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ABSTRACT

We consider the problem of selecting an optimal mask for an
image manifold, i.e., choosing a subset of the dimensions of
the image space that preserves the manifold structure present
in the original data. Such masking implements a form of com-
pressed sensing that reduces power consumption in emerg-
ing imaging sensor platforms. Our goal is for the manifold
learned from masked images to resemble the manifold learned
from full images as closely as possible. We show that the pro-
cess of finding the optimal masking pattern can be cast as a
binary integer program, which is computationally expensive
but can be approximated by a fast greedy algorithm. Numeri-
cal experiments show that the manifolds learned from masked
images resemble those learned from full images for modest
mask sizes. Furthermore, our greedy algorithm performs sim-
ilarly to the exhaustive search from integer programming at a
fraction of the computational cost.

Index Terms— Manifold Learning, Masking, Dimen-
sionality Reduction

1. INTRODUCTION

Recent advances in sensing technology have enabled a mas-
sive increase in the dimensionality of data captured from dig-
ital sensing systems. Naturally, the high dimensionality of
data affects various stages of the digital systems, from acqui-
sition to processing and analysis of the data. To meet com-
munication, computation, and storage constraints, in many
applications one seeks a low-dimensional embedding of the
high-dimensional data that shrinks the size of the data repre-
sentation while retaining the information we are interested in
capturing. This problem of dimensionality reduction has at-
tracted significant attention in the signal processing and ma-
chine learning communities.

For high-dimensional data, the process of data acquisition
followed by a dimensionality reduction method is inherently
wasteful, since we are often not interested in obtaining the
full-length representation of the data. This issue has been ad-
dressed by compressed sensing, a technique to simultaneously
acquire and reduce the dimensionality of sparse signals in a
randomized fashion [1]. Compressed sensing provides a good
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match to the requirements of cyber-physical systems, where
power constraints are paramount. For instance, a fundamen-
tal challenge in the design of computational eyeglasses is ad-
dressing stringent resource constraints on data acquisition and
processing that include sensing fidelity and energy budget, in
order to meet lifetime and size design targets [2]. In such
applications, one wishes to reduce the size of the representa-
tion of the data to be processed, often by applying standard
compression algorithms. More recently, the design of lin-
ear embeddings that allow for data processing directly from
lower-dimensional representation has been considered, with
a particular emphasis in imaging [3–6]. However, while the
aforementioned embeddings may reduce the computational
and communication demands, they do not reduce the power
consumption burden of data acquisition. This is because they
require all image pixels to be sensed, and so they cannot be
implemented more efficiently than standard acquisition.

Emerging imaging sensor architectures for embedded sys-
tems significantly increase the flexibility in power consump-
tion by allowing pixel-level control of the acquisition pro-
cess [2, 7]; the power consumption of imaging becomes pro-
portional to the number of pixels to be acquired using the ar-
ray. Thus, it is now possible to meet stringent power and com-
munication requirements by designing data-dependent image
masking schemes that reduce the number of pixels involved
in acquisition while, like the aforementioned linear embed-
dings, preserving the information of interest. The selection of
a masking pattern is ideally driven by knowledge of a model
that captures the relevant information in the data, such as a
nonlinear manifold model for parameter estimation.

In this paper, we consider the problem of designing mask-
ing patterns that preserve the geometric structure of a high-
dimensional dataset modeled as a nonlinear manifold. Note
that in terms of linear embeddings, masking schemes may be
described as a restriction to embeddings where the projec-
tion directions are required to correspond to canonical vec-
tors. Previous work on manifold-based dimensionality reduc-
tion does not address the highly constrained (masking) setting
that is motivated by our application.

2. BACKGROUND

Manifolds and Linear Dimensionality Reduction: A set of
data points X = {x1, x2, . . . , xn} in a high-dimensional am-



bient space Rd that have been generated by an `-dimensional
parameter correspond to a sampling of an `-dimensional man-
ifold M ⊂ Rd. Given the high-dimensional data set X ,
we would like to find the parameterization that has generated
the manifold. One way to discover this parametrization is to
embed the high-dimensional data on the manifold to a low-
dimensional space Rm so that the local geometry of the man-
ifold is preserved. This process is known as dimensionality
reduction, since m� d.

