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ABSTRACT

Recent work has leveraged sparse signal models for parame-
ter estimation purposes in applications including localization
and bearing estimation. A dictionary whose elements corre-
spond to observations for a sampling of the parameter space
is used for sparse approximation of the received signals; the
resulting sparse coefficient vector’s support identifies the pa-
rameter estimates. While increasing the parameter space sam-
pling resolution provides better sparse approximations for ar-
bitrary observations, the resulting high dictionary coherence
hampers the performance of standard sparse approximation,
preventing accurate parameter estimation. To alleviate this
shortcoming, this paper proposes the use of structured sparse
approximation that rules out the presence of pairs of coher-
ent dictionary elements in the sparse approximation of the
observed data. We show through simulations that our pro-
posed algorithms offer significantly improved performance
when compared with their standard sparsity-based counter-
parts. We also verify their robustness to noise and applicabil-
ity to both full-rate and compressive sensing data acquisition.

Index Terms— localization, bearing estimation, struc-
tured sparsity, coherence, compressive sensing

1. INTRODUCTION

Sparse signal models have received significant attention in the
last decade. Their most popular applications include lossy
signal compression [1], denoising [2], and compressive sens-
ing [3, 4]. Sparse signal models have also been used recently
to solve parameter estimation problems such as spectral esti-
mation, localization, and bearing estimation [5–7]. In these
cases, the parameter space (e.g., the sets of possible angles
of arrival, locations, or signal frequencies) is sampled in a
discrete fashion, and a dictionary is formed by collecting the
observations corresponding to the sampled parameter values
as dictionary elements. The parameter estimation problem
then reduces to finding a representation of the observed sig-
nals as the linear combination of as few of the dictionary el-
ements as possible, a problem solved by sparse approxima-
tion algorithms [8]. The chosen elements are then linked to
the corresponding values of the samples from the parameter
space, which are offered as the output parameter estimates.
Since sparsity is introduced as a signal model, such param-
eter estimation approaches are immediately compatible with

compressive sensing (CS) techniques that reduce the dimen-
sionality of the data representation [6, 7, 9–11].

Such sparsity models for parameter estimation are accu-
rate only if the parameter values being observed are contained
within the set of sampled values that generates the dictionary
under use [12–14]. Since the map between parameter values
and observations is often smooth, increasing the resolution of
parameter sampling will enlarge both the set of events that
lead to exact parameter estimation as well as the set of events
that lead to accurate parameter estimation using the sparsity
model, keeping the parameter estimation error low [7].

Unfortunately, it is well known that the performance of
such sparse approximation algorithms greatly suffers when
the dictionary involved exhibits high coherence [8]. In pa-
rameter estimation applications, the dictionary coherence
increases as the resolution of the parameter space sampling
grows finer. This behavior can be attributed in many cases
to ambiguity or resolution issues in the underlying parameter
estimation problem, and may prevent accurate estimation via
sparsity — even for the simplest problems.

In this paper, we expand the approach of [7] for successful
recovery of frequency-sparse signals to address the shortcom-
ings of high-resolution sparsity-based parameter estimation.
The centerpiece of our approach is the application of a struc-
tured sparsity model [15] that prevents coherent dictionary
elements from appearing simultaneously in a signal approx-
imation. The modification to baseline approaches is simple
and computationally efficient, and achieves a significant im-
provement in the performance of the sparsity-based parameter
estimation algorithm as the resolution of the parameter space
sampling increases. As examples, we apply our new approach
to the applications of localization and bearing estimation.

2. BACKGROUND

2.1. Sparsity-based parameter estimation
We assume that a map M : Θ → CL provides a link be-
tween a parameter value θ ∈ Θ and an L-sample observa-
tion x = M(θ). The goal of parameter estimation is to
invert the mapping in order to obtain an estimate of the pa-
rameter θ̂ from observations y = x + n, where n represents
the observation noise. Consider the case where the signal
x corresponds to a linear combination of observations cor-
responding to K distinct unknown parameter values. More
specifically, x =

∑K
k=1 akM(θk), and the goal of param-



eter estimation is to obtain the parameter values θ1, . . . , θk
from y. For this purpose, we can consider a dictionary ΨΩ =
[M(ω1) . . . M(ωN )] containing observations for a sampling
of parameter values Ω = {ω1, . . . , ωN} ⊆ Θ. If the sam-
pling is rich enough that {θ1, . . . , θK} ⊆ Ω, then we can ex-
press the observations as the matrix-vector product x = ΨΩc,
where c ∈ CL is a K-sparse coefficient vector (i.e., a vector
containing only K nonzero entries).

