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Abstract—— Decision fusion is a decentralized decision making
process where local decisions are combined to reach a global
decision. In this work, we propose a complementary optimal
decision fusion (CODF) method to the target detection task that
arises in wireless ad hoc sensor network signal processing. We
conduct extensive comparative study using standard datasets,
and observe superior performance of CODF when compared
with state-of-the-art decision fusion methods. In addition to
distributed sensor network applications, the proposed CODF
algorithm can be applied to numerous multi-modality, multi-
agent, multi-media signal processing problems.

I. INTRODUCTION

Decision fusion data fusion method that has found applica-
tions in multi-modal multimedia signal processing [1], [2], [3],
decentralized detection [4], collaborative sensor network signal
processing [5], and the like. With decision fusion, individual
component decision makers (pattern classifiers) report their
own local decisions (classification results) to a common fusion
center where a final consensus decision will be made. In doing
so, only the Iocal decisions, rather than the raw data, need to
be transmitted to the fusion center. If a local decision can
be represented by an integer {n;1 < n < N}, then it can
be encoded using log, NV bits. Thus, transmitting a decision
to the fusion center, rather than the raw data sample, often
represents a significant saving in communication bandwidth.
For applications where communication cost is high, such as a
wireless sensor network, decision fusion is advantageous,

Recently [6], we developed an optimal decision fusion
(ODF) method. Assuming that the set of local decision makers
are fixed, and that the number of training samples are suffi-
ciently large, we show that a look-up-1able based ODF method
is capable of producing decision fusion results that are no
worse than any other decision fusion algorithms. In effect, we
derived a tight theoretical performance upper bound of any
decision fusion algorithm. The ODF method is basically the
same as the BKS method proposed in [7]. However, when
there are only finite number of training data samples, either
LUT or BKS method may exhibit inferior performance.

In this paper, we focus on the analysis and enhancement
of the ODF method with an application to target detection in
a wireless ad hoc sensor network environment. Specifically,
we developed a complementary ODF (CODF) method that
uses ODF in conjunction with a non-ODF decision fusion
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method to improve the overall performance while conserving
storage space. For most of feature vectors that the non-QDF
method yields correct results, the ODF method will stay silent.
When the ODF method issues a opinion, it will then overwrite
the opinion given by the non-ODF decision maker. These
two decision fusion methods collaborate to complement each
other, and hence the name complementary ODF. We further
analyze the performance of the CODF method and discussed
the potential impacts on its performance when the component
decision making units give correlated local decisions.

This paper is organized as follows: Section II presents the
theoretical framework for this problem. Section III specifies
our approach for Complenentary Qptimal Decision Fusion.
Section IV shows some experiments to evaluate the perfor-
mance of the proposed methods. Finally, Section V presents
some conclusions to the paper.

II. PROBLEM FORMULATION
A. Decision Fusion Framework

We assume a decision fusion architecture that consists of a
Susion center and K distributed sensors as local decision mak-
ers. The £*® sensor observes a feature vector x,. According
to a local decision rule, x;, will be assigned to a class label
among a set of N possible labels C = {Cy,C2,--- ., Cn}.
That is,

ﬂk(xk) =d,eC

dy is called a decision. We use the set membership notation
Xx € Cr 10 denote that di. = C,,.

A global feature vector x is the concatenation of all local
feature vectors. That is,

T

x=1]x x] ]T

xk
The k** sensor will evaluate %, and make a local decision
dr € C. In other applications, it is possible that all sensors
receive the same feature vector, that is, x; = X = - -+ = xg.
In such a case, we simply use x = x; without concatenation.
The feature space is the space spanned by the global feature
vector. For each feature vector X, a decision rule maps it into 2
particular class label. Equivalently, the decision rule partitions
the feature space N into disjointed regions. Feature vectors
within each region are assigned to the same label.

For decision fusion, each of the K sensors will forward its
local decision d; to a common fusion center, where a decision
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fusion algorithm will compute a final decision £(d) based only
on a decision vector that consists of the set of local decisions:

d—:[dl dz dK]

The assumption that the fusion center does not have the
global feature vector X to make a decision is important, and
appropriate for wireless communication channels where the
communication cost is very high.

