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Abstract—This paper considers on–off random access channels
where users transmit either a one or a zero to a base station.
Such channels represent an abstraction of control channels used
for scheduling requests in third-generation cellular systems and
uplinks in wireless sensor networks deployed for target detection.
This paper introduces a novel convex-optimization-based scheme
for multiuser detection (MUD) in asynchronous on–off random
access channels that does not require knowledge of the delays or
the instantaneous received signal-to-noise ratios of the individual
users at the base station. For any fixed number of temporal signal
space dimensions N and maximum delay τ in the system, the
proposed scheme can accommodate M ! exp(O(N1/3)) total
users and k ! N/ logM active users in the system—a significant
improvement over the k ≤ M ! N scaling suggested by the use of
classical matched-filtering-based approaches to MUD employing
orthogonal signaling. Furthermore, the computational complexity
of the proposed scheme differs from that of a similar oracle-based
scheme with perfect knowledge of the user delays by at most a
factor of log(N+τ ). Finally, the results presented in here are non-
asymptotic, in contrast to related previous work for synchronous
channels that only guarantees that the probability of MUD error
at the base station goes to zero asymptotically in M .

I. INTRODUCTION

In wireless systems, the term random access commonly
refers to the scenario in which a number of users vie to
simultaneously communicate with a base station (access point)
in an uncoordinated fashion. In this paper, we are interested
in studying on–off random access channels, which are char-
acterized by the fact that the users transmit either a “one”
or a “zero” to the base station (BS). Such channels represent
an abstraction that arises frequently in many applications. In
third-generation cellular systems, for example, control chan-
nels that are used for scheduling requests can be modeled as
on–off random access channels; in this case, users requesting
permissions to send data to the BS can be thought of as
transmitting 1’s and inactive users can be thought of as
transmitting 0’s. Similarly, uplinks in wireless sensor networks
deployed for target detection can also be modeled as on–
off random access channels; in this case, sensors that detect
a target can be made to transmit 1’s and sensors that have
nothing to report can be thought of as transmitting 0’s.
The primary objective of the BS in on–off random access

channels is to reliably detect the identity of the active users
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(i.e., users that transmit 1’s) in polynomial time. The two
biggest impediments to this goal are that (i) random access
channels tend to be asynchronous in nature and (ii) it is
quite difficult, if not impossible, for the BS to know the
instantaneous received signal-to-noise ratio (SNR) of each
individual user. Given a fixed number of temporal signal
space dimensions N , the system-design goal therefore is to
simultaneously maximize the total number of usersM and the
expected number of active users k that the system can handle
without requiring knowledge of the delays or the instantaneous
received SNRs of the individual users at the BS.
In this paper, we propose a novel convex-optimization-based

scheme for multiuser detection (MUD) in asynchronous on–
off random access channels that does not require knowledge
of the delays or the instantaneous received SNRs of the
individual users at the BS. In particular, for any fixed number
of temporal signal space dimensions N and maximum delay
τ in the system, we rigorously establish that the proposed
scheme successfully carries out the MUD with high probability
as long as the total number of users M ! exp(O(N1/3))
and the expected number of active users k ! N/ logM .
In order to put the significance of this result into context,
note that classical matched-filtering-based approaches to MUD
using orthogonal signaling dictate that k ≤ M ! N , which
severely limits the total number of users that can be handled
by the system for a given N . In addition, we also present
an efficient implementation of the proposed MUD scheme
based on the fast Fourier transform (FFT) that ensures that
the computational complexity of the proposed scheme at worst
differs by a factor of log(N+τ) from an oracle-based scheme
that has perfect knowledge of the user delays.
In regards to previous work, we note that Fletcher et al.

[1] have also recently studied the problem of MUD in on–
off random access channels. However, the results in [1]—
while similar in spirit to the ones in here—are limited by the
facts that [1]: (i) assumes perfect synchronization among the
M users, which is hard to guarantee in practical settings for
largeM ; (ii) assumes that instantaneous received SNRs of the
individual users are available to the BS in certain cases, which
is difficult—if not impossible—to justify for the case of fading
random access channels; and (iii) only guarantees that the
probability of error Perr at the BS goes to zero asymptotically
inM , which does not shed light on the scaling of Perr. Finally,
while preparing this paper, we became aware of [2] that also
considers on–off random access in the context of configuration
in ad-hoc wireless networks, and makes assumptions about the
channel model that are similar to [1].



II. PROBLEM FORMULATION
In this section, we formulate the problem of MUD in

asynchronous on–off random access channels, along with the
accompanying assumptions. To begin, we assume that there
are a total of M users in the system that communicate with
the BS using packets of duration T and (two-sided) bandwidth
W ; in other words, the total number of temporal signal space
dimensions (degrees of freedom) in the wireless system are
N = TW . Further, we assume that users communicate using
spread spectrum waveforms of the form

xi(t) =
√
Ei

N−1∑

n=0

xi
n g(t − nTc), t ∈ [0, T ) (1)

where g(t) is a unit-energy prototype pulse (
∫
|g(t)|2dt = 1),

Tc ≈ 1
W is the chip duration, Ei denotes the transmit power

of the i-th user, and

xi =
[
xi
0 xi

1 . . . xi
N−1

]T
, i = 1, . . . ,M (2)

is the N -length (real- or complex-valued) codeword of unit
energy (‖xi‖2 = 1) assigned to the i-th user.
The key feature of on–off random access channels that

distinguishes them from the more commonly studied multiple-
access channels in network information theory (and related
multiuser-detection problems) is the assumption that only a
small number of random users communicate 1’s with the BS
at any time instant. Specifically, we assume (without loss of
generality) that on average a total of k of theM users transmit
1’s at time t = 0, resulting in the following expression for the
received signal at the BS

y(t) =
M∑

i=1

hiδixi(t− τi) + w(t). (3)

