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Hyperspectral Imaging

One signal/image per band

Hyperspectral datacube

Spectrum at each pixel represents
composition/physical state of subject
(remote sensing, industrial process monitoring, etc.)
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e Encode reflectivity of material surface over a

variety of wavelengths of light (100+)

e Differences evident between materials/minerals of
different classes; more subtle within a class
e Signature fluctuations used in ad-hoc fashion for

material identification
e Positions and shapes provide identifiability



Hyperspectral Classification
Absorption Bands

e Tetracorder: List of
rules to identify
spectra by shape

e Rules can be
arbitrarily
complicated

e New rules must be
created for new
materials

¢ "Difficult” cases need

experienced analyst

Reflectance

1

----------------------------------

tron

— Saponite

—~+»— Nontronite !

—— Mophtriiortlionite ;
I ——+ Serpent ne

1

[ b
1.0 1.2 14 16 1.8 2.0 2.2 24 2.6

Wavelengths (um)



Hyperspectral Classification

e Tetracorder: List of
rules to identify
spectra by shape

e Rules can be
arbitrarily
complicated

e New rules must be
created for new
materials

¢ "Difficult” cases need
experienced analyst

[Clark et al., USGS 2003]
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Hyperspectral Classification

e Tetracorder: List of
rules to identify
spectra by shape

e Rules can be
arbitrarily
complicated

e New rules must be
created for new
materials

¢ "Difficult” cases need
experienced analyst

[Clark et al., USGS 2003]

group 2 # algorithm: featfitl

# input library reference
spectrum #=TITLE=Alunite
GDS83 Na63

# channels to exclude (global
variable) Alunite GDS83 Na63

# continuum wavelengths,
threshold (ct) FITALL > 0.5

# fit thresholds: if below 0.5,
reject




Hyperspectral Classification

e Specialized distance
metrics: spectral .

angle mapper, spectral
. B —_ Mpntmorillbnlte
divergence, etc. 0-9_- -;g; e —H S6rpERine
e aim to match shapes ' f -\ [TKddinie:
e sensitive to
additional variations
in signal from
sample to sample
e How to successfully
capture fluctuations in
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Continuous Wavelet Transform

e Mother wavelet dilated to scale
s and translated to offset wu:

Vel f) = = (f . “)

e CWT of a spectrum x(f), f € [0, F],

composed of wavelet coefficients
ws ., at scales s =1, ..., S, offsets

w=0, F/N, 2F/N, .... F-F/ N
Ws y — /flf(f)ws,u(f)df

e Coefficient w, ,, acts as a “detector” of fluctuations
of scale s at location f=u
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Continuous Wavelet Transform

e Organize ws, in a 2-D
array W € R>*:

o
N
al

.| rows are scales,
columns are offsets.

1 o For simplicity, offset
: - ; u = nF/N matched to

0.5

Wavelength, um indexn =0, 1, ..., N-1

e Wavelengths A, for
indices n shown

e Columns of matrix
representation give

50 100 150 200 250 300 . .
Offsets chains of parent/child

wavelet coefficients



Structure of CWT Coefficients
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Structure of CWT Coefficients
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Structure of CWT Coefficients
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Non-Homogeneous
Hidden Markov Chains
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Non-Homogeneous
Hidden Markov Chains

e Stochastic model to encode structure of CWT coefficients

Ss,i State: Large, Small
Qg Value
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Non-Homogeneous
Hidden Markov Chains

e Stochastic model to encode structure of CWT coefficients

Ss,i () State: Large, Small
Qg Value: State- dependent zero-mean Gauss ian distribution

o 3232222233222223
T 3999999855553%88
| 3999999955353328

Cor T o0980000800000s
. 3999990995998555



Non-Homogeneous
Hidden Markov Chains

e Stochastic model to encode structure of CWT coefficients

Ss,i State: Large, Small

Qs j 2 Value: State-dependent zero-mean Gaussian distribution
1

S(al5=8) flalS=1L)




