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Hyperspectral Imaging

One signal/image per band

Hyperspectral datacube

Spectrum at each pixel represents 
composition/physical state of subject

(remote sensing, industrial process monitoring, etc.)



Hyperspectral Signatures

• Encode reflectivity of material surface over a 
variety of wavelengths of light (100+)

• Differences evident between materials/minerals of 
different classes; more subtle within a class

• Signature fluctuations used in ad-hoc fashion for 
material identification

• Positions and shapes provide identifiability

Igneous minerals Carbonate minerals Phyllosilicate minerals (clays)



Hyperspectral Classification
Absorption Bands

• Tetracorder: List of 
rules to identify 
spectra by shape

• Rules can be 
arbitrarily 
complicated

• New rules must be 
created for new 
materials

• “Difficult” cases need 
experienced analyst



Hyperspectral Classification

[Clark et al., USGS 2003]
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Hyperspectral Classification

INTRODUCTION BACKGROUND METHODOLOGY RESULTS CONCLUSIONS AND FUTURE WORK

DIAGNOSTIC INFORMATION EXTRACTION
I fit scaled library spectrum in specific

ranges to unknown spectrum
I identification by complicated rules
I need new rules for spectra non in

library
I The ”difficult” cases need

experienced analyst

group 2 # algorithm: featfit1
# input library reference
spectrum #=TITLE=Alunite
GDS83 Na63
# channels to exclude (global
variable) Alunite GDS83 Na63
# 2 spectral features, 0 not
features Dw 2.048 2.078 2.247
2.277 ct .04
# continuum wavelengths,
threshold (ct) Dw 1.466 1.476
1.535 1.555 ct .05
# continuum wavelengths,
threshold (ct) FITALL > 0.5
# fit thresholds: if below 0.5,
reject[Clark et al., USGS 2003]

• Tetracorder: List of 
rules to identify 
spectra by shape

• Rules can be 
arbitrarily 
complicated

• New rules must be 
created for new 
materials

• “Difficult” cases need 
experienced analyst



Hyperspectral Classification

• Specialized distance 
metrics: spectral 
angle mapper, spectral 
divergence, etc.
• aim to match shapes 
• sensitive to 

additional variations 
in signal from 
sample to sample

• How to successfully 
capture fluctuations in 
punctuated, 
piecewise smooth 
signals?



Continuous Wavelet Transform

• CWT of a spectrum x(f),             , 
composed of wavelet coefficients 
       at scales s = 1, ..., S, offsets 
u = 0, F/N, 2 F/N, ..., F-F/N : 

• Mother wavelet dilated to scale 
s and translated to offset u:

• Coefficient       acts as a “detector” of fluctuations 
of scale s at location f = u
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Continuous Wavelet Transform

• Organize        in a 2-D 
array               : 
rows are scales, 
columns are offsets.  

• For simplicity, offset 
u = nF/N matched to 
index n = 0, 1, ..., N-1 

• Wavelengths     for 
indices n shown

• Columns of matrix 
representation give 
chains of parent/child 
wavelet coefficients

Offsets
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Structure of CWT Coefficients

Sparsity
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Structure of CWT Coefficients

Persistence
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Non-Homogeneous
Hidden Markov Chains

• Stochastic model to encode structure of CWT coefficients
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Non-Homogeneous
Hidden Markov Chains

• Stochastic model to encode structure of CWT coefficients
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Non-Homogeneous
Hidden Markov Chains

• Stochastic model to encode structure of CWT coefficients

s
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State: Large, Small

Value: State-dependent zero-mean Gaussian distribution

+
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Non-Homogeneous
Hidden Markov Chains

• Stochastic model to encode structure of CWT coefficients
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Non-Homogeneous
Hidden Markov Chains

• Stochastic model to encode structure of CWT coefficients

s

1

2

3

4

5
...