Here, hi ∈ C and τi ∈ R+ are the channel fading coefficient
and the delay associated with the i-th user, respectively, w(t) is
complex additive white Gaussian noise (AWGN) introduced by
the receiver circuitry, and {δi} are independent 0–1 Bernoulli
random variables that model the random activation of the M
users in the system in the sense that Pr(δi = 1) = k/M . Note
that one of the major differences between [1], [2] and the setup
in here is that it is assumed in [1], [2] thatmaxi,j(τi−τj) < Tc

whereas we do not make any such assumption here since it
is nearly impossible to satisfy this condition for large-enough
values of M . Finally, we assume that the transmissions of the
users undergo independent Rayleigh fading in the sense that
the hi’s are independently distributed as CN (0, ρ2i ).
Next, we define the individual discrete delays τ ′i ∈ Z+ as

τ ′i
def
=
⌊
τi
Tc

⌋
and define the maximum discrete delay τ ∈ Z+ in

the system as τ def
= maxi τ ′i . It is easy to see that the received

signal y(t) at the BS can be sampled at the chip rate to obtain
the equivalent discrete representation

y =
M∑

i=1

hiδi
√
Ei x̃i +w. (4)

Here, the (complex) AWGN vector w is distributed as
CN (0N+τ , IN+τ ) (in other words, the instantaneous received
SNR of the active users is Ei|hi|2) and the vectors x̃i ∈ CN+τ

are defined as

x̃i =
[
0T
τ ′
i

xT
i 0T

τ−τ ′
i

]T
, i = 1, . . . ,M. (5)

The goal of any MUD scheme in asynchronous on–off random
access channels is to obtain an estimate Î of the set of active
users I def

= {i : δi = 1} from the (N + τ)-dimensional vector
y without knowledge of the set of delays {τ ′i} or the set of
channel coefficients {hi} at the BS. In particular, for the sake
of this exposition, we are interested in characterizing three key
aspects of our proposed scheme for MUD in asynchronous
on–off random access channels:
1) the computational complexity of the solution,
2) the probability of error, Perr

def
= Pr(Î &= I), and

3) the relationship between the number of temporal signal
space dimensions N , the maximum (discrete) delay τ
in the system, the total number of users M that can be
accommodated by the BS, and the average number of
active users k in the system.

In this regard, the only assumptions we allow ourselves to
make here are that (i) the maximum delay τ (or an upper
bound on τ ) is known at the BS and (ii) each user has
knowledge of the SNR at which its transmitted signal arrives
at the BS (in other words, the i-th user knows |hi|). Note that
both these assumptions are quite reasonable from a practical
perspective; in particular, if one assumes that the BS transmits
a beacon signal before the users start transmitting then the last
assumption simply follows because of reciprocity between the
downlink and the uplink.

III. MULTIUSER DETECTION USING LASSO
In this section, we describe our proposed approach to MUD

in asynchronous on–off random access channels that is based
on the mixed-norm convex optimization program known as the
lasso [3]. The lasso was first proposed in the statistics literature
for linear regression in underdetermined settings. In [1], the
lasso has been suggested as a potential method for MUD
in synchronous on–off random access channels. However,
extending the ideas of [1] to the asynchronous case using the
standard lasso formulation seems very difficult. In contrast,
while the MUD scheme proposed in this paper is based on
the lasso, we present a rather nonconventional usage of the
lasso that is specific to the problem at hand and one of our
major contributions indeed is establishing that this formulation
is guaranteed to yield successful MUD with high probability.
It is also worth mentioning here that the analysis carried out in
the paper in this regard might also be of independent interest
to researchers working on configuration (neighbor discovery)
in ad-hoc wireless networks and sensor networks.

A. Main Result
In order to make use of the lasso for MUD in asynchronous

on-off random access channels, we first rewrite (4) in the



following matrix–vector product form

y =
[
x̃1 x̃2 . . . x̃M

]
︸ ︷︷ ︸

X̃

β̃ +w (6)

where the i-th entry of the vector β̃ ∈ CM is described as
β̃i

def
= hiδi

√
Ei. Note that despite the fact that the above

expression appears superficially similar to the standard lasso
formulation, we cannot use the lasso to obtain an estimate of
the set of active users I from (6) since the (N + τ) × M
matrix X̃ in (6) is unknown due to the asynchronous nature
of the problem. In order to overcome this obstacle, we first
define (N + τ) × (τ + 1) Toeplitz matrices Xi as follows

