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ABSTRACT

We propose an approximation framework for distributed tar-

get localization in sensor networks. We represent the un-

known target positions on a location grid as a sparse vec-

tor, whose support encodes the multiple target locations.

The location vector is linearly related to multiple sensor

measurements through a sensing matrix, which can be lo-

cally estimated at each sensor. We show that we can suc-

cessfully determine multiple target locations by using lin-

ear dimensionality-reducing projections of sensor measure-

ments. The overall communication bandwidth requirement

per sensor is logarithmic in the number of grid points and

linear in the number of targets, ameliorating the communica-

tion requirements. Simulations results demonstrate the per-

formance of the proposed framework.

1. INTRODUCTION

Target localization using a set of sensors presents a

quintessential parameter estimation problem in signal pro-

cessing. Many design challenges arise when the sensors are

networked wirelessly due to the limited resources inherent to

the sensor network. For example, any inter-sensor commu-

nication exerts a large burden on the sensor batteries. Since

sufficient statistics are often non-existent for the localization

problem, accurate localization requires the full collection of

the network sensing data. Thus, the choice of algorithms is

usually steered away from those achieving optimal estima-

tion. To increase the lifetime of the sensor network and to

provide scalability, low dimensional data statistics are often

used as inter-sensor messages, such as local range or bearing

estimates at the sensors. Hence, the sensor network localiza-

tion performance is sacrificed so that the sensors can live to

observe another day.

To improve the estimation performance and robustness

of the sensor network in the presence of noise over classical

maximum likelihood and subspace methods, sparsity based

localization have been slowly gaining popularity [1–5]. The

main idea in these papers is that under specific conditions [6],

the localization estimates can be obtained by searching for

the sparsest solution of under-determined linear system-of-

equations that frequently arise in localization. In this context,
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a vector is called sparse if it contains only a small number of

non-zero components in some transform domain, e.g, Fourier

or wavelets. The ℓ0-norm is the appropriate measure of the

sparsity, which simply counts the number of non-zero ele-

ments of a vector. Unfortunately, minimizing the ℓ0-norm is

NP-hard and becomes prohibitive even at moderate dimen-

sions. At the cost of slightly more observations, it has been

proven that ℓ1-norm minimization results in the same solu-

tion and has computational complexity on the order of the

vector dimensions cubed [7, 8].

We formulate the localization problem as the sparse ap-

proximation of the measured signals in a specific dictionary

of atoms. The atoms of this dictionary are produced by dis-

cretizing the space with a localization grid and then syn-

thesizing the signals received at the sensors from a source

located at each grid point. We show how this localization

dictionary can be locally constructed at each sensor. Within

this context, the search of the sparsest approximation to the

received signals that minimizes the data error implies that

the received signals were generated by a small number of

sources located within the localization grid. Hence, our algo-

rithm performs successful source localization by exploiting

the direct relationship between the small number of sources

present and the corresponding sparse representation for the

received signals. We assume that the individual sensor loca-

tions are known a priori; however, the number of sources

need not be known. The resulting sparse approximation

problem can be solved using greedy methods such as orthog-

onal matching pursuit [9] or other solvers such as fixed point

continuation methods [10].

Since we are interested in distributed estimation over

wireless channels where minimizing communications is cru-

cial, we discuss how to solve the localization problem when

lower dimensional projections of the sensor signals are

passed as inter-sensor messages. To preserve the informa-

tion content of these messages, a projection matrix must be

chosen so that it is incoherent with the sparsifying basis, i.e.,

the localization dictionary. Fortunately, a matrix with inde-

pendent and identically distributed (i.i.d.) Gaussian entries

satisfies the incoherence property with any fixed basis with

high probability [11]. Based on results from compressive

sensing (CS) [7, 8], we show that the total number of sam-

ples that are needed for recovering the locations of K targets

is O(K log(N/K)), where N is the number of grid points. We

also show that the total number of bits encoding the sensor

measurements that must be communicated can be made quite

small with graceful degradation in performance.
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Given that (i) each sensor has a localization dictionary,

(ii) we would like to localize the target locations within a

certain resolution as defined by N, and (iii) the total num-

ber of targets is much less than the number of grid points

(the sparsity assumption), an estimate of multiple target lo-

cations within our framework can be done when each sen-

sor receives at least O(K log(N/K)) samples. This implies

that the resolution of the grid and the expected number of

targets rather than the number of sensors define the commu-

nication bandwidth, hence the proposed localization frame-

work is scalable and is suitable for distributed estimation.

