JMASS MHERST

Summary

- ► We consider the problem of *selecting an optimal mask for images modeled* by a manifold, i.e., choosing a subset of the dimensions of the image space that preserves the manifold structure present in the original data.
- Such masking implements a form of compressed sensing that reduces power consumption in emerging imaging sensor platforms.
- Our goal is for the manifold learned from masked images to resemble the manifold learned from full images as closely as possible.

Introduction

- High-dimensional data: data acquisition followed by dimensionality reduction is *inherently wasteful*.
- Increased flexibility in power consumption by allowing *pixel-level control of* the acquisition process via emerging imaging sensor architecture for embedded systems.
- Design data-dependent image masking schemes that reduce the number of pixels involved in acquisition while preserving the information of interest.

Manifold Learning and Linear Dimensionality Reduction:

- An ℓ -dimensional manifold $\mathcal{M} \subset \mathbb{R}^d$ is a set of data points $\mathcal{X} = \{x_1, x_2, \dots, x_n\} \subset \mathbb{R}^d$ that have been generated according to an ℓ -dimensional parametric function.
- Goal: Given high-dimensional data set \mathcal{X} , find underlying parameterization of the manifold $\mathcal{M} : \mathbb{R}^{\ell} \to \mathbb{R}^{d}$.
- Dimensionality reduction: embed data \mathcal{X} to low-dimensional space \mathbb{R}^m $(m \ll d)$ so that local geometry of \mathcal{M} is preserved, i.e., distances in \mathbb{R}^m correspond to parameter differences in \mathbb{R}^{ℓ} .
- ▶ *Linear* dimensionality reduction: use a matrix projection $\Phi \in \mathbb{R}^{m \times d}$, e.g. principal component analysis (PCA), multidimensional scaling (MDS).
- PCA/MDS fail to preserve geometric structure of a nonlinear manifold.

Nonlinear Manifolds and Manifold Learning:

- Manifold learning methods perform dimensionality reduction while preserving the local geometry of the manifold.
- Isomap: estimate geodesic distances (along the manifold, proportional to parameter difference) using shortest paths between data points across neighborhood graph; apply MDS to these distances [1].

Linear Dimensionality Reduction for Manifolds:

NuMax: a data-dependent linear embedding obtained via convex optimization [2]; its goal is to preserve the norms (i.e., act as an isometry) of set of *secants* (pairwise differences between points in \mathcal{X}):

$$\mathcal{S} = \left\{ \frac{X_i - X_j}{\|X_i - X_j\|_2} : X_i, X_j \in \mathcal{M} \right\}.$$

- Optimization finds embedding Φ into a space of minimum dimension *m* such that for all $s \in S$, $1 - \delta \leq ||\Phi s||_2^2 \leq 1 + \delta$.
- If secant norms are preserved, then geodesic distance estimates are preserved as well.

Masking Schemes for Image Manifolds

Hamid Dadkhahi and Marco F. Duarte

Manifold Masking

- Emulate criteria used in linear/nonlinear embedding algorithms (Isomap, NuMax) to obtain *structure-preserving masking patterns for* manifold-modeled data.
- Seek masking index set $\Omega = \{\omega_1, \ldots, \omega_m\}$ that is a subset of the dimensions $[d] := \{1, 2, \dots, d\} \text{ of } \mathcal{X} \subset \mathbb{R}^d.$
- Define masking linear operator $\Psi : x_i \mapsto \{x_i(j)\}_{j \in \Omega}$ corresponding to masking index set Ω .

Optimization-Based Mask Selection:

• Minimize distortion incurred by secants with neighboring k data points:

$$\mathbf{Y}_k = \left\{ \frac{\mathbf{X}_i - \mathbf{X}_j}{\|\mathbf{X}_i - \mathbf{X}_j\|_2} : i \in [n], \mathbf{X}_j \in \mathcal{N}_k(\mathbf{X}_i) \right\} \subseteq \mathcal{S}.$$