Xi =




xi 0

. . .
0 xi



, i = 1, . . . ,M (7)

and observe that we can equivalently write (6) in the form

y =
[
X1 X2 . . . XM

] [
βT
1 βT

2 . . .βT
M

]T
︸ ︷︷ ︸

Xβ

+w (8)

where X is now an (N+τ)×M(τ+1) known matrix and the
vector β ∈ CM(τ+1) is a concatenation ofM vectors, each of
length (τ + 1), whose entries are given by

βi,j = β̃i1{τ ′
i
=j−1}, i = 1, . . . ,M, j = 1, . . . , τ + 1. (9)

We can now make use of this notation to describe the proposed
lasso-based scheme for MUD in asynchronous on–off random
access channels.1

Algorithm 1 Multiuser Detection in Asynchronous On–Off
Random Access Channels Using Lasso
Inputs
1) The chip-rate sampled vector y
2) Set of N -dimensional codewords {xi}Mi=1

3) Maximum discrete delay τ in the system
4) A regularization parameter λ for the lasso

Compute the matrix X described in (8) using {xi} and τ

β̂ ← argmin
b∈CM(τ+1)

1
2

∥∥y − Xb
∥∥2
2
+ λ‖b‖1 (LASSO)

Î ←
{
i : ‖β̂i‖0 > 0

}

Return Î as an estimate of the set of active users I

We are now ready to state the main result of this paper,
which bounds the probability of error of Algorithm 1 and
specifies the corresponding relationship between the system
parameters τ, k,N , and M .

1Algorithm 1 acts as a hybrid between the standard lasso and the group
lasso [4]. Specifically, it is clear from the problem formulation that the group
lasso is ill-suited for the specified MUD problem since each of the sub-vectors
{βi} in (8) has at most one nonzero entry. On the other hand, we are only
interested in detecting the active users and need not estimate their delays;
hence, the group nature of the detection criterion in the definition of Î .

Theorem 1. Suppose that the M codewords {xi ∈ CN}Mi=1

are drawn independently from a binary(±1/
√
N, IN ) distri-

bution and pick the parameter λ = 2
√
2 log (M

√
τ + 1 ).

Further, let the transmit powers of the active users satisfy

Ei >
128 log (M

√
τ + 1 )

|hi|2
, i ∈ I. (10)

Then Algorithm 1 successfully carries out multiuser detection
with Perr ≤ 13

(
M(τ + 1)

)−1
+ 4M−1 + 2 exp

(
−

√
NM
8

)
if

M ≤
exp

(
c1(τ + 1)−2/3N1/3

)

τ + 1
and (11)

k ≤ c2N

(τ + 1) log
(
M(τ + 1)

) . (12)

Here, the constants c1, c2 > 0 are independent of the problem
parameters.

The proof of this theorem is provided in Section IV. The
implications of the scaling behavior outlined in (11) and (12)
are quite positive in the important special case of fixed-
bandwidth spread spectrum waveforms and a base station
serving a bounded geographic region. Specifically, Theorem 1
signifies that—for any fixed number of temporal signal space
dimensions N and maximum delay τ in the system—the pro-
posed MUD scheme can accommodate M ! exp(O(N1/3))
total users and k ! N/ logM active users in the system.
This is a significant improvement over the k ≤ M ! N
scaling suggested by the use of classical matched-filtering-
based approaches to MUD employing orthogonal signaling.
We conclude our discussion of Theorem 1 by noting that

k ! N/ logM scaling has also been suggested in [1] for the
case of MUD in synchronous on–off random access channels
using the lasso. In contrast, Theorem 1 establishes that the
MUD scheme proposed here for asynchronous on–off random
access channels has the ability to achieve roughly the same
scaling of the system parameters k,N , andM as that reported
in [1] for the ideal case of synchronous channels.

B. Computational Complexity
Theorem 1 helps us characterize the performance of Algo-

rithm 1 for MUD in asynchronous on–off random access chan-
nels but fails to shed any light on the issue of computational
complexity of the proposed scheme. However, note that the
lasso is a well-studied program in the statistics literature and—
thanks to its convex nature—there exist a number of extremely
fast (polynomial-time) implementations of the unconstrained
version of the lasso specified in (LASSO); see, e.g., [5].
In this regard, note that the computational complexity of

the implementations of (LASSO) such as SpaRSA [5] is
determined—to a large extent—by the complexity of the
matrix–vector multiplications Xb and XHy. It therefore
seems that Algorithm 1 increases the computational com-
plexity of the matrix–vector multiplications from O(NM),
corresponding to the case of perfectly-known user delays
[cf. (6)], to O(NM(τ + 1)). This observation, however,
ignores the fact that the matrix X in (8) has a Toeplitz-block



structure. Specifically, note that if we write b ∈ CM(τ+1) as
b =

[
bT
1 . . . bT

M

]T then it follows from elementary signal
processing that

Xb =
M∑

i=1

F−1
N+τ

(
FN+τ

(
xi

)
* FN+τ

(
bi

))
(13)

where Fn(·) and F−1
n (·) denote the FFT implementation of

the n-point discrete Fourier transform (DFT) and the n-point
inverse DFT of a sequence, respectively, while * denotes
pointwise multiplication. Similarly, if we use (·)[n1 : n2] to
denote the n1-th to n2-th elements of a vector and (·)− to
denote the time-reversed version of a vector, then it follows
from routine calculations that ∀ i = 1, . . . ,M , we have

XHy[i(τ + 1)− τ : i(τ + 1)] = F−1
2N+τ−1

(
F2N+τ−1

(
x−
i

)
*

* F2N+τ−1

(
y
))[

N : N + τ
]
. (14)

It therefore follows from the complexity of the FFT that the
matrix–vector multiplications Xb and XHy in Algorithm 1
can in fact be carried out using only O(NM log(N + τ))
operations as opposed to O(NM(τ + 1)) operations. This
suggests that the computational complexity of Algorithm 1 at
worst differs by a factor of log(N + τ) from an oracle-based
scheme that has perfect knowledge of the user delays.

