(A)(d)). All other labels
with probability of “large” state lower than the threshold are
eliminated, i.e., we obtain the feature matrix P̂j = I(Pj > τ),
where I(·) is an indicator function. In words, P̂j ∈ {0, 1}S×N

is a binary matrix that encodes the set of diagnostic features
in the NHMC binary labels for an endmember.

After this thresholding, the selected labels in P̂j are

grouped into column clusters. Since spectral absorption fea-
tures span at least several channels (wavelengths), we assume
that labels close enough to each other represent a single
spectral feature and we concatenate them together. Similarly,
selected labels with less width than the narrowest absorption
feature observed in the database should be considered spurious
and be removed.

The grouping is performed by first constructing a vector of
length equal to the number of wavelengths. The i-th element
of such vector is one if the i-th column of the matrix P̂j

has at least one ”large” label, zero otherwise. Afterward,
agglomerative hierarchical clustering with single linkage [11]
is applied to this vector. The clusters are obtained by cutting
the tree so that the maximum distance in any cluster is smaller
than a threshold ρd. Additionally, clusters exhibiting widths
smaller than a threshold ρw are discarded. Fig. 1(A)(e) shows
the groups (clusters) of features resulting from this stage with
different colors.

Independently, we remove features likely to be present in
any other material class, which would cause false alarms. To
this end, we set another threshold value τR that represents
the maximum allowance of the high probability state for each
selected label in all other classes. If the probability of a “large”
state is larger than τR for a given band and scale combination
in any other class, the corresponding label is eliminated from



the feature under consideration. The outcome of this false-
alarm pruning step is a smaller set of features, as illustrated
in Fig. 1(A)(f).

Finally, the features that survive the previous step are
segmented according to the labels assigned in the grouping
step, resulting in Fj discriminative features of one material
{Fj

1, . . . ,F
j
Fj
} (cf. Fig. 1(A)(g)), where Fj represents the

number of clusters and Fj
i refers to a binary vector indicating

the ith cluster obtained from P̂j .

C. Detection of Endmembers
The NHMC labels for a mixture spectra are assumed to

have high similarity to the material’s features we introduce
because the features learned from each pure and scaled spectra
are diagnostic and preserved across many levels of concentra-
tion of the material. Based on similarity scores between these
binary arrays, we can determine the existence of each material
in the observed mixture sample.

To begin, we apply the NHMC model to the observed
spectra and obtain their binary label matrix representations
{Xn|n = 1, . . . , N}. Next, for each material, similarity scores
between the observed spectra and that material’s features are
computed by taking the matrix inner product between them (cf.
Fig. 1(B)(b)): σj

i (Xn) =
〈
Fj

i ,Xn

〉
. We collect the similarity

scores for a label matrix Xn with the jth endmember as a
vector yn = [σj

1(Xn) . . . σ
j
Fj
(Xn)].

The process described in this section may be considered
altogether as a mapping of the observed spectra into J feature
spaces, each of dimension Fj , that measure similarity with
the J given endmembers. In these mapped spaces, we apply
k-means clustering with k = 2 clusters in order to separate
observed mixtures involving the endmember from those that
do not. After the two clusters are obtained, the cluster whose
centroid has larger norm has its samples labeled as “material
present”, while the samples of the other cluster are labeled
“material absent”.

III. EXPERIMENTS
To evaluate the performance of our algorithm, we generate

several synthetic spectral mixtures according to a simple ver-
sion of the Hapke model called the isotropic multiple scattering
approximation (IMSA) [6] and we attempt at detecting the end-
member using a library of pure mineral spectra. We compare
the performance of our algorithm with that of the SUnSAL
algorithm [12] applied to the same dataset. We have identified
SunSAL as a direct competitor due to its use of a dictionary
of spectra for unmixing and to the fact that, although it uses
a linear mixing model, it is robust to small nonlinearities [3].
Data clouds generated by the IMSA model have been shown
to exhibit only very moderate nonlinearities [13].

A. Performance Metrics
To evaluate the performance of the unmixing algorithms,

we use two different measures: recall and false alarm rate
(FAR), defined as R = TP

TP+FN , FA = FP
FP+TN where TP

and FP are the number of true and false positives, respectively,
and TN and FN are the number of true and false negatives,
respectively. These metrics are computed for the detectors of
materials present in the scene and their average is used as a
performance metric for the different unmixing schemes in our
experiments.

