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ABSTRACT

We consider the application of non-homogeneous hidden
Markov chain (NHMC) models to the problem of hyperspec-
tral signature classification. It has been previously shown that
the NHMC model enables the detection of several seman-
tic structural features of hyperspectral signatures. However,
there are some aspects of the spectral data that are not fully
captured by the proposed NHMC models such as the rela-
tively smooth but fluctuating regions and the fluctuation ori-
entations. In order to address these limitations, we propose an
improved NHMC model based on Daubechies-1 wavelets in
conjunction with an increased the model complexity. Exper-
imental results show that the revised approach outperforms
existing approaches relevant in classification tasks.

Index Terms— Classification, Hyperspectral Signal
Processing, Wavelet, Hidden Markov Model

1. INTRODUCTION

The identification of ground materials from hyperspectral im-
ages often requires comparing the reflectance spectra of the
image pixels, extracted endmembers, or ground cover exem-
plars to a library of spectra obtained in the laboratory from
well characterized samples. Practitioners recognize several
semantic structural features in the spectral curves of each ma-
terial as “diagnostic” or characteristic of its chemical makeup,
such as the position and shape of absorption bands. Sev-
eral approaches like the Tetracorder [1] have been proposed
to encode the aforementioned semantic information. How-
ever, such techniques rely on ad-hoc rules to characterize in-
stances of each material and require the creation of new rules
for additional spectral species which were not previously an-
alyzed. While automatic techniques for spectral matching
(overviewed in [2]) aim to discriminate spectral shapes with-
out hard-coded rules, they do not encode the aforementioned
semantic information.

Parente and Duarte [3,4] have previously proposed a
non-homogeneous hidden Markov chain (NHMC) model that
implements semantic information extraction from hyperspec-
tral signals by encoding the wavelet-domain representations
of the spectra into binary features using a two-state zero-mean
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Gaussian mixture model (GMM). The model enables the ex-
traction of semantic information without relying on ad-hoc
rules. The interpretation of unknown spectra is based on train-
ing data obtained automatically from the library. The NHMC
model encodes the structural information in the wavelet de-
composition of all library spectra into a set of discrimina-
tive features. Experimental results show that the model per-
forms well in characterizing diagnostic features in mineral re-
flectance spectra like the positions/widths of their absorption
bands.

However, the definitive success and widespread diffu-
sion of this technique is determined by the degree to which
we can characterize all relevant structural features of the spec-
tra observed. Our focus in this paper is to review cases in
which certain structural features are not properly character-
ized by the current NHMC model, which is seen to negatively
affect the performance of spectral classification from NHMC-
derived features. In the following sections, we show that
binary features generated by the previously proposed model
exhibit limited sensitivity to slow-varying fluctuations in re-
flectance spectra. We therefore propose the use of lower-
order wavelet functions that introduce the desired sensitivity
of the model to such fluctuations. Additionally, we increase
the complexity of the signal model in order to improve the de-
tectability of such subtler structural information of reflectance
spectra.

2. BACKGROUND

The capability of wavelet coefficients to characterize signal
discontinuities at different scales and positions makes wavelet
transforms a popular tool in many signal processing appli-
cations. Parente and Duarte [3, 4] exploited multi-resolution
wavelet decompositions to detect the presence of diagnostic
absorptions in reflectance spectra. We provide a summary of
the approach below and point the reader to [3, 4] for additional
detail.

More specifically, we use the undecimated wavelet
transform (UWT) of an N-sample signal z € RY, which
is composed of wavelet coefficients w; . Each coefficient is
labeled by a scale s € {1,...,S} and offset n € {1,..., N},
where S < NV, and is defined using inner products as w; ,, =
(x, @s,n), Where @5, denotes the mother wavelet function
¢ dilated to scale s and translated to offset n: @, jn) =



d((n—j)/s)/+/s. Low values of s correspond to fine scales,
while large values of s correspond to coarse scales.

