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ABSTRACT
When the techniques of random modulation are used in wide-
band communication receivers, one can design spectrally
shaped sequences that mitigate interferers while preserving
messages to reduce distortion caused by amplifier nonlin-
earity and noise. For sampling rates that are too high for
standard modulation, one can instead rely on multi-branch
architectures involving multiple modulators working at re-
duced sampling rates. In this paper, we propose an algorithm
to design a set of binary sequences to be used in multi-branch
modulation to mitigate a strong interferer while allowing for
stable message recovery. The implementation consists of a
quadratic program that is relaxed into a semidefinite program
combined with a randomized projection. While interferer
signals are often modeled as a subspace under the discrete
Fourier transform, spectrum leakage occurs when the signal
contains so-called off-grid frequencies. The Slepian basis
provides a much better-suited representation for such ban-
dlimited signals that mitigates spectrum leakage. We use
both representations during the evaluation of our design algo-
rithm, where numerical simulations show the advantages of
our sequence designs versus the state of the art.

Index Terms— multi-branch modulation, sequence de-
sign, semidefinite programming, randomized projection,
Slepian basis.

1. INTRODUCTION
Receivers for emerging wireless communication systems are
expected to deal with a very wide spectrum and adaptively
choose which parts of it to extract. A major issue for such
receivers is to process spectra having very weak signals from
a distant source mixed with strong signals from nearby in-
terferers. Recently, random sequences for wideband signal
modulation have been employed in the realization of com-
munication system receivers [1–3]. In essence, the measure-
ments from random modulation and low-pass filtering con-
tain a baseband spectrum that is the linear combination of
all frequency components of the input signal. As the size of
the bandwidth of interest increases, the necessary modulator
sampling rates can be reduced by relying on a multi-branch
modulation architecture that employs multiple sequences.
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In many cases, when the locations of one or more interfer-
ers is known, a modulation to mitigate the interferer is desir-
able to reduce the distortion due to the amplifier nonlinearity.
Therefore, it is promising to replace commonly used pseudo-
random sequences with spectrally shaped sequences that ef-
fectively implement a notch filter to suppress interferers. Fur-
thermore, the sequences used in the different branches should
provide a representation that is not only invertible but well
conditioned in order to be amenable to the presence of noise
in the received signal and in the operation of the hardware.

While the Fourier basis is commonly used to represent
the interferer band as a subspace, it suffers from so-called
spectrum leakage: the energy of a single-tone signal in the
representation of the Fourier basis leaks to all basis elements
whenever the frequency of the signal is not contained in the
set of frequencies sampled by the Fourier basis, which are
known as the on-grid frequencies. Alternatively, the Slepian
basis captures most of the energy of a signal in just a few co-
efficients regardless of its frequency, as long as the frequency
is within a sufficiently compact band of the spectrum [4–7].

In prior work, we proposed a algorithm to design a spec-
trally shaped binary modulation sequence that provides a
passband and notch for the pre-determined message and
interferer bands, respectively [8]. The sequence design prob-
lem was set as a quadratically constrained quadratic program
(QCQP) that uses Fourier basis representations for the mes-
sage and interferer bands. The optimization problem is re-
laxed into a semi-definite program (SDP) relaxation followed
by a randomized projection.

In this paper, we extend this previous work towards an
algorithm for the design of a set of binary sequences used
in multi-branch modulation for signal acquisition. The se-
quences are capable of rejecting the interferer band while pro-
viding a stably invertible linear measurement operator, which
will be amenable for use in real-world setting where the ob-
tained observations are corrupted by noise and other non-
idealities. We include numerical experiments that verify the
good performance of our designs when a sufficient number
of randomized projections far below the size of the exhaus-
tive search space is used in the sequence design. We also
compare the algorithm’s performance when the Fourier and
Slepian bases are used to represent interferer signals, focus-
ing in cases where the interferer frequencies are on-grid and
off-grid.



2. BACKGROUND
We define an N -dimensional complex exponential vector as
F(f) = 1√

N

[
1, ej2πf , . . . , ej2π(N−1)f

]T
, where f ∈ M =

[0, 1] is the corresponding normalized frequency. The ele-
ments of the Fourier basis Fm = F(fm) (m = 1, 2, . . . , N )
sample the normalized frequency range Ω uniformly with the
sampled frequencies fm = (m − 1)/N ∈ Ω, which we also
refer to as on-grid frequencies, while we refer to all other fre-
quencies f ∈M as off-grid frequencies.

