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Summary

I We consider the problem of selecting an optimal mask for images modeled
by a manifold, i.e., choosing a subset of the dimensions of the image space
that preserves the manifold structure present in the original data.

I Such masking implements a form of compressed sensing that reduces
power consumption in emerging imaging sensor platforms.

I Our goal is for the manifold learned from masked images to resemble the
manifold learned from full images as closely as possible.

Introduction

I High-dimensional data: data acquisition followed by dimensionality
reduction is inherently wasteful.

I Increased flexibility in power consumption by allowing pixel-level control of
the acquisition process via emerging imaging sensor architecture for
embedded systems.

I Design data-dependent image masking schemes that reduce the number of
pixels involved in acquisition while preserving the information of interest.

Manifold Learning and Linear Dimensionality Reduction:
I An `-dimensional manifold M⊂ Rd is a set of data points
X = {x1, x2, . . . , xn} ⊂ Rd that have been generated according to an
`-dimensional parametric function.

I Goal: Given high-dimensional data set X , find underlying parameterization
of the manifoldM : R`→ Rd .

I Dimensionality reduction: embed data X to low-dimensional space Rm

(m� d) so that local geometry ofM is preserved, i.e., distances in Rm

correspond to parameter differences in R`.
I Linear dimensionality reduction: use a matrix projection Φ ∈ Rm×d , e.g.

principal component analysis (PCA), multidimensional scaling (MDS).
I PCA/MDS fail to preserve geometric structure of a nonlinear manifold.

Nonlinear Manifolds and Manifold Learning:
I Manifold learning methods perform dimensionality reduction while

preserving the local geometry of the manifold.
I Isomap: estimate geodesic distances (along the manifold, proportional to

parameter difference) using shortest paths between data points across
neighborhood graph; apply MDS to these distances [1].

Linear Dimensionality Reduction for Manifolds:
I NuMax: a data-dependent linear embedding obtained via convex

optimization [2]; its goal is to preserve the norms (i.e., act as an isometry) of
set of secants (pairwise differences between points in X ):

S =

{
xi − xj

‖xi − xj‖2
: xi, xj ∈M

}
.

I Optimization finds embedding Φ into a space of minimum dimension m such
that for all s ∈ S, 1− δ ≤ ‖Φs‖2

2 ≤ 1 + δ.

I If secant norms are preserved, then geodesic distance estimates are
preserved as well.

Manifold Masking

I Emulate criteria used in linear/nonlinear embedding algorithms (Isomap,
NuMax) to obtain structure-preserving masking patterns for
manifold-modeled data.

I Seek masking index set Ω = {ω1, . . . , ωm} that is a subset of the dimensions
[d ] := {1,2, . . . ,d} of X ⊂ Rd .

I Define masking linear operator Ψ : xi 7→ {xi(j)}j∈Ω corresponding to masking
index set Ω.
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Optimization-Based Mask Selection:
I Minimize distortion incurred by secants with neighboring k data points:

Sk =

{
xi − xj

‖xi − xj‖2
: i ∈ [n], xj ∈ Nk(xi)

}
⊆ S.

I Expectation of masked secant norms over masking index sets Ω drawn
uniformly at random is E[‖Ψsi‖2

2] = m
d .

I Secants Sk inevitably subject to compaction factor of
√

m
d in expectation by

masking operator Ψ.
I Seek masking Ψ such that for all si ∈ Sk , the squared norm of masked

secants ‖Ψsi‖2
2 ≈ m

d as closely as possible.
I We have ‖Ψsi‖2

2 =
∑

j∈Ω s2
i (j) =

∑d
j=1 s2

i (j)z(j) = aT
i z, where ai = s2

i
entrywise and z is the d-dimensional indicator vector for index set Ω, i.e.,

z(j) =

{
1 if j ∈ Ω,

0 otherwise.

I Squared secants matrix A is an |Sk | × d matrix defined by

A = [a1 a2 · · · ]T = [s2
1 s2

2 · · · ]T .
I Find optimal masking pattern by casting the following integer program:

z∗ = arg min
z

∥∥∥Az − m
d

1|Sk |
∥∥∥

1
(1)

subject to 1T
d z = m, z ∈ {0,1}d ,

where 1d denotes d-dimensional all-ones vector.
I Equality constraint 1T

d z = m: only m dimensions are to be retained in the
masking process.

I Integer program (1) is computationally intractable (run only for 24 hours in
experiments).

Manifold-Aware Pixel Selection (MAPS)

Inputs: normalized squared secants matrix A, number of dimensions m
Outputs: masking index set Ω
Initialize: Ω← {}
for i = 1→ m do
ĀΩ ← AΩ · 1|Ω| {compute current masked secant squared norms}
ωi ← arg minω∈Ωc ‖Aω + ĀΩ − i

d1|Sk |‖1

{minimize aggregate difference with E[‖Ψsi‖2
2]}

Ω← Ω ∪ {ωi} {add selected dimension to the masking index set}
end for

I Heuristic greedy algorithm that can find an approximate solution for (1) in
drastically reduced time (seconds/minutes).

I MAPS iteratively selects elements of the masking index set Ω using the
squared secants matrix A. At iteration i of the algorithm, MAPS finds a new
dimension that, when added to the existing dimensions in Ω, causes the
squared norm of the masked secants to match the expected value of i

d as
closely as possible on average.

I Computational complexity of MAPS is O(md |Sk |) ≈ O(mdkn).

Simulation Results

I Compare (1) and MAPS with two baseline methods: random masking (select
m out of d data dimensions uniformly at random) and principal coordinate
analysis (PCoA), (select indices of m dimensions with the highest variance
across the dataset).

I Eyeglasses dataset: eye-tracking image captures via computational
eyeglasses prototype that uses pixel-level imaging sensor array of [3].

I MAPS significantly outperforms random sampling and PCoA.
I For sufficiently large values of m, the performance of MAPS approaches or

matches that of nonlinear/linear embedding algorithms on full images.
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Performance comparison for linear embeddings (dashed lines) and masking algorithms (solid lines) with respect to
full data. Residual variance as a function of m (left); percentage of preserved nearest neighbors for m = 50 (right).
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