Non-Homogeneous
Hidden Markov Chains

e Stochastic model to encode structure of CWT coefficients

. . . L L L .
Ss,i State: To obtain persistence, favor progressions T
S—S—S—...
Qs i Value: To obtain decay, reduce variances across scales
JflalS=8) f(alS =1L)
"|'11 ~+
| « — W
0 i 0
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Modeling Hyperspectral Datasets

e Why use continuous/ w w w w \/\\
undecimated wavelets? i :
So that information at each
scale is available for each
wavelength

o Why separate chains for
each spectra?
Because the "size” of a
relevant fluctuation is
relative to wavelength
(e.g., absorption bands
appearing in all
spectra)




Modeling Hyperspectral Datasets

e Collect representative x x x I
(universal) library of * \/\\
hyperspectral signatures
(e.g. USGS for minerals)

o Extract CWT coefficients for
each hyperspectral
signature; collect into 2-D
array

e Train an NHMC on each of
the N wavelengths (array
columns) over the spectral
library




Modeling Hyperspectral Datasets

e Using learned NHMC
model, generate
state probabilities/
labels for each 1 1 1 1

0.5 1 1.5 2

hyperspectral Wavelength, um
signature in library

e State labels provide
binary information on
“interesting” parts of
the signal 50 100 150 200 250 300

. Samples
e Use as features in
hyperspectral
signature processing
(e.qg., classification)
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Example: Mineral Classification

e USGS spectral library
with 57 clay samples

from 12 classes
[Rivard et al., 2008].

e One prototype/
endmember per class,
classify rest by
nearest-neighbor
(NN) to prototypes.

e (Classification errors
are points that deviate
from diagonal.

Muscovite 12
Nontronite 11 1
Saponite 10 1
Sauconite 9 1
Vermiculite
Talc
Pyrophyllite
Montmorillonite
lllite
Nacrite
Kaolinite
Dickite

= N W e OO N ®
P T R T TR 1

(c)

& DO OO

&
o

1 3

Muscoviter
Nontronitet
Saponiter
Sauconiter
Vermiculiter
Talcr
Pyrophylliter
Montmorillonite

ettt
7 9 111315617 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 63 65 57
ID of Spectrum

[Rivard et al., 2008] 89%

lllites o

Nacriter
Kaoliniter

Dickite

20 30 40 50
ID of Spectrum
NHMC 95%

o 1
10



The Power of "Big Data”

e Statistical modeling of g .5 ! \
coefficients across S ool f
spectral sample = 0.15
provides measures  © ;;

Scales
oo o A~ N

of relevance of 0-5 " Wavelength,um -

bands/smooth regions
e Model parameters can

provide "map” of

relevant scales, ] ‘ h
spectral bands, etc. 50 100 150 200 250 300
for training dataset Samples

Scales
oo o A~ DN

50 100 150 200 250 300
Samples



The Power of "Big Data”

oL/oS, training with all ENVI minerals
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The Power of "Big Data”

Probability of small state, training with all ENVI minerals
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The Power of "Big Data”

% samples labeled small, training with all ENVI minerals

Wavelet Scale
o OO A~ DN

Wavelength, um

% samples labeled small, training with ENVI clays only
O

Wavelength, um



Example: Mineral Classification

e Same example as
before, but subset of
labels selected
according to three
“discriminability”
criteria

e For all metrics used,
classification
performance matches
that obtained with all
labels (95% success
rate)
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Conclusions

e (Goal: design hyperspectral signal models and features
that can capture semantic information used by
practitioners in remote sensing

— relevance of absorption bands in tasks, e.g., classification
— multiscale analysis studies a variety of spectral features
— robustness to fluctuations in shape and location of bands

e Stochastic models (Non-Homogeneous Markov Chain)
enable robust identification of relevant features
— adaptive sampling, spectral sampling rate adjustments
- identify non-informative absorption bands, universal features

e Future work:
— Hyperspectral image applications: segmentation, unmixing, ...
— Study robustness to signature fluctuations (lab & field datasets)

http://www.ecs.umass.edu/~mduarte

mduarte@ecs.umass.edu




