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Concise Signal Structure

e Sparse signal: only K out of N coordinates nonzero

- model: union of A-dimensional subspaces
aligned with coordinate axes

K N
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Compressive Sensing

e Replace samples by more general encoder
based on a few linear projections (inner products)

e Recover x from y using
optimization (¢,-norm minimization, LPs, QPs)
or greedy algorithms (OMP, CoSaMP, SP, etc.)

y = ®x, X is sparse
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Restricted Isometry Property (RIP)
e Preserve the structure of sparse signals

e RIP of order 2K implies: for all K-sparse x, and X,
_ [@x1 — Pxs3

|x1 — x2]|3
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[Candes and Tao]
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Restricted Isometry Property (RIP)
e Preserve the structure of sparse signals

e Random (iid Gaussian, Bernoulli) matrix has the RIP
with high probability if

M = O(K 10g(N/K))
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K-planes
[Candes and Tao; Baraniuk, Davenport, DeVore and Wakin]




Sensor Networks

e Networks of many sensor nodes

— sensor, microprocessor for computation,
wireless communication, networking, battery

— sensors observe single event,
acquire correlated signals
e Must be energy efficient

— minimize communication at expense
of off-site computation

— motivates distributed compression
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Distributed
Compressive Sensing (DCS)

Distributed
Sensing

/ y; = oi1xg \

y2 = Doxo

K ys = Qyxy /

[Baron, Duarte, Wakin, Sarvotham, Baraniuk]



Distributed

Compressive Sensing (DCS)

Distributed
Sensing
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Joint Recovery

[Baron, Duarte, Wakin, Sarvotham, Baraniuk]



JSM-2: Common Sparse Supports Model

e Measure J signals, each K-sparse

e Signals share sparse components
but with different coefficients

e Recovery using Simultaneous Orthogonal Matching
Pursuit (SOMP) algorithm [Tropp, Gilbert, Strauss]
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Beyond Sparse Models

e Sparse signal model captures only
simplistic primary structure

e For many signal types, location of nonzero coefficients
in sparse representation provide additional structure

pixels:

wavelets: background subtracted
natural images images
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Sparse Signals

e Defn: A K-sparse signal lives on the collection of
K-dim subspaces aligned with coord. axes
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Structured Sparse Signals

e Defn: A K-structured sparse signal lives on a particular
(reduced) collection of K-dim canonical subspaces

[Lu and Do]
[Blumensath and Davies]
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Sparse Sighal Ensemble

e Defn: An ensemble of J K-sparse signal lives on a
collection of JK-dim subspaces aligned with coord.
axes
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Structured Sparse Signal Ensemble

e Defn: An structured ensemble of J K-sparse signals
with common sparse support lives on a
particular (reduced) collection of JK-dim canonical
subspaces

RJN




RIP for Structured Sparsity Model

e Preserve the structure only of sparse signals that fol/low
the structure

e Random (i.i.d. Gaussian, Bernoulli) matrix has the
JSM-2 RIP with high probability if

M = O(JK +logmg)

[Blumensath and Davies]
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RIP for Common Sparse Support Model

e Random (i.i.d. Gaussian, Bernoulli) matrix has the model-
based RIP with high probability if

M = O (KJ + Klog(N/K))
e Distributed settings: measurements from different
sensors can be added together to effectively obtain
dense measurement matrix.
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Standard CS Recovery

CoSaMP

[Needell and Tropp]
- calculate current residual r=y— ox
~ form residual signal estimate e =o'y

- calculate enlarged support () = supp(X) Usupp(%(e,2K))

- estimate signal for enlarged support blo = ®|qy, bloc =

- shrink support x =% (b, K)



Model-Based CS Recovery

Model-based CoSaMP

M : K-term structured sparse approximation algorithm

- calculate current residual r=y— &x
- form residual signal estimate e — dly
- calculate enlarged support ) = supp(X) U supp(Mosx (e))
- estimate signal for enlarged support  b|g = CID\}L)y, blgc =0

- shrink support X = Mg (b)

[Baraniuk, Cevher, Duarte, Hegde 2008]



Model-Based Recovery for JSM-2
Model-based Distributed CoSaMP —» CoSOMP

— calculate current residual at each sensor r, =Yy, — q>j§j

— form residual signal estimate at each sensor e; = q)?rj
. J

- merge sensor estimates e=) (e e

- calculate enlarged support () = supp(X) U supp(%(e,2K))

" at onch sensor bjl. = ®;|y;, bjlue =0
- merge sensor estimates b = Z;']:1 (b j b j)
- shrink estimate support A = supp(%(b, K))
— update signal estimates §j|A — bj]A, ﬁj]AC — 0

at each sensor



Model-Based CS Recovery Guarantees

Theorem:

Assume we obtain noisy CS measurements of a
signal ensemble Y = ®X + n. If & has the
model-based RIP with §x < 0.1, then we have

S C
I\X—Xl\zéClHX—MK(X)I\2+\/Q—HX Mg (X)|l1 + Cslnl|

CS recovery signal K-term noise
error structured sparse approximation error

In words, instance optimality based on
structured sparse approximation
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Real Data Example

e Environmental Sensing in Intel Berkeley Lab
« J=49sensors, N =1024 samples each

e Compare:

- independent recovery
— existing joint recovery

CoSaMP
SOMP

— model-based joint recovery CoSOMP
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Experimental Results - Brightness Data

SUM A [

a) Original signal

\/\LJV\/\/“

c) CoSaMP recovery, distortion = 15.1733 dB

Wﬂ

d) CoSOMP recovery, distortion = 16.3197 dB

N = 1024, J = 48, M = 400




Experimental Results - Humidity Data
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Experimental Results - Network Size
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Conclusions

Intuitive union-of-subspaces model to encode
structure of jointly sparse signal ensembles

Structure enables reduction in number of
measurements required for recovery

Signal recovery algorithms are easily adapted
to leverage additional structure

New structure-based recovery guarantees

such as instance optimality

dsp.rice.edu/cs