IV. PROOF OF THE MAIN RESULT
In this section, we provide a proof of Theorem 1. To begin,

we develop some notation to facilitate the forthcoming anal-
ysis. Throughout this section, we use XB to denote the block
subdictionary of X obtained by collecting the Toeplitz blocks
of X corresponding to the indices of the active users; in other
words, we have XB

def
=
[
Xi : i ∈ I

]
. In addition, we use XS

to denote the (N + τ)× |I| submatrix obtained by collecting
the columns of X corresponding to the nonzero entries of
β, while we use βS to denote the |I|-dimensional vector
comprising of the nonzero entries of β. Finally, we use sgn(·)
for elementwise signum function, where sgn(z) def

= z/|z| for
any z ∈ C.
The basic idea behind the proof of Theorem 1 follows from

the proof of [6, Theorem 1.3]. Specifically, using S = supp(β)
to denote the set of the locations of the nonzero entries of β,
we have from [6, Lemma 3.4] that the lasso solution β̂

def
=

β + h satisfies hSc = 0 and

hS = (XH
SXS)

−1[XH
Sw − λ sgn(βS)] (15)

if min
i∈S

|βi| > 4λ and the following five conditions are met:

• C1 – Invertibility condition: ‖(XH
SXS)−1‖2 ≤ 2.

• C2 – Noise stability: ‖(XH
SXS)−1XH

Sw‖∞ ≤ λ.
• C3 – Complementary noise stability:

‖XH
Sc(I − XS(X

H
SXS)

−1XH
S )w‖∞ ≤ λ√

2
.

• C4 – Size condition: ‖(XH
SXS)−1sgn(βS)‖∞ ≤ 3

• C5 – Complementary size condition:

‖XH
ScXS(X

H
SXS)

−1sgn(βS)‖∞ ≤ 1
4 .

Further, it trivially follows in this case that supp(β̂) ≡ S,
which guarantees that Î = I. Our goal then is to consider
the probability of each one of these conditions not being met
under the assumptions of Theorem 1 and the proof of the
theorem would then simply follow from the union bound. The
requisite analysis in this regard frequently requires a bound
on the maximum inner products between the columns of X
and a bound on the spectral norm of X, and the following two
lemmas help us specify these two bounds.

Lemma 1. Given any fixed ς > 0, the Toeplitz-block matrix
X described in (8) satisfies

µ(X)
def
= max

(i,j) &=(i′,j′)

∣∣〈xi,j ,xi′,j′〉
∣∣ ≤ ς (16)

with probability exceeding 1−2M2(τ +1)2e−
Nς2

4 . Here, xi,j

denotes the j-th column of the Toeplitz matrix Xi.

Proof: The proof of this lemma is a consequence of
the bound on the worst-case coherence µ of random Toeplitz
matrices [7, Theorem 3.5] and the Hoeffding inequality [8].
Specifically, note that we can write

µ(X) = max
{
max
j &=j′

∣∣〈xi,j ,xi,j′ 〉
∣∣,max

i&=i′

∣∣〈xi,j ,xi′,j′〉
∣∣
}
.

Further, note that the proof of Theorem 3.5 in [7] implies
that

∣∣〈xi,j ,xi,j′ 〉
∣∣ ≤ ς with probability exceeding 1− 4e−

Nς2

4

for any j &= j′. Finally, since the product of two independent
binary random variables is again a binary random variable,
it can also be shown using the Hoeffding inequality that∣∣〈xi,j ,xi′,j′〉

∣∣ ≤ ς with probability exceeding 1 − 2e−
Nς2

2 for
any i &= i′. It therefore follows from the union bound that
µ(X) ≤ ς with probability exceeding 1−2M2(τ +1)2e−

Nς2

4 .
This completes the proof of the lemma.

Lemma 2. The spectral norm of the Toeplitz-block matrix X

described in (8) satisfies

‖X‖2
def
=
√
λmax (XHX) ≤ 26

√
τ + 1

(

1 +

√
M

N

)

(17)

with probability exceeding 1 − e−
√

NM
8 .

Proof: We first recall that the spectral norm is invari-
ant under column-interchange operations. Now define Φ

def
=[

x1 . . . xM

]
and Ψ

def
=

[
Φ0 Φ1 . . . Φτ

]
, where

each block Φi is an (N + τ) × M matrix that is constructed
by prepending and appending Φ with i rows and (τ − i)
rows of all zeros, respectively. It is then easy to see that
‖X‖2 = ‖Ψ‖2 and ‖Φ0‖2 = · · · = ‖Φτ‖2 = ‖Φ‖2. Further,
note that we can write for any M(τ + 1)-dimensional vector
z =

[
zT0 zT1 . . . zTτ

]T

‖Ψz‖2
‖z‖2

(a)
≤
∑τ

i=0 ‖Φizi‖2
‖z‖2

≤ ‖Φ‖2
∑τ

i=0 ‖zi‖2
‖z‖2

(b)
≤

√
τ + 1‖Φ‖2‖z‖2

‖z‖2
=

√
τ + 1‖Φ‖2 (18)



where (a) follows from the definition of Ψ and the triangle
inequality, while (b) follows from the Cauchy–Schwarz in-
equality. It therefore follows from the previous discussion and
(18) that ‖X‖2 ≤

√
τ + 1‖Φ‖2.

