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» We consider the problem of selecting an optimal mask for images modeled
by a manifold, i.e., choosing a subset of the dimensions of the image space
that preserves the manifold structure present in the original data.

» Such masking implements a form of compressed sensing that reduces
power consumption in emerging imaging sensor platforms.

» Our goal is for the manifold learned from masked images to resemble the
manifold learned from full images as closely as possible.

Introduction

» High-dimensional data: data acquisition followed by dimensionality
reduction is inherently wasteful.

» Increased flexibility in power consumption by allowing pixel-level control of
the acquisition process via emerging imaging sensor architecture for
embedded systems.

» Design data-dependent image masking schemes that reduce the number of
pixels involved in acquisition while preserving the information of interest.

Manifold Learning and Linear Dimensionality Reduction:

- An ¢-dimensional manifold M c RY is a set of data points
X = {Xxy,Xo, ..., Xn} C RY that have been generated according to an
(-dimensional parametric function.

» Goal: Given high-dimensional data set X, find underlying parameterization
of the manifold M : R® — RY.

» Dimensionality reduction: embed data X' to low-dimensional space R"
(m < d) so that local geometry of M is preserved, i.e., distances in R
correspond to parameter differences in R°.

- Linear dimensionality reduction: use a matrix projection € R™*9 e.g.
principal component analysis (PCA), multidimensional scaling (MDS).

» PCA/MDS fail to preserve geometric structure of a nonlinear manifold.
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Nonlinear Manifolds and Manifold Learning:

» Manifold learning methods perform dimensionality reduction while
preserving the local geometry of the manifold.

» Isomap: estimate geodesic distances (along the manifold, proportional to
parameter difference) using shortest paths between data points across
neighborhood graph; apply MDS to these distances [1].

Linear Dimensionality Reduction for Manifolds:

» NuMax: a data-dependent linear embedding obtained via convex
optimization [2]; its goal Is to preserve the norms (i.e., act as an isometry) of
set of secants (pairwise differences between points in X):

S:{ A :X,-,XjE./\/l}.
X — Xjl|2

» Optimization finds embedding ¢ into a space of minimum dimension m such

thatforallse€ S,1 -6 < ||s||5<1+4.

» If secant norms are preserved, then geodesic distance estimates are
preserved as well.

Manifold Masking

» Emulate criteria used in linear/nonlinear embedding algorithms (Isomap,
NuMax) to obtain structure-preserving masking patterns for
manifold-modeled data.

» Seek masking index set Q) = {w1,...,wmn} that is a subset of the dimensions
[d] = {1,2,...,d} of X C R.

- Define masking linear operator ¥ : x; — {x;(J) }jeq corresponding to masking

Index set €.
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Optimization-Based Mask Selection:
» Minimize distortion incurred by secants with neighboring k data points:
Xi — Xj ,
Sk = i€ [n], x;eN, x-}gS.
T € = M)
» Expectation of masked secant norms over masking index sets 2 drawn
uniformly at random is E[||Vs;||5] = 7.

» Secants Sy inevitably subject to compaction factor of \/% In expectation by
masking operator V.

» Seek masking ¥ such that for all s; € Sk, the squared norm of masked
secants ||Vs;||5 ~ 7 as closely as possible.

- We have ||Usi[3 = 3. 82(/) = Y74 s7()2(j) = af z, where a; = s
entrywise and z is the d-dimensional indicator vector for index set (, I.e.,
1 if jeq,

Z(]) = <
U) 0 otherwise.
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» Squared secants matrix A is an |Sk| x d matrix defined by

1 =Ist 5 -1

» Find optimal masking pattern by casting the following integer program:
m
H‘I Skl

A:[a1 do -

Z* = argmin HAZ —
Z

1
subjectto 1lz=m,z e {0,1}¢

where 1, denotes d-dimensional all-ones vector.

- Equality constraint 1}z = m: only m dimensions are to be retained in the
masking process.

» Integer program (1) is computationally intractable (run only for 24 hours in
experiments).

Manifold-Aware Pixel Selection (MAPS)

Inputs: normalized squared secants matrix A, number of dimensions m
Outputs: masking index set (2

Initialize: Q2 « {}
fori=1— mdo

Aq <+ Aq - 1ig {compute current masked secant squared norms}
wj <— argmin,cqc HAw + Aq — (L),‘I |5k|H1
{minimize aggregate difference with E[||Vs;]|5]}

Q +— QU {w;i} {add selected dimension to the masking index set}
end for

» Heuristic greedy algorithm that can find an approximate solution for (1) in
drastically reduced time (seconds/minutes).

» MAPS iteratively selects elements of the masking index set €2 using the
squared secants matrix A. At iteration i of the algorithm, MAPS finds a new
dimension that, when added to the existing dimensions in 2, causes the
squared norm of the masked secants to match the expected value of Ci, as
closely as possible on average.

» Computational complexity of MAPS is O(md|Sk|) ~ O(mdkn).

Simulation Results

» Compare (1) and MAPS with two baseline methods: random masking (select
m out of d data dimensions uniformly at random) and principal coordinate
analysis (PCoA), (select indices of m dimensions with the highest variance
across the dataset).

» Eyeglasses dataset: eye-tracking image captures via computational
eyeglasses prototype that uses pixel-level imaging sensor array of [3].

» MAPS significantly outperforms random sampling and PCoA.

» For sufficiently large values of m, the performance of MAPS approaches or
matches that of nonlinear/linear embedding algorithms on full images.
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Performance comparison for linear embeddings (dashed lines) and masking algorithms (solid lines) with respect to
full data. Residual variance as a function of m (left); percentage of preserved nearest neighbors for m = 50 (right).
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