Until now, several hyperspectral classification methods
based on wavelet transforms have been proposed. However,
most classification approaches do not exploit the statistics of
the wavelet coefficients observed [5—7]. Crouse et al. [8] pro-
posed the application of hidden Markov trees (HMTs) to the
construction of statistical models of dyadic wavelet coeffi-
cients. The HMT uses two-state mixture of gaussian models
for wavelet coefficients to provide a binary coefficient label-
ing scheme, grouping them into large and small-magnitude
classes. Such models are used for hyperspectral classifica-
tion in [9], which uses HMTs trained on individual classes to
evaluate the likelihood of the spectrum observed under each
class. The use of multiple HMT models can significantly in-
crease the computational complexity of the training, as well
as the potential for overfitting.

Inspired by HMTs, Parente and Duarte [3,4] proposed
a non-homogeneous hidden Markov chain (NHMC) to model
the UWT coefficients of reflectance spectra. In contrast to
HMTs, the UWT provides a separate NHMC for each off-
set, since each wavelet coefficient has only one parent and
one child (if they exist). A NHMC is trained on each of
the IV wavelengths sampled by the hyperspectral sensor sep-
arately. Training is performed via an expectation maximiza-
tion (EM) algorithm that maximizes the likelihood of a li-
brary of training data given the model parameters. The set
of NHMC parameters 6,, include the probabilities for the first
hidden states, the state transition matrices, and the variances
of the Gaussians in each GMM; these parameters are distinct
for each wavelet coefficient.

Given the model, the observation is translated into a set
of state labels {S; ,,} that encode the mixture used in each
two-state GMM, obtained via a Viterbi algorithm [8, 10] that
employs the Gaussian parameters and transition probabilities
in 6,,. Such labels are used as features for classification via a
basic nearest neighbor approach.

3. PROPOSED MODIFICATIONS

The NHMC model proposed in [3,4] is based on the
Daubechies-4 wavelet. The characteristics of this wavelet
make it very attractive in detecting higher order discontinu-
ities at different scales. On the other hand, slow-varying fluc-
tuations and slopes are generally overlooked. Consider the
example in Figure 1, where the top row represents two spec-
tra exhibiting gently sloping features, while the middle row
shows the undecimated Daubechies-4 wavelet coefficient ma-
trix of the spectra. The Daubechies-4 wavelet transform of
such signals is sensitive to higher order fluctuations (e.g., the
rapid change of slope around 0.9m and the small discontinu-
ities after 2um in the second spectrum); however, this wavelet
does not express the differences between the spectral slopes
in the ranges 0.5—0.8um and 1 —1.5pm, as shown in the mid-
dle row of Figure 1. Note that the most significant differences
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Fig. 1. Top row: Normalized reflectance spectra of two material
samples from the Augite mineral family. Middle row: Correspond-
ing UWT coefficient arrays (S = 10) using a Daubechies-4 wavelet.
Bottom row: Corresponding UWT coefficient arrays (S = 10) using
a Daubechies-1 wavelet. In both cases, small/large coefficient values
are shown in blue/red.

in the spectra are not reflected in the Daubechies-4 wavelet
coefficients. In other words, the Daubechies-4 wavelet can-
not fully characterize the structural information of these two
reflectance spectra. Nonetheless, we can find that in the two
Daubechies-1 wavelet coefficient arrays, the differences be-
tween the spectra are captured. The Daubechies-1 wavelet
coefficients encode the drastic fluctuation around 0.9um as
well as the small discontinuities after 2um in the second spec-
trum. Additionally, the relatively smooth fluctuations like
those between 1 — 1.5um in the first spectrum and those be-
tween 0.5 — 0.8um in the second spectrum are captured by
the wavelet coefficient arrays.

