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• Sparse signal: only K out of N coordinates nonzero

– model:  union of K-dimensional subspaces
           aligned with coordinate axes

Concise Signal Structure
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Compressive Sensing
• Replace samples by more general encoder 

based on a few linear projections (inner products)
• Recover x from y using 

optimization (  -norm minimization, LPs, QPs) 
or greedy algorithms (OMP, CoSaMP, SP, etc.)

            , x is sparse
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Restricted Isometry Property (RIP)
• Preserve the structure of sparse signals

• RIP of order 2K implies: for all K-sparse x1 and x2

[Candès and Tao]

K-planes



Restricted Isometry Property (RIP)
• Preserve the structure of sparse signals

• Random (iid Gaussian, Bernoulli) matrix has the RIP 
with high probability if 

[Candès and Tao; Baraniuk, Davenport, DeVore and Wakin]
K-planes



Sensor Networks
• Networks of many sensor nodes

– sensor, microprocessor for computation, 
wireless communication, networking, battery

– sensors observe single event, 
acquire correlated signals

• Must be energy efficient
– minimize communication at expense

of off-site computation
– motivates distributed compression



y1 = Φ1x1

y2 = Φ2x2

...
yJ = ΦJxJ

[Baron, Duarte, Wakin, Sarvotham, Baraniuk]
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[Baron, Duarte, Wakin, Sarvotham, Baraniuk]

Joint Recovery
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JSM-2: Common Sparse Supports Model 

• Measure J signals, each K-sparse
• Signals share sparse components 

but with different coefficients
• Recovery using Simultaneous Orthogonal Matching 

Pursuit (SOMP) algorithm

…

x1 x2 x3 xJ-1 xJ

[Tropp, Gilbert, Strauss]



Beyond Sparse Models 

wavelets:
natural images

pixels:
background subtracted 

images

• Sparse signal model captures only 
simplistic primary structure

• For many signal types, location of nonzero coefficients
in sparse representation provide additional structure
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Sparse Signals

• Defn:  A K-sparse signal lives on the collection of 
          K-dim subspaces aligned with coord. axes



Structured Sparse Signals

• Defn:  A K-structured sparse signal lives on a particular 
          (reduced) collection of K-dim canonical subspaces

[Lu and Do]
[Blumensath and Davies]



Sparse Signal Ensemble

• Defn:  An ensemble of J K-sparse signal lives on a 
          collection of JK-dim subspaces aligned with coord. 
          axes



Structured Sparse Signal Ensemble
• Defn:  An structured ensemble of J K-sparse signals 

          with common sparse support lives on a 
          particular (reduced) collection of JK-dim canonical 
          subspaces



RIP for Structured Sparsity Model 

mK JK-dim planes

X1

X2

• Preserve the structure only of sparse signals that follow 
the structure

• Random (i.i.d. Gaussian, Bernoulli) matrix has the 
JSM-2 RIP with high probability if 

[Blumensath and Davies]
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RIP for Common Sparse Support Model 
• Random (i.i.d. Gaussian, Bernoulli) matrix has the model-

based RIP with high probability if 

• Distributed settings: measurements from different 
sensors can be added together to effectively obtain 
dense measurement matrix.

mK JK-dim planes
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CoSaMP 
[Needell and Tropp]

– calculate current residual

– form residual signal estimate

– calculate enlarged support

– estimate signal for enlarged support

– shrink support

Standard CS Recovery



Model-Based CS Recovery

Model-based CoSaMP

– calculate current residual

– form residual signal estimate

– calculate enlarged support

– estimate signal for enlarged support

– shrink support

: K-term structured sparse approximation algorithm

[Baraniuk, Cevher, Duarte, Hegde 2008]



Model-Based Recovery for JSM-2
Model-based Distributed CoSaMP             CoSOMP

– calculate current residual at each sensor

– form residual signal estimate at each sensor

– merge sensor estimates

– calculate enlarged support

– estimate signal proxy
at each sensor

– merge sensor estimates

– shrink estimate support

– update signal estimates 
at each sensor

rj = yj − Φj�xj

ej = ΦT
j rj

bj |ω = Φj |†Ωyj , bj |ωC = 0

�xj |Λ = bj |Λ, �xj |ΛC = 0

Λ = supp(T(b,K))

b =
�J

j=1 (bj · bj)

e =
�J

j=1 (ej · ej)

Ω = supp(�x) ∪ supp(T(e, 2K))



Theorem: 
Assume we obtain noisy CS measurements of a 
signal ensemble                 . If    has the 
model-based RIP with            , then we have

CS recovery
error

signal K-term
structured sparse approximation error

noise

Model-Based CS Recovery Guarantees

In words, instance optimality based on 
structured sparse approximation



Theorem: 
Assume we obtain noisy CS measurements of a 
signal ensemble                 . If each     has 
the RIP with            , then we have

CS recovery
error

signal K-term
structured sparse approximation error

noise

Model-Based CS Recovery Guarantees

In words, instance optimality based on 
structured sparse approximation

Φj



Real Data Example 
• Environmental Sensing in Intel Berkeley Lab
• J = 49 sensors, N =1024 samples each
• Compare:

– independent recovery   CoSaMP
– existing joint recovery  SOMP
– model-based joint recovery CoSOMP 



Experimental Results - Brightness Data

N = 1024, J = 48, M = 400

(a) Original signal

(c) CoSaMP recovery, distortion = 15.1733 dB

(d) CoSOMP recovery, distortion = 16.3197 dB
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Experimental Results - Humidity Data

N = 1024, J = 48
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Conclusions

• Intuitive union-of-subspaces model to encode 
structure of jointly sparse signal ensembles

• Structure enables reduction in number of 
measurements required for recovery

• Signal recovery algorithms are easily adapted 
to leverage additional structure

• New structure-based recovery guarantees 
such as instance optimality

dsp.rice.edu/cs