Compared to the other distributed estimation methods such

as belief propagation [12–14], our approach does not require

a refinement process where local message passing is contin-

ued until the sensor network reaches convergence. However,

such scheme can still be used to improve the localization ac-

curacy within our framework. Compared to the decentralized

data fusion [15], our approach does not have data association

problems, which is combinatorial in the number of targets K.

Moreover, due to the democratic nature of the measurements

within our framework, our approach has built in robustness

against packet drops commonly encountered in practice in

sensor networks. In contrast, when low dimensional data

statistics, such as local range and bearing estimates, are used

in distributed estimation algorithms, package drops result in

significant performance degradation.

Similar to our paper, other sparse approximation ap-

proaches to source localization have been proposed be-

fore [1–5]. In [1], spatial sparsity is assumed to improve

localization performance; however, the computational com-

plexity of the algorithm is high, since it uses the high-

dimensional received signals. Dimensionality reduction

through principal components analysis was proposed in [2];

however, this technique is contingent on knowledge of the

number of sources present for acceptable performance and

also requires the transmission of all the sensor data to a cen-

tral location to perform singular value decomposition. Sim-

ilar to [2], we do not have incoherency assumptions on the

source signals. In [3], along with the spatial sparsity as-

sumption, the authors assume that the received signals are

also sparse in some known basis and perform localization in

near and far fields; however, similar to [1], the authors use the

high-dimensional received signals and the proposed method

has high complexity and demanding communication require-

ments. CS was employed for compression in [4, 5], but the

method was restricted to far-field bearing estimation. In con-

trast, this paper extends the CS-based localization setting to

near-field estimation, and examines the constraints necessary

for accurate estimation in the number of measurements and

sensors taken, the allowable amount of quantization, the spa-

tial resolution of the localization grid, and the conditions on

the source signals.

The paper is organized as follows. Section 2 lays down

the theoretical background for CS, which is referred in the

ensuing sections. Construction of the sensor localization

dictionaries is described within the localization framework

in Sect. 3. Section 4 describes the spatial estimation lim-

its of the proposed approach such as minimum grid spac-

ing or maximum localization grid aperture. Section 5 dis-

cusses communication aspects of the problem including the

message passing details and the bandwidth requirements. Fi-

nally, simulation results demonstrating the performance of

the localization framework are given in Sect. 6.

2. COMPRESSIVE SENSING BACKGROUND

CS provides a framework for integrated sensing and com-

pression of discrete-time signals that are sparse or compress-

ible in a known basis or frame. Let z denote a signal of in-

terest, and Ψ denote a sparsifying basis or frame, such that

z= Ψθ , with θ ∈R
N being a K-sparse vector, i.e. ‖θ‖0 = K.

Transform coding compression techniques acquire first z in

its entirety, and then calculate its sparse representation θ in

order to encode its nonzero values and their locations. CS

aims to preclude the full signal acquisition by measuring a

set y of linear projections of z into vectors φi, 1 ≤ i ≤ M. By

stacking these vectors as rows of a matrix Φ, we can repre-

sent the measurements as y = Φz = ΦΨθ . The main result

in CS states that when the matrix ΦΨ holds the restricted

isometry property (RIP) [8], then the original sparse repre-

sentation θ is the unique solution to the linear program

θ̂ = arg min
θ∈RN

‖θ‖1 s.t. y = ΦΨθ , (1)

known as Basis Pursuit [6]. Thus, the original signal z can

be recovered from the measurement vector y in polynomial

time. Furthermore, choosing Φ to be a matrix with inde-

pendent gaussian-distribtued entries satisfies the RIP for ΦΨ

when Ψ is a basis or tight frame and M = O(K log(N/K)).
Recovery from noisy measurements can be performed using

Basis Pursuit Denoising (BPDN), a modified algorithm with

relaxed constraints. We employ a fixed point continuation

method [10] to solve the BPDN optimization efficiently.