The Daubechies-1 wavelet is the simplest possible com-
pact wavelet with the properties of square-like shape and dis-
continuity [11]. These two properties enable the Daubechies-
1 wavelet to detect both slow-varying fluctuations and sud-
den changes in a signal [12]. The bottom row of Figure 1
shows that, in contrast from Daubechies-4, the Daubechies-
1 wavelet transform captures the gently sloping fluctuations
in the spectra. It is easy to show that the magnitude of the
Daubechies-1 wavelet coefficients is proportional to the slope
of the spectra. Furthermore, the sign of these coefficients cap-
ture whether the reflectance increases or decreases as a func-
tion of wavelength.

As a second consideration, note that the papers [3,4]
use a two-state zero-mean GMM to model the distribution of
the observed wavelet coefficients because such a mode, when
used with higher-order wavelets, distinguishes between sharp
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Fig. 2. Top left: example of normalized mineral reflectance spec-
trum (Almandine). Top right: corresponding UWT coefficient array
(S = 10) using a Daubechies-1 wavelet. Negative/positive coeffi-
cient values are shown in blue/red; darker shades represent larger
magnitudes. Bottom left: corresponding label array from a NHMC
model using a zero-mean two-state GMM. Red represents fluctua-
tions, while blue represents smooth regions. Bottom right: corre-
sponding label array from a NHMC model using a zero-mean three-
state GMM. Red/green represents drastic/smooth fluctuation, while
blue represents smooth regions.

absorption bands and flat regions in a spectrum by assigning
them large and small state labels, respectively. A straight-
forward improvement of the model consists of increasing the
number of state labels (i.e. three or more) to represent in-
termediate level fluctuations, which were found to have in-
fluence on classification accuracy. This modification is par-
ticularly important for Daubechies-1, which is sensitive to a
larger range of fluctuation frequencies than Daubechies-4 but
with a lower discriminative power.

As a third consideration, in order to eliminate the differ-
ences between spectra caused by illumination conditions [13],
we perform normalization on the whole database by dividing
each reflectance spectrum by its maximum value. As a re-
sult of the normalization of the spectra in the database before
applying the wavelet transform, the impact caused by small
discontinuities (i.e., noise) might be enlarged, especially for
some relatively flat spectra like galena. Such effect can be
reduced by performing denoising on the normalized spectra.
We use soft thresholding denoising [14], a technique that ap-
plies a threshold on the maximum value of the signal coef-
ficients and that is commonly applied to wavelet representa-
tions.

Figure 2 shows an example of the Daubechies-1 wavelet
coefficients and labels corresponding to the proposed modi-
fications for an example spectrum of the mineral almandine.
The figure shows that the presence of additional states allows
for a finer characterization of the slopes of the spectra, includ-
ing the subtle features present after 1.5pm.

4. EXPERIMENTAL RESULTS

We expand on the original classification experiments in [3,
4] by increasing the spectral complexity of the classification.
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Fig. 3. CV classification rates of different NHMC modeling ap-
proaches. Daubechies-1 wavelets with denoising consistently pro-
vides the best performance, with 4 GMM states providing best over-
all success rate.

We sample reflectance spectra from the USGS remote sensing
database at AVIRIS wavelengths, totaling 244 samples with
26 spectral classes, including reflectance spectra of minerals,
vegetation, and other materials. Each category contains at
least 5 samples.

We compare NHMC models with a numbers of GMM
mixtures/states varying from one to seven. We first randomly
separate the database into a training set (including 197 sam-
ples with each category containing no less than 4 samples)
and a test set (including 47 samples with each category con-
taining no less than 1 sample). In order to evaluate the per-
formance of different NHMC models, we implement a 4-fold
cross validation (CV) on the training set. We use three folds
at a time to generate the parameters of the NHMC model.
Then we use the Viterbi algorithm to obtain the correspond-
ing state labels for both the training and test set and use near-
est neighbor classification (via Hamming distance on the state
labels) on the remaining fold to evaluate which of the models
obtained by varying the number of states and by considering
or not the wavelet signs achieves the highest (average) CV
classification accuracy. Finally, we select the best perform-
ing model (in terms of the CV performance) and train it on
the entire training set. We then use nearest neighbor classifi-
cation (via Hamming distance on the state labels) on the test
set to evaluate the models’ generalization performance. For
denoising, we performed a line search for the threshold value
that provided best performance in our spectral matching task,
finding it to be 7 = 0.05.