11, COMPLEMENTARY OPTIMAL DECISION FUSION
{CODF)

A. Optimal Decision Fusion

The decision fusion is based on the K x 1 feature vecior d.
There will be at most N¥ different decision vectors. Feature
vectors x mapped to the same decision vector will be assigned
to the same class label. As such the N¥ different decision
vectors will partition the feature space imto N¥ disjoint
regions. Moreover, each of these regions will be assigned
to a specific class label by a decision fusion algorithm. As
such, if the probability of correct decision assignment is
maximized for each individual decision vector, the resulting
decision fusion method will be optimal in the sense that it
maximize the probability of making correct decisions given
only the decision vectors. Therefore, the optimal decision
fusion (ODF) amounts to a look-up table (LUT): In each entry
of this table is a different decision vector and its corresponding
decision assignment. In [6], we have shown that this method
is optimal on the training set, and that such an ODF decision
fusion scheme does not necessarily reach the performance of
a Bayesian decision. ODF is optimal in that it maximizes the
probability of correct decision under the constraint that only
the decision vector d is used for the purpose of decision fusion.

B. Complementary ODF (CODF)

This LUT-based ODF method has the same formulation
as the BKS method proposed by Huang and Suen [7] in
1993. The difference is that the ODF method uses a training
set that has finite number of feature vectors. The impact of
finite number training data is two-fold: First, there may be
fewer training samples than the number of different decision
vectors d, N¥ . Second, there may be too few training samples
falling within each of the ry, regions. In either of these two
cases, there is no sufficient information to infer the proper
class label assignment to that corresponding decision vector d.
Furthermore, depending on the specific structure of individual
component decision makers, it is possible that centain decision
vectors will not occur regardless how many training samples
are available. Another potential drawback of the ODF methed
is that even when there is a sufficient amount of training data,
it is possible that there are too many different entries in the
ODF table. As such, the storage cost of such a decision fusion
classifier will be very high.

To alleviate this problem, we propose a hybrid approach,
We will use a simple and effective non-ODF decision fusion
method to team up with the ODF method. For decision vectors
that the ODF method fail to yield reliable decisions due to

lack of sufficient training samples, we resort to these com-
plementary decision fusion methods. For decision vectors that
both ODF and these methods yield identically correct results,
we choose either ODF or these methods based on trade-offs
between storage cost versus computation cost. For decision
vectors that ODF yield correct results while these non-ODF
decision fusion classifiers yield incorrect result, we use ODFE
As such, the ODF table can be significantly reduced and the
overall performance can be improved. This non-ODF decision
fusion method is used to complement the ODF performance,
and hence this hybrid method will be called complementary
ODF (CODF) method.

C. Proposed Complementary Methods

Some rules are proposed below for use as complementary
methods in the CODF algorithm. These rules may be adapted
for problems with more than two classes identified.

1) Non-Weighted Threshold voting: For a two-class prob-
lem, the simples method is to perform non-weighted voting:

i =04
Y widi(z) 2z ¢ )
i=1 £=Ca

where di(x) = 1 if 2; € C; and d;(z) = 0 if 2; € Cy
and w; = 1 for non-weighted voting. For such a voting
scheme fusing K nodes, there will be K — 1 distinct threshold
possibilities, since the result of such voting scheme will yield
an integer number result for each available class. Therefore,
an optimal threshold can be calculated that will minimize the
error:
ek +1/2) @

in
<K~

L= M8 kg

Here, e(k) is the naumber of errors that occur when threshold
k is selected. This method is the easiest to implement, but may
yield low performance, since all nodes are being weighted
equally. '

2) Weighted Least Square Thresholding: The weighted
least square thresholding assumes that each of the samples
observed will be assigned labels by classifier ¢ as follows:
di(z) = 1if x € Cy and d;(x) = —1 if £ € Ca. 1t is based
on a linear least-squares filter [8], where each decision d;(x)
will be weighted by a value w;, and our observation o for a
set of samples x = a!:n,:rl, .o X Will be:

|

I o{x)=Dw )

where D = [dT(20),d7(z1),d7T (22), ...dT (z)]7 is the
matrix of the decision vectors for the m training samples,
d(z) = [di(z),da(=),...dx(z)} is the decision vector for
sample z and w = [wp,w;,..wg]T is the weight veclor,

where w; is the weight for classifier i. The solution to this
filter is expressed as

! w =Dl 4)

where 1 is the label vector for the training samples, 1 =
({102, ..., Lw]T. For each sample, {; = 1 if z, € C; and
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I; = —1if ,, € Ca. Also, DT is the pseudoinverse of D,
defined as

Xt = (XTX)"'X* (5)
In this case, the error is defined as
e=1-Dw (6)

The sample @ will be assigned ¢ as the label if the
observation is positive, and Cs if the observation is negative.