In order to complete the proof, notice that Φ is an N ×M
random matrix whose entries are independently distributed
as binary(±1/

√
N). It can therefore be established, similar

to [9, Proposition 2.4], that ‖Φ‖2 ≤ 26
(
1 +

√
M
N

)
with

probability exceeding 1 − e−
√

NM
8 .

Note that Lemma 1 implies that the event

G1 =




µ(X) ≤

√
12 log

(
M(τ + 1)

)

N




 (19)

holds with probability exceeding 1−2
(
M(τ+1)

)−1. Similarly,
Lemma 2 implies that the event

G2 =

{

‖X‖2 ≤ 52

√
M(τ + 1)

N

}

(20)

holds with probability exceeding 1− e−
√

NM
8 . The rest of the

analysis in this section is carried out by implicitly conditioning
on these two events.

A. Invertibility Condition
In order to establish the invertibility condition, we will make

use of the following proposition from [10].

Proposition 1 ([10]). Fix q = 2 log
(
M(τ + 1)

)
and define

the block coherence

µB(X)
def
= max

1≤i,j≤M
‖XH

i Xj − 1{i=j}I‖2.

Then, for EqZ
def
= [E|Z|q]1/q and δ

def
= k/M , we have the

following bound

Eq‖XH
BXB − I‖2 ≤ 20µB(X) log

(
M(τ + 1)

)
+ δ‖X‖22+

+ 9
√
δ log

(
M(τ + 1)

)(
1 + τµ(X)

)
‖X‖2. (21)

Now note that, since we are conditioning on G1 and G2, it
follows from (11), (12), (19), and (20) that

µ(X) ≤ 1

c′(τ + 1) log
(
M(τ + 1)

) , and (22)

‖X‖22 ≤ 1

c′δ log
(
M(τ + 1)

) (23)

for c′ def
= 6000 as long as the constants c1 and c2 in (11) and

(12) are appropriately chosen. It therefore follows from the
definition of the block coherence, (22), and the linear algebra
fact ‖ · ‖2 ≤

√
‖ · ‖1‖ · ‖∞ [11] that

µB(X) ≤ 1

c′ log
(
M(τ + 1)

) . (24)

Consequently, substituting (22), (23), and (24) into (21) yields
Eq‖XH

BXB − I‖2 < 1
4 .

Finally, notice that XS is a submatrix of XB and therefore
we trivially have that ‖XH

SXS − I‖2 ≤ ‖XH
BXB − I‖2. It can

then be easily seen from the Markov inequality that

Pr(‖XH
SXS − I‖2 > 1/2) ≤ 2q(Eq‖XH

BXB − I‖2)q
(a)
≤
(
M(τ + 1)

)−2 log 2 (25)

where (a) follows from the fact that Eq‖XH
BXB − I‖2 < 1

4 .
We have now established that ‖XH

SXS‖2 ∈ [1/2, 3/2] with
high probability; that is, ‖(XH

SXS)−1‖2 > 2 with probability

Pr(Cc
1

∣∣G1,G2) ≤
(
M(τ + 1)

)−2 log 2
. (26)

B. Noise Stability
In order to establish the noise-stability condition, we first

condition on C1 (the invertibility condition). Next, we denote
the j-th column of XS(XH

SXS)−1 by zj and note that

‖(XH
SXS)

−1XH
Sw‖∞ = max

1≤j≤|S|
|〈zj ,w〉|. (27)

Further, since the noise vector w is distributed as CN (0, I),
we also have that 〈zj ,w〉 ∼ CN (0, ‖zj‖22). Finally, note that
conditioned on C1, we have the upper bound

‖zj‖2 ≤ ‖XS(X
H
SXS)

−1‖2 ≤ ‖XS‖2‖(XH
SXS)

−1‖2 ≤
√
2.

The rest of the argument now follows easily from bounds on
the maximum of a collection of arbitrary (complex) Gaussian
random variables. Specifically, it can be seen from the previous
discussion and [12, Lemma 6] that

Pr
(
‖(XH

SXS)
−1XH

Sw‖∞ ≥
√
2t
∣∣C1
)

≤ 4Me−t2/2

√
2πt

.

We substitute t = λ/
√
2 in the above expression to obtain

4Me−λ2/4

√
πλ

=
2

M(τ + 1)
√
2π log(M

√
τ + 1 )

.