When the dimensionality reduction embedding is linear,
it is defined by a matrix Φ ∈ Rm×d that maps the data in
the ambient space Rd into a low-dimensional space Rm. One
such popular scheme is principal component analysis (PCA),
defined as the orthogonal projection of the data onto a linear
subspace of lower dimension m such that the variance of the
projected data is maximized.

Nonlinear Manifolds and Manifold Learning: Unfor-
tunately, PCA fails to preserve the geometric structure of a
nonlinear manifold, i.e., a manifold where the map from the
parameter space to the data space is nonlinear. Particularly,
since PCA arbitrarily distorts individual pairwise distances,
it can significantly change the local geometry of the mani-
fold. Fortunately, manifold learning methods (or nonlinear
embedding methods) can successfully embed the data into a
low-dimensional space while preserving the local geometry
of the manifold, measured by a neighborhood-preserving cri-
teria that varies depending on the specific method, in order to
simplify parameter estimation.

The Isomap method aims to preserve the pairwise geodesic
distances between data points [8]. The geodesic distance
dG(xi, xj) is defined as the length of the shortest path be-
tween two data points xi, xj ∈ M along the surface of the
manifold M. Isomap first finds an approximation to the
geodesic distances between each pair of data points by con-
structing a neighborhood graph in which each point is con-
nected only to its k nearest neighbors; the edge weights are
equal to the corresponding pairwise distances. For neigh-
boring pairs of data points, the Euclidean distance pro-
vides a good approximation for the geodesic distance, i.e.,
dG(xi, xj) ≈ ‖xi−xj‖2 for xj ∈ Nk(xi), whereNk(xi)
designates the set of k nearest neighbors to point xi ∈ X .
For non-neighboring points, the length of the shortest path
along the neighborhood graph is used to estimate the geodesic
distance. Then, multidimensional scaling (MDS) [9] is ap-
plied to the resulting geodesic distance matrix to find a set of
low-dimensional points that best match such distances.

Linear Dimensionality Reduction for Manifolds: An
alternative linear embedding approach to PCA is the method
of random projections, where the entries of the linear dimen-
sionality reduction matrix are drawn independently following
a standard probability distribution such as normal Gaussian
or Rademacher. One can show that such random projections
preserve the relevant pairwise distances with high probabil-
ity [3, 4]. Unfortunately, random embeddings are indepen-

dent of the geometric structure of the data, and thus cannot
take advantage of training data.

Recently, a data-dependent linear embedding obtained via
convex optimization (referred to as NuMax) has been pro-
posed [5, 10]. The key concept in NuMax is to obtain an
isometry on the set of pairwise data point differences, dubbed
secants, after being normalized to lie on the unit sphere:

S =

{
xi − xj
‖xi − xj‖2

: xi, xj ∈M
}
.

NuMax relies on a convex optimization problem that finds
an embedding Φ into a space with minimum dimension such
that the secants in S are preserved up to a norm distortion
parameter δ. More precisely, finding the linear embedding is
cast as the following rank-minimization problem:

P ∗ = arg min rank(P ) (1)

subject to |sTPs− 1| ≤ δ ∀ s ∈ S, P � 0.

After P ∗ is obtained, one can factorize P ∗ = ΦT Φ in order
to obtain the desired low-dimensional embedding Φ. We note
that the rank of the solution determines the dimensionality of
the embedding, and is controlled by the choice of the distor-
tion parameter δ ∈ [0, 1]. Note also that sTPs = ‖Φs‖22;
thus, the first constraint essentially upper-bounds the distor-
tion incurred by each secant s ∈ S. The problem (1) is NP-
hard, but one may instead solve its nuclear norm relaxation,
where the rank of P is replaced by its nuclear norm ‖P‖∗.
Since P is a positive semidefinite symmetric matrix, its nu-
clear norm amounts to its trace, and thus (1) is equivalent to a
semidefinite program and can be solved in polynomial time.

3. MANIFOLD MASKING

In this section, we emulate the criteria used in linear and
nonlinear embedding algorithms from Section 2 to develop
schemes to obtain structure-preserving masking patterns for
manifold-modeled data. To unify notation, we are seeking a
masking index set Ω = {ω1, . . . , ωm} of cardinality m that
is a subset of the dimensions [d] := {1, 2, . . . , d} of the high-
dimensional space containing the original dataset.