- Expectation of masked secant norms over masking index sets Ω drawn uniformly at random is $\mathbb{E}[||\Psi s_i||_2^2] = \frac{m}{d}$.
- Secants S_k inevitably subject to compaction factor of $\sqrt{\frac{m}{d}}$ in expectation by masking operator Ψ .
- Seek masking Ψ such that for all $s_i \in S_k$, the squared norm of masked secants $\|\Psi s_i\|_2^2 \approx \frac{m}{d}$ as closely as possible.
- We have $\|\Psi s_i\|_2^2 = \sum_{i \in \Omega} s_i^2$ entrywise and z is the d-di

$$S_{i}^{2}(j) = \sum_{j=1}^{d} s_{i}^{2}(j)z(j) = a_{i}^{T}z$$
, where $a_{i} = s_{i}^{2}$
dimensional indicator vector for index set Ω , i.e.,
 $z(j) = \begin{cases} 1 & \text{if } j \in \Omega, \\ 0 & \text{otherwise.} \end{cases}$

- Squared secants matrix A is an $|S_k| \times d$ matrix defined by $A = [a_1 \ a_2 \ \cdots]^T = [s_1^2 \ s_2^2 \ \cdots]^T.$
- Find optimal masking pattern by casting the following integer program:

$$z^* = \arg\min_{z} \left\| Az - \frac{m}{d} \mathbf{1}_{|\mathcal{S}_k|} \right\|_1$$

subject to $\mathbf{1}_d^T z = m, z \in \{0, 1\}^d$,

- where 1_d denotes d-dimensional all-ones vector. • Equality constraint $\mathbf{1}_{d}^{T} z = m$: only *m* dimensions are to be retained in the masking process.
- Integer program (1) is computationally intractable (run only for 24 hours in experiments).

Manifold-Aware Pixel Selection (MAPS)

Outputs: masking index set Ω **Initialize:** $\Omega \leftarrow \{\}$ for $i = 1 \rightarrow m \operatorname{do}$ $oldsymbol{A}_{\Omega} \leftarrow oldsymbol{A}_{\Omega} \cdot oldsymbol{1}_{|\Omega|}$ $\omega_i \leftarrow \arg\min_{\omega \in \Omega^c} \|A_\omega + \bar{A}_\Omega - \frac{i}{d}\mathbf{1}_{|S_k|}\|_1$ $\Omega \leftarrow \Omega \cup \{\omega_i\}$

- drastically reduced time (seconds/minutes).
- closely as possible on average.

Simulation Results

- across the dataset).

Acknowledgments and References

This work was supported by NSF Grant IIS-1239341. 5500, pp. 2319-2323, 2000. linear embeddings of manifolds", in SSP, August 2012.

(1)

Inputs: normalized squared secants matrix A, number of dimensions m

{compute current masked secant squared norms}

{minimize aggregate difference with $\mathbb{E}[||\Psi s_i||_2^2]$ } {add selected dimension to the masking index set}

Heuristic greedy algorithm that can find an approximate solution for (1) in

• MAPS iteratively selects elements of the masking index set Ω using the squared secants matrix A. At iteration *i* of the algorithm, MAPS finds a new dimension that, when added to the existing dimensions in Ω , causes the squared norm of the masked secants to match the expected value of $\frac{1}{d}$ as

• Computational complexity of MAPS is $\mathcal{O}(md|\mathcal{S}_k|) \approx \mathcal{O}(mdkn)$.

Compare (1) and MAPS with two baseline methods: random masking (select *m* out of *d* data dimensions uniformly at random) and *principal coordinate* analysis (PCoA), (select indices of m dimensions with the highest variance

Eyeglasses dataset: eye-tracking image captures via computational eyeglasses prototype that uses pixel-level imaging sensor array of [3]. MAPS significantly outperforms random sampling and PCoA.

► For sufficiently large values of *m*, the performance of MAPS approaches or matches that of nonlinear/linear embedding algorithms on full images.

Performance comparison for linear embeddings (dashed lines) and masking algorithms (solid lines) with respect to full data. Residual variance as a function of m (left); percentage of preserved nearest neighbors for m = 50 (right).

[1]. J. B. Tenenbaum, V. de Silva, and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction", Science, vol. 290, no.

[2]. C. Hegde, A. C. Sankaranarayanan, and R.G. Baraniuk, "Near-isometric [3]. A. Mayberry, P. Hu, B. Marlin, C. Salthouse, D. Ganesan, "iShadow:

Design of a Wearable, Real-Time Mobile Gaze Tracker", in MobiSys 2014.