Summarizing, we have that the noise stability condition fails
to hold with probability at most

Pr(Cc
2

∣∣C1) ≤ 2

M(τ + 1)
√
2π log(M

√
τ + 1 )

. (28)

C. Complementary Noise Stability
In order to establish the complementary noise-stability con-

dition, we use ideas similar to the ones used in the previous
section. To begin with, we again condition on the event C1
and use PXS

def
= XS(XH

SXS)−1XH
S to denote the orthogonal

projector onto the column span of XS . Next, we use zj to
denote the j-th column of (I − PXS )XSc and note that

‖XH
Sc(I − PXS )w‖∞ = max

1≤j≤|Sc|
|〈zj ,w〉|. (29)

Finally, given that PXS is a projection matrix and the columns
of X have unit norm, we have that

‖zj‖2 = ‖(I− PXS )XScej‖2 ≤ 1 (30)



where ej denotes the j-th canonical basis vector.
It is now easy to see that, since 〈zj ,w〉 is also distributed as

CN (0, ‖zj‖22), we can make use of [12, Lemma 6] to obtain

Pr
(
‖XH

Sc(I − PXS )w‖∞ ≥ t
∣∣C1
)
≤ 4M(τ + 1)e−t2/2

√
2πt

.

We substitute t = λ/
√
2 in the above expression to obtain

4M(τ + 1)e−λ2/4

√
πλ

≤ 2

M
√
2π log(M

√
τ + 1 )

. (31)

Summarizing, we have that the complementary noise stability
condition fails to hold with probability at most

Pr(Cc
3

∣∣C1) ≤ 2

M
√
2π log(M

√
τ + 1 )

. (32)

D. Size Condition

In order to establish the size condition, we first write

‖(XH
SXS)

−1sgn(βS)‖∞
(a)
≤ ‖

(
(XH

SXS)
−1 − I

)
sgn(βS)‖∞ + ‖sgn(βS)‖∞

= ‖
(
(XH

SXS)
−1 − I

)
sgn(βS)‖∞ + 1 (33)

where (a) follows from the triangle inequality. Next, we once
again use zj to denote the j-th column of

(
(XH

SXS)−1 − I
)
,

which simply implies that ‖
(
(XH

SXS)−1 − I
)
sgn(βS)‖∞ =

max1≤j≤|S| |〈zj , sgn(βS)〉|. Now define A =
(
XH

SXS − I
)

and condition on the event C1. Then it follows from the von
Neumann series (cf. [6, p. 2171]) that ‖zj‖2 ≤ 2‖Aej‖2.
Further, since XS is a submatrix of XB , we have ‖Aej‖2 ≤
‖(XH

BXB − I)ej′‖2, where j′ is such that the j′-th column of
XB matches the j-th column of XS .
Finally, define the diagonal matrix Q

def
= diag(δ1, . . . , δM )

with the “random activation variables” {δi} on the diagonal
and define a new matrix R = Q⊗ Iτ+1, where ⊗ denotes the
Kronecker product. Next, use the notation H

def
= (XHX− I)

and notice that ‖(XH
BXB − I)ej′‖2 = ‖RHej′′‖2, where j′′

is such that the j′′-th column of X matches the j-th column
of XS . In addition, note that H has a block structure that can
be expressed as follows

H =
[
H1 H2 . . . HM

]

=





H1,1 H1,2 . . . H1,M

H2,1 H2,2 . . . H2,M
...

...
. . .

...
HM,1 HM,2 . . . HM,M




(34)

where Hi,j = XH
i Xj − 1{i=j}I, 1 ≤ i, j ≤ M , and Hi =

[HH
1,i . . . HH

M,i]
H . We now define two blockwise norms on

H as follows:
• ‖H‖B,1

def
= max1≤i≤M ‖Hi‖2, and

• ‖H‖B,2
def
= max1≤i,j≤M ‖Hi,j‖2.

Then it follows from the preceding discussion and the structure
of the block matrix H that

‖zj‖2 ≤ 2‖Aej‖2 ≤ 2‖RHej′′‖2 ≤ 2‖RH‖B,1. (35)

Our next goal then is to provide a bound on ‖RH‖B,1 and
for this we resort to [10, Lemma 5].

Proposition 2 ( [10]). For q ≥ 2 logM and δ = k/M , we
have that

Eq‖RH‖B,1 ≤ 21.5
√
q‖H‖B,2 +

√
δ‖H‖B,1. (36)

Now notice from the definition of H and ‖ · ‖B,2 that
‖H‖B,2 ≡ µB(X) ≤ (τ +1)µ(X). In addition, we have from
the definition of H and ‖ · ‖B,1 that

‖H‖B,1

(b)
≤ max

1≤i≤M
‖XHXi‖2 + ‖Iτ+1‖2

(c)
≤
√
1 + τµ(X)‖X‖2 + 1 (37)

where (b) follows from the definition of the spectral norm and
the triangle inequality, while (c) mainly follows from the fact
that ‖Xi‖2 ≤

√
1 + τµ(X) because of the Geršgorin disc

theorem [11]. We can now fix q = 2 logM and make use of
the above bounds to conclude from Proposition 2 that

Eq‖RH‖B,1 ≤ 4(τ + 1)µ(X)
√

logM+

+
√
δ(1 + τµ(X))‖X‖2 +

√
δ. (38)

We can now substitute (22) and (23) into the above expression
to obtain Eq‖RH‖B,1 ≤ γ0 with

γ0
def
=

4

c′
√
log(M(τ + 1))

+

+
2√

c′ log(M(τ + 1))