The vector c can be accurately estimated from the obser-
vations y when the noise power ‖n‖ is small enough and the
dictionary is sufficiently incoherent. The worst-case coher-
ence µ(ΨΩ) corresponds to the largest absolute value of the
inner product between two distinct dictionary elements:

µ(ΨΩ) = max
p 6=q

|〈M(ωp),M(ωq)〉|
‖M(ωp)‖‖M(ωq)‖

. (1)

The majority of existing sparse approximation algorithms re-
quire µ(ΨΩ) ≤ 1/(2K − 1) to be successful [8]; this bound
limits the maximum value of the sparsity K for which the co-
efficient vector c can be accurately estimated from the noisy
observations y. We focus in the sequel on the iterative hard
thresholding (IHT) algorithm [16], which sets an initial esti-
mate ĉ0 = 0 and then refines the estimate iteratively as

ĉt = TK(ĉt−1 + ΨH
Ω (y −ΨΩĉt−1)) (2)

until a convergence criterion is met. Here, TK(c) describes a
K-thresholding operation that preserves the K entries of the
vector c with largest absolute values, while setting all other
entries to zero. Such a thresholding operation provides the
best K-term sparse approximation to the input vector c [1, 2].
Other algorithms such as CoSaMP, FPC, and GPSR obtain
improved performance with slightly higher computational
complexity for signal recovery while still relying on basic
matrix product and thresholding operations [17].

For the case where the dictionary is incoherent and K is
small, it is also possible to perform sparsity-based parameter
estimation from compressive sensing (CS) measurements via
a random projection matrix Φ ∈ CM×L [3, 4], where our ob-
servations are now given by y = Φx+n. We simply need for
the number of measurements to obey M = O(K logL) and
for the recovery algorithm (2) to replace the matrices ΨΩ and
ΨH

Ω by A = ΦΨΩ and AH , respectively [18, 19].

2.2. Issues with sparsity-based parameter estimation
Unfortunately, the performance of sparsity-based parameter
estimation suffers significantly in the case where one of the
observed parameter values θk /∈ Ω [7, 12–14]. It may still be
possible that the closest parameter value in Ω to θk provides
a dictionary vector M(ωi) that is a good approximation to
the observationM(θk) (i.e., ‖M(ωi)−M(θk)‖ is small). In
such a case, the sparse approximation algorithm can be mod-
ified to handle such inaccuracies. Thus, we may expect suffi-
ciently accurate parameter estimation as long as the parameter
space sampling Ω is sufficiently dense.
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Fig. 1. Coherence |〈M(θp),M(θq)〉|/‖M(θp)‖‖M(θq)〉‖ as a
function of the parameter distance |θp−θq| for the localization (top)
and bearing estimation (bottom) examples.

It turns out that the coherence of the dictionary µ(ΨΩ)
often increases as the resolution of the parameter space sam-
pling grows finer. Such increase prevents sparsity-based pa-
rameter estimation approaches from achieving good perfor-
mance due to the coherence-induced shortcomings of sparse
approximation. As examples, Figure 1 shows the absolute
value of the inner product |〈M(θ1),M(θ2)〉| as a function of
the difference |θ1 − θ2| for the localization and bearing es-
timation examples described in Section 4. The figures show
that as the sampling resolution mini,j |θi − θj | decreases, the
value of the inner product (and by extension the worst-case
coherence) approaches the maximum value of 1, severely lim-
iting the performance of sparse approximation algorithms for
sparse recovery purposes.

3. STRUCTURED SPARSE APPROXIMATION
FOR PARAMETER ESTIMATION

In recent work, we have addressed the coherence shortcoming
in parametric dictionaries for CS recovery of spectrally sparse
signals [7], allowing a significant reduction in the number of
measurements necessary for accurate recovery. We propose to
apply the same framework to parameter estimation problems.

The goal of our modified approach is to bypass the short-
coming introduced through dictionary coherence by avoiding
signal representations that employ coherent pairs of dictio-
nary elements. More specifically, we exchange the threshold-
ing operation in (2) with a structured sparse approximation
ĉ = SK(c, µ0) that prevents coherent pairs of dictionary el-
ements (i.e., |〈M(ωp),M(ωq)〉|

‖M(ωp)‖‖M(ωq)‖ ≥ µ0) from appearing in the
approximation x̂ = ΨΩĉ. This optimal structured sparse ap-
proximation can be obtained via linear programming [7, 20];
for computational simplicity, we focus on a computationally
efficient heuristic presented as Algorithm 1. The combination
of Algorithm 1 and (2) provides us with a structured sparsity-
based parameter estimation algorithm that prevents the short-
comings introduced by coherence. We name the resulting
approaches localization via structured sparsity (LoStS) and



Algorithm 1 Structured sparse approximation ĉ = SK(c, µ0)

1: Inputs: Coefficient vector c ∈ CL, target coherence µ0

2: Outputs: Approximation ĉ ∈ CL to coefficient vector
3: Initialize ĉ = 0, i = 1.
4: while i < K and c 6= 0 do
5: l∗ = arg max1≤l≤L |c(l)|
6: ĉ(l∗) = c(l∗)

7: Λ = {p :
|〈M(ωp),M(ωl∗)〉|
‖M(ωp)‖‖M(ωl∗)‖ ≥ µ0}

8: c|Λ = 0
9: i = i+ 1

10: end while
11: return ĉ

bearing estimation via structured sparsity (BEStS). Similar
extensions can also be formulated for more sophisticated al-
gorithms but fall outside the scope of this paper.