Spectrally Shaped Binary Sequence Design: In prior
work [8], we introduced an algorithm to design a spectrally
shaped binary sequence based on an SDP relaxation and ran-
domized projection [9–16]. A spectrally shaped sequence
is designed to provide a passband and notch for fixed mes-
sage and interferer bands, denoted by P ⊆ {f1, . . . , fN}
and S ⊆ {f1, . . . , fN} respectively. We denote by FP =
{Fi : fi ∈ P} and FS = {Fi : fi ∈ S} as the collections of
all discrete Fourier transform basis elements corresponding
to the message and interferer bands, respectively. Our least-
squares approach for designing a binary sequence of length
N can be written as the QCQP

ŝ = arg max
t∈RN

‖FPt‖22

s.t. ‖FSt‖22 ≤ α,
tn

2 = 1, n = 1, 2, . . . , N, (1)

for some interferer tolerance α > 0, where tn denotes the nth

entry of t. Such an integer optimization is NP-hard [16].
An SDP relaxation for the QCQP (1) can be obtained

by noting that ‖FPs‖22 = tr
(
FHP FPssT

)
and ‖FSs‖22 =

tr
(
FHS FSssT

)
, where tr (·) denotes the trace of a matrix.

Lifting s to S = ssT and dropping the rank constrain
rank (S) = 1 provide us with the optimization

Ŝ = arg max
T∈SN

tr
(
FHP FPT

)
s.t. tr

(
FHS FST

)
≤ α,

Tn,n = 1, n = 1, 2, . . . , N, (2)

where Tn,n denotes the nth diagonal entry of T. After solv-
ing the SDP relaxation, the next important step is to extract a
feasible solution s̃ to (1) from the optimal solution Ŝ resulting
from (2) when the rank constrain is not met.

Randomized projection is an efficient way to obtain fea-
sible solutions. Denote the eigendecomposition of Ŝ as Ŝ =
UΣUT , where the columns of U ∈ RN×r are the eigenvec-
tors and the diagonal entries of Σ ∈ Rr×r are the eigenval-
ues, and let v ∈ Rr be a standard Gaussian random vector
i.e., v ∼ N (0, I). Then w = UΣ1/2v, where Σ1/2 is the
entry-wise square root of Σ, maximizes the expected value of
the objective function in (1) and satisfies the corresponding
constraints in expectation. A candidate binary sequence s̃ is
then obtained by quantizing the approximation vector w as

s̃ = sign (w). Such randomized projection and binary quan-
tization are repeated multiple times to provide a set of candi-
date sequences and outputs the best sequences that maximizes
the score function (e.g., the object function in (1)) is selected.

Slepian Basis: It is well-known that any bandlimited
signal must be infinite in the time domain and no signal
with finite length in the time domain can be bandlimited.
In [4, 5], Slepian provided a remarkable representation for
bandlimited, approximately finite-length discrete-time sig-
nals using discrete prolate spheroidal sequences (DPSSs).
Given a length N and a half-bandwidth W ∈ (0, 0.5), the
DPSSs are a collections of N discrete infinite-length signals
that are strictly bandlimited to the frequency range [−W,W ]
but highly concentrated in their first N entries. DPSSs are
defined as the eigenvectors of a procedure that suppresses all
entries of an infinite-length signal except the first N entries
and then filters out all components of the signal outside the
frequency range [−W,W ]. The Slepian basis G1,G2, . . . ,GN
are the first N entries of those DPSSs and forms an orthonor-
mal basis for a subspace approximation to the set of signals
bandlimited to [−W,W ]. Recently, the fast Slepian transform
was proposed for efficient computation of approximated pro-
jections onto the leading Slepian basis elements [6, 7], mak-
ing the Slepian basis a competitive alternative to the Fourier
basis.

The first 2NW elements of the Slepian basis are usually
sufficient to express the N -length samples of any signal ban-
dlimited to the frequency range [−W,W ] [6, 7]. By modulat-
ing the baseband Slepian basis with an element of the Fourier
basis, one can obtain a subspace approximation of signals re-
stricted to any frequency subset of [0, 1]. For example, the
modulated Slepian basis {Fm ◦ G1, . . . ,Fm ◦ GN} can be
used to compactly represent signals bandlimited to the range
[fm −W, fm +W ], where ◦ denotes an entry-wise product.