Optimization-Based Mask Selection: Inspired by the
optimization approach of NuMax and the neighborhood-
preservation notion of Isomap, we formulate a method for
manifold masking that aims at minimizing the distortion
incurred by secants of neighboring data points.

Recall that Isomap attempts to preserve the geodesic dis-
tances rather than Euclidean distances of data points. Since
only the Euclidean distances of neighboring data points match
their geodesic counterparts, we are interested in devising a
masking operator than preserves the pairwise distances of
each data point with its k nearest neighbors. This gives rise
to the reduced secant set

Sk =

{
xi − xj
‖xi − xj‖2

: i ∈ [n], xj ∈ Nk(xi)

}
⊆ S.



To simplify notation, we define the masking linear operator
Ψ : xi 7→ {xi(j)}j∈Ω corresponding to the masking index
set Ω. We also denote the squared secants by the column
vectors ai with entries ai(j) = s2

i (j) for all j ∈ [d] and for
each i ∈ [|Sk|]. Since the secants are normalized, we have∑d

j=1 ai(j) = 1 for all i ∈ [|Sk|].
It can be shown [11] that the expectation of the masked

secants over a uniform distribution for the masking index set
Ω is given by E[‖Ψsi‖22] = m

d . Thus, the secants si ∈ Sk
are inevitably subject to a compaction factor of

√
m
d in ex-

pectation by the masking operator Ψ; this behavior bears out
empirically with randomized maskings for the dataset con-
sidered in Section 4. Hence, we will aim to find a masking
Ψ such that for all si ∈ Sk, the squared norm of the masked
secants ‖Ψsi‖22 matches m

d as closely as possible. Note that
‖Ψsi‖22 =

∑
j∈Ω s

2
i (j) =

∑d
j=1 s

2
i (j)z(j) = aTi z, where

the d-dimensional indicator vector z is defined as z(j) = 1
if j ∈ Ω, and zero otherwise. The average and maximum
secant norm distortion caused by masking can be written in
terms of the vector z and the squared secants matrix A :=
[a1 a2 . . . a|Sk|]

T as∑
si∈Sk

∣∣∣‖Ψsi‖22 − m

d

∣∣∣ =
∥∥∥Az − m

d
1|Sk|

∥∥∥
1
,

max
si∈Sk

∣∣∣‖Ψsi‖22 − m

d

∣∣∣ =
∥∥∥Az − m

d
1|Sk|

∥∥∥
∞
,

respectively, where 1|Sk| denotes the |Sk|-dimensional all-
ones vector. Thus, we find a masking pattern by casting the
following integer program:

z∗ = arg min
z

∥∥∥Az − m

d
1|Sk|

∥∥∥
p

(2)

subject to 1Td z = m, z ∈ {0, 1}d,

where p = 1 and p =∞ correspond to optimizing the average
and maximum secant norm distortion caused by the masking,
respectively. The equality constraint dictates that only m di-
mensions are to be retained in the masking process.

The integer program (2) is computationally intractable
even for moderate-size datasets [12]. We note that the nonin-
teger relaxation of (2) results in the trivial solution z∗ = m

d 1d.
Note also that the matrix A depends on the dataset used; thus
in general it does not hold necessary properties for relax-
ations of integer programs to be successful (e.g. being totally
unimodular, having binary entries, etc.).

Greedy Algorithm for Mask Selection: We propose a
heuristic greedy algorithm that can find an approximate so-
lution for (2) in a drastically reduced time. The greedy ap-
proach in Algorithm 1 gives an approximate solution for the
`p-norm minimization in (2). The algorithm iteratively se-
lects elements of the masking index set Ω as a function of the
squared secants matrixA. We initialize Ω as the empty set and
denote Ωc = [d] \Ω. At iteration i of the algorithm, we find a
new dimension that, when added to the existing dimensions in

Algorithm 1 Manifold-Aware Pixel Selection (MAPS)
Inputs: normalized squared secants matrix A, number of
dimensions m
Outputs: masking index set Ω
Initialize: Ω← {}
for i = 1→ m do
ĀΩ ← AΩ · 1|Ω|
ωi ← arg minω∈Ωc ‖Aω + ĀΩ − i

d1|Sk|‖p
Ω← Ω ∪ {ωi}

end for

Ω, causes the squared norm of the masked secant to match the
expected value of i

d as closely as possible; thus, the greedy al-
gorithm pursues the same objective function as the optimiza-
tion approach of (2) for a mask of size i. More precisely, at
step i of the algorithm, we find the column of A indexed by
ω ∈ Ωc (which is indicated by Aω), whose addition with the
sum of previously chosen columns ĀΩ =

∑
ω∈ΩAω has min-

imum distance (in `p-norm) to i
d1|Sk|. Note that ĀΩ = Az,

where z again denotes the indicator vector for the masking
index set Ω ⊆ [d].