3. LOCALIZATION VIA SPATIAL SPARSITY

In a general localization problem, we have L + 2 parame-

ters for each of the targets at each estimation period: the 2D

coordinates of the source location and the source signal it-

self, which has length L. In general, the estimation of the

these parameters are entangled: the source signal estimate

depends on the source location, and viceversa. Our formu-

lation can localize targets without explicitly estimating the

source signal, therefore reducing computation and commu-

nication bandwidth.

Assume that we have K sources in an isotropic medium

with P sensors with known positions ζi = [ζxi, ζyi]
′ (i =

1, . . . ,P) on the ground plane. We do not assume that the

number of sources K is known. Our objective is to deter-

mine the multiple target locations χi = [χxi, χyi]
′ using the

sensor measurements. To discretize the problem, we only al-

low the unknown target locations to be on a discrete grid of

points ϕ = {ϕn|n = 1, . . . ,N;ϕn = [ϕxn,ϕyn]
′}. By perform-

ing this discretization and limiting the number of sources to

be localized, the localization problem can be cast as a sparse



approximation problem of the received signal, where we ob-

tain a sparse vector θ ∈ R
N that contains the amplitudes of

the sources present at the N target locations. Thus, this vec-

tor only has K nonzero entries. We refer to this framework

as localization via spatial sparsity (LVSS).

Define a linear convolution operator for signal propaga-

tion, denoted as Lχ→ζ , which takes the continuous signal for

a source at a location χ and outputs the L samples recorded

by the sensor at location ζ , by taking into account the physics

of the signal propagation and multipath effects. Similarly,

define the pseudoinverse operator L
†

ζ→χ
that takes an ob-

served signal at a location ζ and deconvolves to give the

source signal, assuming that the source is located at χ . A

simple example operator that accounts for propagation atten-

uation and time delay can be written as

Lχ→ζ (x) =

[
1

dα
χ ,ζ

x

(
l

Fs

−
dik

c

)]L

l=1

,

where dχ ,ζ is the distance from source χ to sensor ζ , c is the

propagation speed, α is the propagation attenuation constant,

and Fs is the sampling frequency for the L samples taken.

Additionally, denote the signal from the kth source as xk

We can then express the signal received at sensor i as zi =
Xiθ , where

Xi =
[
Lχ1→ζi

(x1) Lχ2→ζi
(x2) . . . LχN→ζi

(xN)
]

is called the ith sensor’s source matrix. Similarly, we can ex-

press the signal ensemble as a single vector Z= [zT
1 . . . zT

P ]T ;

by concatenating the source matrixes into a single dictionary

Ψ = [XT
1 XT

2 . . . XT
1 ]T , (2)

the same sparse vector θ used for each signal generates the

signal ensemble as Z = Ψθ .

An estimate of the jth sensor’s source matrix X j can be

determined using the received signal at a given sensor i. If

we assume that the signal zi observed at sensor i is originated

from a single source location, we can then write

X̂ j|i =
[
Lχ1→ζ j

(L †

ζi→χ1
(zi)) . . . LχN→ζ j

(L †

ζi→χN
(zi))

]
.

Furthermore, we can obtain an estimate Ψ̂i of the signal en-

semble sparsity dictionary by plugging in the source matrices

estimates into (2).