3) Oprimal Linear Threshold: The optimal linear threshold
method uses the method of steepest descent [8] to obtain
a progressively accurate estimate of an optimal weighting
vector:

wia+1) = w(a) — ng(a) (7)

where a is the order of the iteration, 7 is the learning-rate
parameter, w(a) is the weight vector for the current iteration,
and g(a) is the gradient vecior of the error e(a}, defined as

[ Be(a) Bela) Be(a) 17
gla) = [Bwl(a)’ Bun(a)’" Dwnla)

where the error is defined as

(8)

e(a) = 17,(1- Dw(a)) 9)

with respect to w(a). In equation 9, 1, = [1,1,...,1]7
is an m x 1 vector, which effectively sums the error in the
output label for all training samples. This method uses the
same label-assigning criterion as the previous one.

For this method, we need to set an initial set of weights
and a convergence criterion. For our case, we have chosen
a random initial set of weights and used both minimum
convergence error and maximum number of iteration criterions
for convergence.

4) Local Classifier Accuracy Weighting: This method intu-
itively will assign weights to the different decisions propor-
tional to their accuracy level; i.e., a classifier that is more likely
to be correct will be assigned a larger weight. The weights are
then normalized:

i
pIHIES

where r; is the classification rate for classifier . This
method will yield acceptable results if the accuracy of the
classifiers remains constant among different sets of samples.

5} Following the Leader: This heuristic method will assign
as decision result the label assigned by the classifier most
likely to be correct:

wp = ($10)]

ifi= arg mMaxi i<y i

1
Wi = { 0 otherwise (11}

Thus its performance will depend on whether the behavior
of the classifiers remains constant among different sets of
samples.
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IV. EXPERIMENTS

To select the best svited complementary method for the
CODF scheme, we test the different possibilities using some
standard datasets from a repository from the University of
California at Irvine [9]. We chose some sets that feature
large training feature dimension, large number of samples and
well-defined features for all samples. 10% of the samples in
each set are used to train Maximum Likelihood classifiers on
disjoint subsets of the feature vector’s dimensions, leaving
the remaining 90% for use in the fusion method training
and testing. We used the proposed complementary methods
to develop a fusion rule to fuse the decision set. The size
of the features, the number of classifiers and the size of the
training samples are shown on table I. We use three-way cross
validation to evaluate the performance of each complementary
method for each of the available datasets. Each test is executed
10 times and the results for the occurrences averaged for these
datasets as well. The classification rate of each method is
recorded,

For the two class problems, the performance is measured
using the detection and false alarm probabilities for the global
detector, as well as the overall classification rate when the
problem is treated as a classification problem. The results for
the different datasets and minimum number of samples are
shown in figures 1 to 3. These figures compare the detection
and false alarm rates for the different complementary methods
on each dataset.

As can be seen from these plots, using the Weighted Least
Square Voting method as complementary method generally
yields the best performance - the closest performance to the
100-0 corner in most cases - and is the least dependent on the
minimum number of samples established in the BKS table.
Thus, we choose this complementary method for our proposed
CODF fusion scheme.
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TABLE I
DESCRIPTION OF FEATURE SELECTION AND CLASSIFIER TRAINING FOR DATASETS FROM UC-IRVINE'S REPOSITORY

Dataset Name Feature Dimension | Number of classifiers | Feature Dimension per classifier § Number of samples
Breast Cancer - Wisconsin 9 3 3 683
Tonosphere 34 17 2 351
Tic-Tac-Toe 9 3 3 958
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V. CONCLUSIONS

In this paper we have shown that using a simple algo-
rithm, the optimal decision fusion method can be defined
even without explicitly knowing the classification rates of the
different sensors, or for dependent sensors in a region. We also
have shown experimental results that held our argument. It is
important, however, to have enough features available during
training so that the statistics for each one of the different
regions based on the decision vector results are statistically
defined. Experimental results show that the ODF method has
the lowest training error, the CODF method performs better
than simple ODF under most conditions, and the size of the
CODF table is smailer than the size of the ODF table for all
available complementary rules.

Due (o the reduced size allowed for the paper, no results
were presented regarding real-world sensor data. The reader is
invited to visit our website, http://www.ece.wisc.edu/~sensit,
to review our further work on applications of CODF on sensor
networks.
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