4. NUMERICAL EXPERIMENTS

In this section, we present a set of experiments that compare
the performance of the proposed algorithms to those in the
existing linear embedding literature, in terms of preservation
of the low-dimensional structure of a nonlinear manifold. We
evaluate the methods described in Section 3, together with
two baseline methods: random masking, where we pick an
m-subset of the d data dimensions uniformly at random, and
principal coordinate analysis (PCoA), where we select the in-
dices of m dimensions with the highest variance across the
dataset [11]. We use Mosek [13] to solve the binary integer
program in (2), posed as an optimization problem with the
CVX programming interface for Matlab [14].

For our experiments, we use a custom eye-tracking dataset
from a computational eyeglass prototype.1 The Eyeglasses
dataset corresponds to captures from a prototype implemen-
tation of computational eyeglasses that use the imaging sensor
array of [7]. These images are downsampled from their orig-
inal size of 110× 110 pixels to 40× 40 pixels for the benefit
of the integer program’s computational complexity.

The algorithms are tested for linear embeddings of dimen-
sionsm = 50, 100, 150, 200, 250; for the masking algorithms
of Section 3, m provides the size of the masking (number of
dimensions preserved), while for the linear embedding algo-
rithms of Section 2, m provides the dimensionality of the em-
bedding. Note that since the linear embeddings employ all
d dimensions of the original data, the latter algorithms have

1Additional simulations and datasets are presented in [11]. We would like
to thank the authors of [2] for providing us with the eyeglasses dataset.
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Fig. 1. Left: Example images from Eyeglasses dataset. Right: Performance comparison for linear embeddings (dashed lines) and masking
algorithms (solid lines) with respect to original full-length data. Columns from left to right: residual variance as a function of m; percentage
of preserved nearest neighbors for m = 50 and m = 250.

an intrinsic performance advantage against the former. The
performance of random masking is averaged over 100 inde-
pendent draws in each case.

The combinatorial nature of the integer program (2) ren-
ders it significantly expensive in computation. Thus, we
choose to run the integer program for a limited time (24
hours) instead of running to completion. The remaining
masking algorithms each take only up to 20 seconds (for
m = 250) to complete using the same computing platform.

For each selection of masking/embedding algorithm, we
apply Isomap directly on the masked images. We then check
the performance of the manifold embedding obtained from
the masked dataset to that of the manifold embedding from
the full dataset using two different performance metrics.

First, we use residual variance as a global metric to mea-
sure how well the Euclidean distances in the embedded space
match the geodesic distances in the ambient space. We pick
the embedding dimensionality ` = 2 to be the value after
which the residual variance ceases to decrease substantially
with added dimension. Note that the obtained value of `
agrees with the intuitive number of degrees of freedom for
the Eyeglasses dataset (2-D gaze locations). Second, we
use the percentage of preserved nearest neighbors, similar
to [5]. More precisely, for a given neighborhood of size k,
we obtain the fraction of the k-nearest neighbors in the full
d-dimensional data that are among the k-nearest neighbors
when the masked images are considered.

We display the results of manifold learning in Figure 1.
MAPS and the integer program are shown only for the choice
p = 1, as setting p = ∞ yields similar results. We ob-
serve that MAPS significantly outperforms random sampling
and PCoA. Additionally, for small values of m the linear em-
bedding algorithms of Section 2 can significantly outperform
the masking algorithms of Section 3, which is to be expected
since the latter approaches employ all d dimensions of the
original data. More surprisingly, we see that for sufficiently
large values of m the performance of MAPS approaches or
matches that of the linear embedding algorithms, even though
the embedding feasible set for masking methods is signifi-
cantly reduced.
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