Non-Homogeneous Hidden Markov Chain Models for Wavelet-Based Hyperspectral Image Processing

Marco F. Duarte Mario Parente

Hyperspectral Imaging

One signal/image per band

Hyperspectral datacube

Spectrum at each pixel represents composition/physical state of subject (remote sensing, industrial process monitoring, etc.)

Hyperspectral Signatures

- Encode reflectivity of material surface over a variety of wavelengths of light (100+)
- Differences *evident* between materials/minerals of different classes; more *subtle* within a class
- Signature *fluctuations* used in ad-hoc fashion for material identification
- **Positions** and **shapes** provide identifiability

- Tetracorder: List of rules to identify spectra by shape
- Rules can be arbitrarily complicated
- New rules must be created for new materials
- "Difficult" cases need
 experienced analyst

- Tetracorder: List of rules to identify spectra by shape
- Rules can be arbitrarily complicated
- New rules must be created for new materials
- "Difficult" cases need
 experienced analyst

[Clark et al., USGS 2003]

- **Tetracorder**: List of rules to identify spectra by shape
- Rules can be arbitrarily complicated
- New rules must be created for new materials
- "Difficult" cases need
 experienced analyst

[Clark et al., USGS 2003]

group 2 # algorithm: featfit1 # input library reference spectrum #=TITLE=Alunite GDS83 Na63 # channels to exclude (global variable) Alunite GDS83 Na63 # 2 spectral features, 0 not features Dw 2.048 2.078 2.247 2.277 ct .04 # continuum wavelengths, threshold (ct) Dw 1.466 1.476 1.535 1.555 ct .05 # continuum wavelengths, threshold (ct) FITALL > 0.5# fit thresholds: if below 0.5, reject

- Specialized distance metrics: spectral angle mapper, spectral divergence, etc.
 - aim to match shapes
 - sensitive to additional variations in signal from sample to sample
- How to successfully capture fluctuations in *punctuated*, *piecewise smooth* signals?

Continuous Wavelet Transform

Mother wavelet dilated to scale
 s and translated to offset u:

$$\psi_{s,u}(f) = \frac{1}{\sqrt{s}}\psi\left(\frac{f-u}{s}\right)$$

• CWT of a spectrum $x(f), f \in [0, F]$, composed of wavelet coefficients $w_{s,u}$ at scales s = 1, ..., S, offsets u = 0, F/N, 2F/N, ..., F-F/N: $w_{s,u} = \int x(f)\psi_{s,u}(f)df$

• Coefficient $w_{s,u}$ acts as a "*detector*" of fluctuations of scale s at location f = u

Continuous Wavelet Transform

- Organize $w_{s,u}$ in a 2-D array $W \in \mathbb{R}^{S \times N}$: rows are scales, columns are offsets.
- For simplicity, offset u = nF/N matched to index n = 0, 1, ..., N-1
- Wavelengths λ_u for indices n shown
- Columns of matrix representation give chains of parent/child wavelet coefficients

Structure of CWT Coefficients

Structure of CWT Coefficients

Structure of CWT Coefficients

• Stochastic model to encode structure of CWT coefficients

• Stochastic model to encode structure of CWT coefficients

S

Stochastic model to encode structure of CWT coefficients

Stochastic model to encode structure of CWT coefficients

 $S_{s,i}$ (

State: Large, Small

Stochastic model to encode structure of CWT coefficients

Modeling Hyperspectral Datasets

- Why use continuous/ undecimated wavelets?
 So that information at each scale is available for each wavelength
- Why separate chains for each spectra?
 Because the "size" of a relevant fluctuation is relative to wavelength (e.g., absorption bands appearing in all spectra)

Modeling Hyperspectral Datasets

- Collect representative (*universal*) library of hyperspectral signatures (e.g. USGS for minerals)
- Extract CWT coefficients for each hyperspectral signature; collect into 2-D array
- Train an NHMC on each of the N wavelengths (array columns) over the spectral library

Modeling Hyperspectral Datasets

- Using learned NHMC model, generate state probabilities/ labels for each hyperspectral signature in library
- State labels provide binary information on "*interesting*" parts of the signal
- Use as *features* in hyperspectral signature processing (e.g., classification)

Example: Mineral Classification

- **USGS** spectral library with 57 clay samples from 12 classes [Rivard et al., 2008].
- One prototype/ endmember per class, classify rest by *nearest-neighbor* (NN) to prototypes.
- Classification *errors* are points that deviate from diagonal.

The Power of "Big Data"

- Statistical modeling of coefficients across spectral sample provides *measures of relevance* of bands/smooth regions
- Model parameters can provide "map" of relevant scales, spectral bands, etc. for training dataset

The Power of "Big Data"

Probability of small state, training with all ENVI minerals

The Power of "Big Data"

Example: Mineral Classification

- Same example as before, but *subset of labels* selected according to three "discriminability" criteria
- For all metrics used, classification performance *matches* that obtained with all labels (95% success rate)

Conclusions

- Goal: design hyperspectral signal models and features that can capture *semantic information* used by practitioners in remote sensing
 - *relevance* of absorption bands in tasks, e.g., classification
 - multiscale analysis studies a variety of spectral features
 - robustness to fluctuations in shape and location of bands
- Stochastic models (Non-Homogeneous Markov Chain) enable *robust* identification of *relevant features*
 - adaptive sampling, spectral sampling rate adjustments
 - identify non-informative absorption bands, universal features
- Future work:
 - Hyperspectral image applications: segmentation, unmixing, ...
 - Study robustness to signature fluctuations (lab & field datasets)

http://www.ecs.umass.edu/~mduarte mduarte@ecs.umass.edu