B. Nonlinear Mixtures with Hapke Model
Our experiment considers a synthetic dataset created by

Hapke mixtures model [6]. We extracted 599 spectral sig-
natures with 24 classes in total from the RELAB spectral
database1. We model our experiments under the assumption
that we have some discrepancy between endmembers in the
observations and in the library; usually, it is seldom the case
to observe the same instance of a spectrum for a material in the
endmember library and in the scene. Under such assumption,
we divide the available data into two sets (endmember and
scene) so that elements in the endmember library and the
observations for each mineral class are maximally different.
For this purpose, we apply k-means clustering with k = 2
using cosine distance to each mineral class to maximize the
discrepancy. The resulting endmember set used for training has
357 samples, while the test set used for constructing mixtures
has 242 samples.

Once the test set is obtained, we construct three differ-
ent subsets from it containing three endmembers each, and
generate 2000 mixtures from each subset according to IMSA
model; we thus obtain 6000 synthetic IMSA mixtures without
any noise. To mimic the variability of endmembers in the
same mineral class, we constructed different endmembers by
IMSA mixtures of the samples in the same mineral classes
instead of selecting the endmembers from the library directly.
The abundances in each mixture are generated according to
a symmetric Dirichlet distribution of order K = 3 with
concentration parameter α = 1. All the RELAB spectra in this
experiment were acquired incident i and emission e angles of
30◦ and 0◦ respectively. We set the same values for i and e
of the IMSA mixtures.

We apply the proposed NHMC-based endmember detection
method and the SUnSAL algorithm to each synthetic mixture.
We assume the exact mineral classes are obtained by an oracle
dictionary pruning method before applying either unmixing
method.

In a first experiment, we investigate the performance of
our proposed method and SUnSAL and search for the best
parameter values over fixed ranges. For our method, τ and τR
are searched in [0.1 : 0.1 : 1.0]. Additionally, we set ρd = 4
and ρw = 5. The SUnSAL trade-off parameter λ, which
controls the sparsity of the result, is searched in the exponential
range 10[−5:1:2]. Figures 2 and 3 show the performance for
the two unmixing approaches. Figure 2 demonstrates the
performance curve of SUnSAL as λ varies. Broadly, it can be
seen that R decreases and FA increases as λ increases, and
vice versa. When we define the optimal point as the closest
point to the upper left corner of the figure, the optimal value
obtained by SUnSAL is R = 0.80 and FA = 0.23, at λ = 0.1.
Similarly, Figure 3 presents the performance curves of the
proposed method for different values of τR, with τ fixed for
each curve. The defined optimal point obtained by our method
is R = 0.83 and FA = 0.20 at τ = 0.7 and τR = 0.7, which
shows a slight improvement over that obtained from SUnSAL.

An important observation is that the proposed binary rep-
resentation is robust with respect to the spectral variability
present in each mineral class. We calculate the separation
between the training and test subset clusters for all the mineral
classes in the original space and in the space of the NHMC

1RELAB Spectral Database: Copyright 2008, Brown University, Provi-
dence, RI.; All Rights Reserved
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Fig. 2. Performance curve of the SUnSAL
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Fig. 3. Performance curve of our method: each curve is drawn with τ fixed.
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Fig. 4. Top: Spectra of Alunite and Olivine in the endmember library; bottom:
their diagnostic features detected by the NHMC model.

labels. The separation was defined as the ration of the sum
of the within cluster distances and the sum of the between
cluster distances. We observed that well separated training
and test clusters in the original space are mostly overlapping
in feature space (for example for kaolinite the separability
measure was 11.01 in the original space and 0.7 in feature
space, for actinolite 21.51 and 2.89).

IV. DISCUSSION ABOUT SPECTRAL FEATURES
Our method returns diagnostic features of each endmember

as byproducts, which make it easy for practitioners to interpret

the physical characteristics of each material. Fig. 4 shows di-
agnostic features of alunite and olivine detected by our method
that persist through the mixing process. Our method seems to
succinctly detect discontinuities and slopes of each mineral.
More specifically, it detects the same diagnostic features of
alunite around 2.2 − 2.4µm regions as the ones defined by
geologists in the Tetracorder.

V. CONCLUSION
We demonstrate a new spectral unmixing method using

a new semantic representation. The simulation in which we
mimic the real condition shows that our method yields slightly
better detection performance compared to a state-of-the-art
method. This fact indicates that the underlying model has a
possibility to successfully determine discriminative features of
the spectra and we could use them for unmixing problems.
Further investigation is needed to improve the performance.
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