The most significant difference between the Fourier and
Slepian representations appears for signals containing off-
grid frequencies. For example, when W = 1/N , a complex
exponential x = F(f) for f ∈ [fm−1, fm+1] can be ap-
proximated by a linear combination of three elements of the
Fourier basis A = [Fm−1,Fm,Fm+1] or three elements of
the Slepian basis A = [Fm ◦ G1,Fm ◦ G2,Fm ◦ G3] with
coefficients ĉ = AHx, where AH denotes the conjugate
transpose of A. Figure 1 shows the energy of the coef-
ficients for x under both bases as a function of f , with
m = 4. Although the Fourier basis compacts the signal
energy to a single coefficient when the frequency is on-grid
(i.e., f ∈ {fm−1, fm, fm+1}), some energy is leaked to other
coefficients when the frequency is off-grid. In contrast, the
top three coefficients of the signal in the Slepian basis capture
almost all energy of a signal at all values of the frequency
within the band of interest. Nonetheless, the Fourier basis has
better rejection than the Slepian basis for signals with on-grid
frequencies outside the bandwidth of interest, which also af-
fects its suitability to model signals restricted to a bandwidth
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Fig. 1. Energy of coefficients ĉ for a complex exponential F(f)
projected onto subsets of the Fourier and Slepian bases as a function
of the component frequency f .

within our design approach.

3. SEQUENCE DESIGN

We seek a set of binary sequences that are used to modulate
the received signals in a multi-branch modulation architec-
ture. To block the interferer, the binary sequences should
work as a band-stop filter to provide a notch at the interferer
band. Furthermore, in order to obtain a stable reconstruction
of the message (i.e., a well-conditioned measurement opera-
tor), the sequences should be as close to mutually orthogonal
as possible after projecting onto the message subspace.

We denote by A and B the basis matrices for the interferer
and message band subspaces, respectively. The elements of
both A and B can come from either Fourier basis F or the
Slepian basis G. We denote the number of branches by C
and the sequence oversampling factor by R ≥ 1, so that the
sequences are of length RN . Although we emphasize that
such oversampling is necessary to achieve good performance,
we leave its analysis for future work.

The goal for the sequence design of each branch is to find
a binary sequence s such that the magnitude of its projec-
tion onto the interferer space is minimized while meeting a
target level of approximate orthogonality against previously
obtained sequences. Thus, an approach for sequence design
for the kth branch (k = 1, 2, . . . , C) can be written as the
QCQP

ŝk = arg min
t∈RRN

∥∥AHt
∥∥2
2

s.t.
∣∣ŝTi BBHt

∣∣2 ≤ αRN, i = 1, . . . , k − 1,

t2n = 1, n = 1, . . . , RN, (3)

where ŝi is the designed sequence for the ith branch and α
is the orthogonality tolerance. Following the framework pre-
scribed in Section 2, the SDP relaxation for the QCQP (3)
can be obtained by noting that ‖AHt‖22 = tr

(
AAHttT

)
and |ŝTi BBHt|2 = tr

(
BBH ŝiŝ

T
i BBHttT

)
. By lifting t to

Algorithm 1 Multi-Branch Sequence Design
Input: interferer band basis A, message band basis B, coherence

tolerance α, oversampled length RN , number of branches C,
number of randomized projections L

Output: spectrally shaped sequences ŝ1, ŝ2, . . . , ŝC
1: for k = 1, 2, . . . , C do
2: obtain optimal solution Ŝk to SDP relaxation (4)
3: compute SVD for Ŝk = UΛUT

4: for ` = 1, 2, . . . , L do
5: generate random vector v ∼ N (0, I)
6: obtain approximation by projecting w` = UΛ1/2v
7: obtain candidate by quantization s̃` = sign (w`)
8: end for
9: select best binary sequence

ŝk = arg min
s̃`:1≤`≤L

{∥∥∥AH s̃`

∥∥∥2
2
:
∣∣∣ŝTi BBH s̃`

∣∣∣ ≤ αRN}
10: end for

T = ttT , we obtain the SDP relaxation

Ŝk = arg min
T∈SRN

tr
(
AAHT

)
s.t. tr

(
BBH ŝiŝ

T
i BBHT

)
≤ αRN,

i = 1, . . . , k − 1,

Tn,n = 1, n = 1, 2, . . . , RN. (4)

After obtaining Ŝk, we use the same randomized projection
and binary quantization procedure described in Section 2 to
extract a binary sequence ŝk for the kth branch, and we pro-
ceed iteratively for subsequent branches as shown in Algo-
rithm 1. It is important to generate a sufficiently large num-
ber of candidate sequences to meet the constrains and return
a suitable sequence for each branch. Nonetheless, Section 4
shows that the size of the proposed randomized search is far
smaller than that of the exhaustive search.

For a signal x, each obtained sequence ŝk is used to ob-
tained a measurement yk = ŝTk x. When N = C, we can
collect the measurements from all branches y = STx in or-
der to recover x, where S = [ŝ1, ŝ2, . . . , ŝC ].