Our experimental results are shown in Figure 3. Over-
all, the classification accuracy for NHMC models using the
Daubechies-1 wavelet are higher than that of Daubechies-4.
The model achieving the highest classification rate (94.9%)
uses the Daubechies-1 wavelet with denoising.

Figure 4 shows example classification features for spec-
tral signatures using the Daubechies-4 and Daubechies-1
wavelets in the case of GMM with 3 states. The top row
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Fig. 4. Comparison of label-based classification using NHMC with three states and Daubechies-1 and Daubechies-4 wavelets. Top row:
Spectrum being tested. Middle row: Nearest neighbor of top row spectrum in the whole training set in Hamming distance. Bottom row: Near-
est neighbor of top row spectrum in the same class in Hamming distance. Left column: Normalized spectra. Middle column: Corresponding
state label arrays to the normalized spectra using Daubechies-4 wavelet. Right column: Corresponding state label arrays to the normalized

spectra using Daubechies-1 wavelet.

shows an example spectrum, the middle row shows the clos-
est spectrum in state label space with Daubechies-4 wavelets,
and the bottom row shows the closest spectrum in state label
space with Daubechies-1 wavelets. From the state label ar-
rays, we can see that as expected the Daubechies-4 wavelet is
sensitive to compact and drastic discontinuities, while show-
ing little response to slow-varying fluctuations. For example,
the Daubechies-4 wavelet coefficients are quite sensitive to
the small but drastic fluctuation near 1um in all the 3 spec-
tra. However, note that all three spectra receive similar la-
bels in the 0.5 — 2um range; these are important structural
features in such kind of material (hematite), and their differ-
ences are not discriminated in the corresponding Daubechies-
4 state label arrays. Thus, the Daubechies-4 wavelet does
not fit this classification task. In contrast, the labels obtained
for the Daubechies-1 wavelet coefficients using three states,
shown in the third column, are able to discriminate between
the structures of the first and third spectra and that of the sec-
ond spectra by endowing them with different label arrays.
Therefore, we deduce that the state labels of Daubechies-1
wavelet successfully characterizes the shape of these spectra.

In our final test, we compare the generalization per-
formance of the best NHMC model (4 states, Daubechies-1
wavelet, with denoising), which achieved a classification ac-
curacy of 91.5%, with other spectrum matching approaches.
The first competitor approach is the one introduced in [5]. The

method calculates a 10-level undecimated wavelet decompo-
sition of the database spectra then generates a signature by
combining the wavelet coefficients of the 6 finest scales at
each wavelength. This amounts to removing the continuum
of a spectrum while only considering the most essential struc-
tural features of the spectral curve. We evaluate the method
by finding the nearest neighbor in the training set for each test
spectrum but in this case we use cosine distance as similarity
measurement. The classification accuracy is 85.1%. We also
evaluate other spectral matching approaches that operate on
the spectra themselves. Four similarity measures (reviewed
recently in [2]): spectral angle measure (SAM), euclidean
distance measure (ED), spectral correlation measure (SCM)
and the spectral information divergence (SID) are evaluated
with the same approach as above. The classification rates are
80.9% for SAM, ED and SCM and 83.0% for SID.

5. CONCLUSIONS AND FUTURE WORK

We improved the previously proposed non-homogeneous hid-
den Markov chain model by leveraging the Daubechies-1
wavelet, increasing number of Gaussian mixture model states,
and denoising the spectra used in training and testing. The
model outperformed some classic approaches in the case of
material classification tasks. Further work will expand the
size of database in order to provide enough number of spectra
thus decreasing the randomness in experimental results.
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