4. SIMULATIONS

Our simulations test the performance of sparsity-based pa-
rameter estimation in localization and bearing estimation
leveraging the models of standard sparsity (IHT) and struc-
tured sparsity (LoStS and BEStS). For both cases, we set the
number of sources to K = 5, which is equal to the number of
parameters to be estimated. We do not present results for the
approach of [7, 20] due to its computational complexity.

In the bearing estimation simulations, a linear array of 10
microphone sensors at a spacing of 25 cm records a 31.25
ms observation at a sampling rate of 256 KHz, resulting in
an observation of length 8192 samples for each sensor. Each
source, assumed to be far enough from the array to be ob-
served as a point target, is located at a bearing angle randomly
selected to machine precision, with sufficient spacing among
sources so that the coherence limit µ0 is not reached. Each
source transmits a beacon at a frequency of 500 kHz; the lin-
ear array observations are concatenated in a single vector and
a dictionary is built by collecting observations of a single tar-
get for an N -point sampling of the bearing range [0o, 180o].

In the localization simulations, a set of 20 microphone
sensors randomly deployed in a field of 340× 340 m records
a 2.5 s observation at a sampling rate of 200 Hz, resulting in
an observation of length 512 samples for each sensor. The
source locations are randomly selected within the field to ma-
chine precision, with sufficient spacing among sources so that
the coherence limit µ0 is not reached. Each source transmits
a known MSK-modulated binary sequence; the sensor obser-
vations are concatenated in a single vector and a dictionary is
built by collecting observations of a single target for an N2-
point two-dimensional sampling of the spatial field [0, 340]2.

We perform parameter estimation from (i) full-length ob-
servations compressed and decompressed via transform cod-
ing to an K = 100-coefficient representation, and (ii) M =
100 CS random projections using (i) standard sparsity (IHT)
and (ii) structured sparsity (LoStS and BEStS) with the cor-
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Fig. 2. Performance of sparse and structured sparse approximation
for localization (top) and bearing estimation (bottom) as a function
of the size of the parameter space sampling grid.

responding dictionaries for localization and bearing estima-
tion. In both applications, we set the coherence target level
µ0 = 0.2, which is also provided as input to the LoStS and
BEStS algorithms.

Figure 2 shows the performance of parameter estimation
(in terms of median estimation error among 100 trials) as a
function of the size of the parameter space sampling grid.
While the performance of standard sparsity methods suffers
greatly due to the increasing coherence that is induced by the
finer parameter space sampling, the use of structured spar-
sity enables the desired improvement in performance as N
increases. The performance behavior is similar for the full-
length signal and CS measurement cases, which highlights the
fact that the results are due to the parameter sampling rather
than the particular signal representation chosen. In addition,
Figure 3 shows the performance of parameter estimation as a
function of the measurement-to-noise ratio for a fixed resolu-
tion of the parameter space sampling. The figure shows that
while the performance degrades gracefully in all cases as the
noise power increases, the performance of structured sparsity-
based algorithms is significantly improved over their standard
sparsity-based counterparts. Additionally, the full-length sig-
nal setup exhibits better robustness to noise than the CS setup
(i.e., CS performs equally or better than full-rate sampling
only for sufficiently high SNRs), a behavior that has received
increasing attention in the CS community [21, 22] and trans-
lates to the sparsity-based parameter estimation setup.

5. CONCLUSIONS

The integration of sparse signal models in parameter estima-
tion introduces a tradeoff between the fidelity of the sparse
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Fig. 3. Performance of sparse and structured sparse approximation
for localization (N = 2562, top) and bearing estimation (N = 256,
bottom) as a function of the measurement-to-noise ratio.

approximation of the observations (which requires fine-rate
parameter space sampling) and the decreasing performance of
standard sparse approximation algorithms (which restrict the
parameter space sampling rate that will still allow accurate
estimation). We have proposed a structured sparse approx-
imation algorithm that can achieve the promised parameter
estimation performance improvements with higher-resolution
parametric dictionaries by preventing pairs of coherent dic-
tionary elements from appearing together in the output of the
sparse approximation algorithm. While our algorithm pro-
vides significant improvements for observations that do not
manifest coherence (i.e., with pairwise sufficiently-spaced pa-
rameters), it shares a resolution limitation with many legacy
parameter estimation algorithms that is manifested in the co-
herence of the parametric dictionary. Additional refinement
of the structure applied by the sparse approximation algorithm
on the parameter estimation output to address such resolution
ambiguities remains an interesting topic for future work.
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