+

State: To obtain persistence, favor progressions
           
Value: To obtain decay, reduce variances across scales



Modeling Hyperspectral Datasets

• Why use continuous/
undecimated wavelets?
So that information at each 
scale is available for each 
wavelength

• Why separate chains for 
each spectra?
Because the “size” of a 
relevant fluctuation is 
relative to wavelength 
(e.g., absorption bands 
appearing in all 
spectra)
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Modeling Hyperspectral Datasets

• Collect representative 
(universal) library of 
hyperspectral signatures 
(e.g. USGS for minerals)

• Extract CWT coefficients for 
each hyperspectral 
signature; collect into 2-D 
array

• Train an NHMC on each of 
the N wavelengths (array 
columns) over the spectral 
library

50 100 150 200 250 300

2
4
6
8

0.5 1 1.5 2
0.1

0.15
0.2

0.25

Wavelength, µm

R
ef

le
ct

an
ce



Samples

Sc
al
es

50 100 150 200 250 300

2
4
6
8

Modeling Hyperspectral Datasets

• Using learned NHMC 
model, generate 
state probabilities/
labels for each 
hyperspectral 
signature in library

• State labels provide 
binary information on 
“interesting” parts of 
the signal

• Use as features in 
hyperspectral 
signature processing 
(e.g., classification)
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ID of Spectrum

it shows very low abundances for LCP (Fig. 5) likely due to the
very low reflectance and lack of spectral features as discussed in
the previous section.

Fig. 6 shows the abundances of jadeite, orthoclase, and talc
predicted by unmixing the powder spectra of the 29 minerals.
The coarse powders of these three minerals showed the highest
abundances of these minerals when estimated from reflectance
(Fig. 5: open circles, jadeite ID5, orthoclase ID17, and talc
ID28). To clarify, the results in Figs. 5 and 6 are from the same
linear unmixing analysis. Fig. 5 presents results for 29 samples
(coarse and fine), displaying the abundance result for only the
mineral endmember matching the mineral ID of the powder
(e.g. ednmember 5 for unmixing powder of mineral ID5). Fig. 6
presents the abundances of three minerals predicted when un-
mixing powders of all 29 minerals. One would expect high
abundances for these three minerals when unmixing powders of
these same minerals and low abundances for all other minerals.
However, the abundances estimated from the reflectance data
are highly variable for all three minerals (Fig. 6a,b) with mul-
tiple powders of other minerals ID's showcasing abundances in

excess of 0.5 for all three minerals. With the exception of the
coarse jadeite powder the highest abundance is predicted for
another mineral. It would therefore be misleading to label the
mineral powder based on the endmember with highest abun-
dance. This a commonly used operation and it would lead to
misclassification. The problem is particularly evident for the
fine powders (Fig. 6b). In contrast, the use of LCP leads to
estimates that uniquely assign the highest abundance of a given
mineral to the correct mineral powder spectra (e.g. N0.8 for each
of the three minerals) (Fig. 6c,d). Abundances of these three
minerals estimated for powders of other minerals do not exceed
0.2. This observation applies to fine and coarse powders and
implies that errors in classification would be greatly reduced
irrespective of grain size. The results observed for jadeite,
orthoclase, and talc can be generalized to the 29 minerals
investigated (Fig. 7). For every mineral the estimates obtained
using the LCP show highest values for the correct mineral and
the mean abundance of all other minerals is close to 0%.
(Fig. 7b), a great improvement over results obtained from
reflectance (Fig. 7a).

Fig. 8. Mineral identification results of SAM from 56 USGS spectra of 12 minerals from 0.45–2.5 μm: (a) reflectance; (b) LCS; and (c) LCP.

2859B. Rivard et al. / Remote Sensing of Environment 112 (2008) 2850–2862

Example: Mineral Classification

• USGS spectral library 
with 57 clay samples 
from 12 classes 
[Rivard et al., 2008].

• One prototype/
endmember per class, 
classify rest by 
nearest-neighbor 
(NN) to prototypes. 

• Classification errors 
are points that deviate 
from diagonal.  