√

1 +
1

c′ log(M(τ + 1))
. (39)

In order to establish the size condition, we now define
the event E = {max1≤j≤|S| ‖zj‖2 < γ} and make use of
the Markov inequality along with (35) and the preceding
discussion to obtain

Pr(Ec) ≤ γ−q
[
Eq max

1≤j≤|S|
‖zj‖2

]q

≤
(
2

γ
Eq‖RH‖B,1

)q

≤
(
2γ0
γ

)q

. (40)

Finally, we use Z
def
= max1≤j≤|S| |〈zj , sgn(βS)〉| and con-

clude that

Pr(Z ≥ t) ≤ Pr(Z ≥ t
∣∣E) + Pr(Ec)

(d)
≤ 2Me−t2/2γ2

+ (2γ0/γ)
q (41)

where (d) is a consequence of the complex Bernstein inequal-
ity [13, Proposition 16] and the union bound. The condition
is now established from (33) by setting t = 2 in the above
expression. Further, set

γ ≤

√
2

(1 + 2 log 2) logM
(42)



which leads to 2Me−2/γ2 ≤ 2M−2 log 2 and
γ0
γ

≤ 2(
√
1 + c′ + 2)

0.9155c′
< 1/4. (43)

Therefore, we obtain that Pr(Ec) ≤ (1/2)q ≤ M−2 log 2

and thus we have that the size condition does not hold with
probability at most

Pr(Cc
4

∣∣C1) ≤ 3M−2 log 2. (44)

E. Complementary Size Condition
In order to establish the complementary size condition,

we proceed similar to the case of the “size condition“ and
define the vector zj as zj = (XH

SXS)−1XH
SXScej . It can

then be easily seen that ‖XH
ScXS(XH

SXS)−1sgn(βS)‖∞ =
max1≤j≤|Sc| |〈zj , sgn(βS)〉|. Now condition on the event C1
and notice that ‖zj‖2 ≤ 2‖XH

SXScej‖2, j = 1, . . . , |Sc|.
We now define XBc

def
=
[
Xi : i ∈ Ic

]
and consider the set

of indices T1
def
= {j′ : XScej′ ∈ XBc}. It is then easy to argue

by making use of the notation developed in Section IV-D that
if j ∈ T1 then

‖XH
SXScej‖2 ≤ max

i∈Ic
‖XH

BXi‖2

= ‖XH
BXBc‖B,1

(a)
≤ ‖RH‖B,1 (45)

where (a) follows from the fact that XH
BXBc is a submatrix

of RH. We therefore have from the discussion following
Proposition 2 and the Markov inequality that ∀ j ∈ T1 and for
q = 2 logM and γ > 0

Pr(‖XH
SXScej‖2 > γ) ≤ [Eq‖RH‖B,1]

q

γq
≤
(
γ0
γ

)q

. (46)

Finally, the argument involving j ∈ T c
1 is a little more

involved but follows along similar lines. Specifically, fix any
j ∈ T c

1 and define i′ ∈ I to be such that XScej is a column
of Xi′ . Next, define x̃S∩i′ to be the column of XS that lies
within the Toeplitz block Xi′ and X̃S\i′ to be the submatrix
constructed by removing the column x̃S∩i′ from XS . Then,
if we use the notation XB\i′

def
=
[
Xi : i ∈ B \ {i′}

]
, it can be

verified that for any j ∈ T c
1 we have

‖XH
SXScej‖22 = ‖X̃H

S\i′XScej‖22 + |x̃H
S∩i′XScej |2

≤ max
i′∈I

‖XH
B\i′Xi′‖22 + µ2(X)

(b)
≤ ‖RH‖2B,1 + µ2(X) (47)

where (b) again makes use of the fact that the spectral norm
of a matrix is an upper bound for the spectral norm of any
of its submatrices. We therefore once again obtain from the
discussion following Proposition 2 and the Markov inequality
that ∀ j ∈ T c

1 and for q = 2 logM and γ > 0

Pr(‖XH
SXScej‖2 > γ) ≤ Pr

(
‖RH‖B,1 >

√
γ2 − µ2(X)

)

≤
(

γ0√
γ2 − µ2

)q

. (48)

We can now define the event E =
{
‖XH

SXScej‖2 ≤ γ
}

and use the notation Z
def
= max1≤j≤|Sc| |〈zj , sgn(βS)〉| to

conclude from (46) and (48) that

Pr(Z ≥ t) ≤ Pr(Z ≥ t
∣∣E) + Pr(Ec)

(c)
≤ 2M(τ + 1)e−t2/8γ2

+ (γ0/γ)
q+

+ (γ0/
√
γ2 − µ2(X))q (49)

where (c) follows from [13, Proposition 16] and the union
bound. The condition is now established by setting t = 1

4 in
the above expression. Further, set

γ ≤ 1√
128(1 + 2 log 2) log(M(τ + 1))

(50)

which yields 2M(τ +1)e−1/128γ2 ≤ 2(M(τ +1))−2 log 2 and

γ0√
γ2 − µ2

≤
2
√
1+c′

c′ + 4
c′√

0.05722 − 1/c′2
< 1/2.