4. NUMERICAL EXPERIMENTS
We conduct several experiments to test the performance of
the proposed algorithm for the design of binary sequences for
multi-branch modulation using both the Fourier and Slepian
bases and compare to the baselines described earlier. In the
following experiments, we set the sequence length N = 15,
the oversampling rateR = 15 for all sequence designs tested,
and the branch numberC = 15. The half bandwidth of the in-
terferer band isW = 1/RN such that the interferer band cov-
ers the frequency range S = [fm−1, fm+1] ⊂ M, so that the
on-grid frequency fm = (m−1)/RN (m = 2, 3, . . . , N−1)
is the center frequency of S. The message band covers the rest
of spectrum, i.e., P = (f1, fm−1) ∪ (fm+1, fN ).



For the purpose of simplicity, we use the elements of the
Fourier basis corresponding to the on-grid frequencies in the
message band as the message basis (i.e., B = {Fi : fi ∈ P}).
However, we use two kinds of bases for the interferer band:
the first contains only the elements of the Fourier basis cor-
responding to the on-grid frequencies in the interferer band
(i.e., A = [Fm−1,Fm,Fm+1]); the second is the top three
elements of the Slepian basis for bandwidth W = 1/N
modulated by the element of the Fourier basis Fm (i.e.,
A = [Fm ◦ G1,Fm ◦ G2,Fm ◦ G3]). We refer to the se-
quences obtained from the Fourier and Slepian basis as
Fourier and Slepian sequences, respectively. We compare
the performance of those two sequences with pseudorandom
binary sequences (PRBS), and a single-branch sequence ob-
tained from the approach in [8]; the equivalent measurement
matrix S is the Toeplitz matrix obtained from this sequence.

We use two metrics to judge the performance of the se-
quence designs. We first focus on the band gain. We define
the gain for the measurement operator S at frequency f as the
power of a modulated single tone at f where the original tone
has unit power R(f)dB = 10 log10(

∥∥STF(f)
∥∥2
2
/RN), so

that we have R(f) ≤ 0 dB. We use the minimum gain among
the message band P to represent the message gain. We desire
for modulation to provide large message gain while providing
small interferer gain.

As described in Section 3, it is necessary to have a large
enough set of candidate sequences to return sequences with
satisfied performance. Figure 2 shows the average gain over
10 sequences obtained from Algorithm 1 for each of the pos-
sible choice of on-grid interferer using a varying number of
randomized projections L. Values of R(f) below 60 dB are
thresholded in the figure for clarity. Both Fourier and Slepian
sequences have decreasing interferer gain as the number of
randomized projection increases and outperform their base-
line alternatives, while message gain is essentially invariant.

We also measure the gain as a function of the interferer
frequency offset, i.e., the absolute difference between the in-
terferer frequency and the center frequency of the interferer
band d = |f − fm|RN ∈ [0, 1]. We use Algorithm 1 with
L = 100000 random projections to generate both Fourier se-
quences and Slepian sequence for the interferer band centered
at all possible on-grid frequencies. Figure 2 shows the aver-
age gain over all choices for the center frequency fm as a
function of the offset d. While the gain from PRBS is in-
dependent of the offset, the single, Fourier, and Slepian se-
quences have decreasing performance for off-grid interferers.
Nonetheless, the proposed sequences outperform the alterna-
tives for all d > 0, with Slepian sequences providing better
rejection than Fourier sequences over most values of d.

Next, we focus on the condition number (CN) of BHS,
which is the ratio between the largest singular value and the
smallest singular value of BHS, and can be used to measure
the stability of the measurement operator. Figure 3 shows the
average CN over 100 sequences obtained from Algorithm 1
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Fig. 2. Average gain levels of modulation sequences for message
and interferer components as a function of (top) the number of ran-
dom projections L and (bottom) the interferer frequency offset d.
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Fig. 3. Average CN for multi-branch and PRBS measurement op-
erators as a function of the number of random projections L.

using a varying number of randomized projections L. The
CNs of the Fourier and Slepian sequence matrices are slightly
smaller than that of the PRBS matrix, while those for single
sequence matrices are no less than 100 and thus are not shown
in the figure. Note that the range of values for L used here is
far less than that the size 2RN of the exhaustive search.

5. CONCLUSIONS
In this paper, we proposed an algorithm to design binary se-
quence sets for multi-branch modulation that provide a notch
for a fixed interferer band. The sequence design is imple-
mented as an SDP combined with randomized projection.
Our design considered two options for the basis (Fourier and
Slepian) that represent an approximate subspace for signals
contains in the interferer band. We have numerically shown
that the performance of the designed sequences improves
as the number of randomized projections in the relaxation
increases, both in terms of rejection and stable invertibility.
Our numerical evidence also shows that sequences based on
a Slepian basis representation are more robust to interferers
at off-grid frequencies, but are outperformed by the Fourier
basis representation for frequencies on or near the grid.
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