[Rivard et al., 2008] 89%

NHMC 95%
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The Power of “Big Data”

• Statistical modeling of 
coefficients across 
spectral sample 
provides measures 
of relevance of 
bands/smooth regions

• Model parameters can 
provide “map” of 
relevant scales, 
spectral bands, etc. 
for training dataset

0.5 1 1.5 2
0.1

0.15
0.2

0.25

Wavelength, µm

R
ef

le
ct

an
ce

Samples

Sc
al
es

50 100 150 200 250 300

2
4
6
8



Wavelength, µm

W
av

el
et

 S
ca

le
mL

2/mS
2, training with all ENVI minerals

 

 

0.5 1 1.5 2 2.5

2
4
6
8

5

10

Wavelength, µm

W
av

el
et

 S
ca

le

mL
2/mS

2, training with ENVI clays only

 

 

0.5 1 1.5 2 2.5

2
4
6
8

5

10

The Power of “Big Data”

1 = equal states



Wavelength, µm

W
av

el
et

 S
ca

le
Probability of small state, training with all ENVI minerals

 

 

0.5 1 1.5 2 2.5

2
4
6
8

0

0.5

1

Wavelength, µm

W
av

el
et

 S
ca

le

Probability of small state, training with ENVI clays only

 

 

0.5 1 1.5 2 2.5

2
4
6
8

0

0.5

1

The Power of “Big Data”

Sparsity
A
m

bi
gu

ity Fine Scale Info



The Power of “Big Data”
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it shows very low abundances for LCP (Fig. 5) likely due to the
very low reflectance and lack of spectral features as discussed in
the previous section.

Fig. 6 shows the abundances of jadeite, orthoclase, and talc
predicted by unmixing the powder spectra of the 29 minerals.
The coarse powders of these three minerals showed the highest
abundances of these minerals when estimated from reflectance
(Fig. 5: open circles, jadeite ID5, orthoclase ID17, and talc
ID28). To clarify, the results in Figs. 5 and 6 are from the same
linear unmixing analysis. Fig. 5 presents results for 29 samples
(coarse and fine), displaying the abundance result for only the
mineral endmember matching the mineral ID of the powder
(e.g. ednmember 5 for unmixing powder of mineral ID5). Fig. 6
presents the abundances of three minerals predicted when un-
mixing powders of all 29 minerals. One would expect high
abundances for these three minerals when unmixing powders of
these same minerals and low abundances for all other minerals.
However, the abundances estimated from the reflectance data
are highly variable for all three minerals (Fig. 6a,b) with mul-
tiple powders of other minerals ID's showcasing abundances in

excess of 0.5 for all three minerals. With the exception of the
coarse jadeite powder the highest abundance is predicted for
another mineral. It would therefore be misleading to label the
mineral powder based on the endmember with highest abun-
dance. This a commonly used operation and it would lead to
misclassification. The problem is particularly evident for the
fine powders (Fig. 6b). In contrast, the use of LCP leads to
estimates that uniquely assign the highest abundance of a given
mineral to the correct mineral powder spectra (e.g. N0.8 for each
of the three minerals) (Fig. 6c,d). Abundances of these three
minerals estimated for powders of other minerals do not exceed
0.2. This observation applies to fine and coarse powders and
implies that errors in classification would be greatly reduced
irrespective of grain size. The results observed for jadeite,
orthoclase, and talc can be generalized to the 29 minerals
investigated (Fig. 7). For every mineral the estimates obtained
using the LCP show highest values for the correct mineral and
the mean abundance of all other minerals is close to 0%.
(Fig. 7b), a great improvement over results obtained from
reflectance (Fig. 7a).

Fig. 8. Mineral identification results of SAM from 56 USGS spectra of 12 minerals from 0.45–2.5 μm: (a) reflectance; (b) LCS; and (c) LCP.

2859B. Rivard et al. / Remote Sensing of Environment 112 (2008) 2850–2862

Example: Mineral Classification

• Same example as 
before, but subset of 
labels selected 
according to three 
“discriminability” 
criteria

• For all metrics used, 
classification 
performance matches 
that obtained with all 
labels (95% success 
rate)

[Rivard et al., 2008] 89%

NHMC 95%



Conclusions
• Goal: design hyperspectral signal models and features 

that can capture semantic information used by 
practitioners in remote sensing
– relevance of absorption bands in tasks, e.g., classification
– multiscale analysis studies a variety of spectral features
– robustness to fluctuations in shape and location of bands 

• Stochastic models (Non-Homogeneous Markov Chain) 
enable robust identification of relevant features
– adaptive sampling, spectral sampling rate adjustments
– identify non-informative absorption bands, universal features

• Future work:
– Hyperspectral image applications: segmentation, unmixing, ...
– Study robustness to signature fluctuations (lab & field datasets)

http://www.ecs.umass.edu/~mduarte       
mduarte@ecs.umass.edu