Therefore, we obtain that Pr(Ec) ≤ 2(γ0/
√
γ2 − µ2)q ≤

2(1/2)q ≤ 2(M(τ + 1))−2 log 2 and thus we have that the
size condition does not hold with probability at most

Pr(Cc
5

∣∣C1) ≤ 4
(
M(τ + 1)

)−2 log 2
. (51)

F. Proof of Theorem 1
The proof of Theorem 1 follows from the preceding discus-

sion by taking a union bound over all the respective conditions
and removing the conditionings: Pr((C1 ∩ C2 ∩ C3 ∩ C4 ∩
C5)c) ≤ 2Pr(Gc

1)+2Pr(Gc
2)+2Pr(Cc

1

∣∣G1,G2)+Pr(Cc
2

∣∣C1)+
Pr(Cc

3

∣∣C1)+Pr(Cc
4

∣∣C1)+Pr(Cc
5

∣∣C1). Consequently, we obtain
that the probability of error is upper bounded by 13

(
M(τ +

1)
)−2 log 2

+ 4M−1
(
2π log(M

√
τ + 1 )

)−1/2
+ 2e−

√
NM
8 .

V. NUMERICAL RESULTS AND DISCUSSION
We conclude this paper by making use of Monte Carlo

simulations to validate and discuss the results reported in here.
The simulation setup corresponds to a total of M = 3000
users communicating to the base station using codewords
of length N = 1024 that are drawn independently from
a binary(±1/

√
N, IM ) distribution. In the following, user

activity is generated using independent 0–1 Bernoulli random
variables {δi} such that Pr(δi = 1) = k/M for a given k.
Further, for a given maximum delay τ , the individual user
delays {τi} are generated once at random for each experiment
and then fixed for the remainder of the experiment in keeping
with the fact that our results hold uniformly over all possible
{τi}. The implementation of Algorithm 1 uses the SpaRSA
package [5] in order to solve (LASSO) and includes the
modifications described in Section III-B for speeding up the
matrix–vector multiplications Xb and XHy. Finally, we use
the performance metric of average number of detection errors
in our simulations, which corresponds to the cardinality of the
set (I\Î) ∪ (Î\I) averaged over the independent trials.
The first numerical experiment that we carry out corre-

sponds to studying the performance of the proposed MUD



Fig. 1. Performance of Algorithm 1 as a function of the expected number
of active users k for five different values of the maximum delay τ .

scheme as a function of the expected number of active users
k in the system. In this experiment, it is assumed that the
users know the magnitudes of their respective channel fading
coefficients |hi| and control their powers so that the transmit
power requirement described in (10) is satisfied. The results
of this experiment are reported in Fig. 1 for five different
values of the maximum delay τ . There are two important
remarks that can be made concerning Fig. 1. First, note that
Theorem 1 suggests that—for appropriate values of k and τ—
the product τk should be approximately constant in order for
the proposed scheme to successfully carry out MUD (cf. (12)).
In this regard, it can be seen from Fig. 1 that indeed the points
at which the curves begin to diverge from the horizontal axis
tend to be when τk ≈ 1500. This suggests that the scaling
relationship described by (12) in Theorem 1 is accurate.
Second, Fig. 1 also helps put the novelty of this work

into perspective. Specifically, note that one could have simply
considered the problem of MUD in asynchronous on–off
random access channels in the context of the recent literature
on compressed sensing. Indeed, the expression y = Xβ +w
in (8) describes the problem of recovering a sparse signal β
from linear measurements in the presence of noise. However,
if one were to naively apply the theory of compressed sensing
to this problem then one would expect the performance of
Algorithm 1 to improve with increasing τ . This is because
the number of rows of the matrix X in (8) increases as τ is
increased. However, as indicated by the results of this paper,
the Toeplitz-block structure of X does not allow for such an
improvement. On the contrary, increasing the range of possible
delays poses a more difficult MUD problem, and thus the
expected number of active users for which MUD succeeds
decreases, as can be seen from Fig. 1.
The second numerical experiment that we carry out corre-

sponds to studying the performance of the proposed MUD
scheme as a function of the instantaneous received SNRs
{Ei|hi|2} of the active users. The results of this experiment
are reported in Fig. 2 for three different values of the expected
number of active users k and with the maximum delay τ
set to 19. The main conclusion that can be drawn from
Fig. 2 in this regard is that the power condition of (10) in
Theorem 1 is possibly overly restrictive. Specifically, note that

Fig. 2. Performance of Algorithm 1 as a function of the instantaneous
received SNRs of the active users for τ = 19 and three different values of k.

the power condition (10) for the specified parameters reduces
to Ei|hi|2 " 31 dB for every active user. On the other hand,
Fig. 2 shows that Algorithm 1 carries out successful MUD
even when the instantaneous received SNRs of the active users
are significantly below 31 dB. Finally, Fig. 2 also helps us
verify that the theory is correct in predicting that the transmit
power required for successful MUD does not depend upon the
expected number of active users k.
In conclusion, simulation results confirm that our proposed

scheme successfully carries out MUD in asynchronous on–off
random access channels and that the theoretical guarantees
provided in Theorem 1 are nearly optimal in terms of the
scaling relationship between k, τ,M , and N . In the future,
we plan to extend this work by designing deterministic code-
words appropriate for this application and by analyzing the
(detection) outage rates of individual users arising because of
fading and fixed transmit power constraints.
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