Thus, by having each sensor transmit its own received

signal zi to all other sensors in the network (or to a central

processing unit), we can then apply a sparse approximation

algorithm to Z and Ψ̂i to obtain an estimate of the sparse

location indicator vector θ̂i at sensor i. By using CS theory,

we can reduce the amount of communication by having each

sensor transmit M = O(K log(N/K)) random projections of

zi instead of the L-length signal.

4. RESOLUTION OF THE GRID

The dictionary obtained in this fashion must meet the condi-

tions for successful reconstruction using sparse approxima-

tion algorithms. A necessary condition was posed in [16]:

Theorem 1 [16] Let Ψ ∈ R
L×N be a dictionary and ψ j de-

note its jth column. Define its coherence µ(Ψ) as

µ(Ψ) = max
1≤ j,k≤T, j 6=k

∣∣〈ψ j,ψk

〉∣∣
∥∥ψ j

∥∥‖ψk‖
,

Let K ≤ 1 + 1/16µ and let Φ ∈ R
M×L be a matrix with i.i.d.

Gaussian-distributed entries, where M ≥ O(K log(N/K)).
Then with high probability, any K-sparse signal θ can be

reconstructed from the measurements y = ΦΨθ through the

ℓ1 minimization (1).

Thus, the coherence of the dictionary used by the sensor

controls the maximum number of localizable sources. Define

the normalized cyclic autocorrelation of a signal z as

Rz[m] =
∑L

n=1 z(tn)z(tmod[(n+m),L])

‖z‖2
.

Then µ(Ψi) depends on Rz[m], since

∣∣〈ψi, j,ψi,k

〉∣∣
∥∥ψi, j

∥∥∥∥ψi,k

∥∥ =

∑P
p=1

Rzi

[
Fs
c (dχ j ,ζp

−dχk ,ζp
−dχ j ,ζi

+dχk ,ζi
)
]

(
dχ j ,ζp

dχk ,ζp

)α

√(
∑P

p=1 d−α
χ j,ζp

)(
∑P

p=1 d−α
χk,ζp

) .

The coherence µ will thus depend on the maximum value

attained by Rzi

[
Fs
c
(dχ j,ζp

−dχk,ζp
−dχ j,ζi

+ dχk,ζi
)
]
; we as-

sume that the cyclic autocorrelation function is inversely pro-

portional to its argument’s absolute value. The coherence

then depends on the minimum value of the function’s argu-

ment. In the location grid setting, this minimum is approxi-

mately ∆/2D, with ∆ denoting the grid spacing, and D denot-

ing the maximum distance between a grid point and a sensor.

Such maximum distance D is dependent on both the exten-

sion of the grid and the diameter of the sensor deployment.

In summary, to control the maximum coherence, it will

be necessary to establish lower bounds for the localization

resolution – determined by the grid spacing – and upper

bounds for the extension of the grid and the diameter of the

sensor deployment.

5. INTER-SENSOR COMMUNICATIONS

Compared to distributed estimation algorithms that use a sin-

gle low dimensional data statistic from each sensor, the spar-

sity based localization algorithms [1–3] require the collection

of the observed signal samples to a central location. Hence,

for a sensor network with single sensors, a total of P × L

numbers must be communicated as opposed to, for example,

P received signal strength (RSS) estimates. Since L is typ-

ically a large number, the lifetime of a wireless sensor net-

work would be severely decreased if such a scheme is used.



Considering the lifetime extension, the performance degra-

dation in target localization is considered a fair tradeoff.

Starting with the knowledge of the localization dictionary

Ψ at any given sensor, CS results state that to perfectly re-

cover a K sparse vector in N dimensions, O(K log(N/K))
random projections of Z are needed. This can easily be

achieved at each sensor by multiplying the sensed signal by

a pre-determined random projection matrix before communi-

cation, effectively resulting in a block diagonal measurement

matrix structure [17]. Thus, the dominant factor of the com-

munication bandwidth becomes the number of grid points,

as opposed to the number of sensors. As an example, con-

sider L = 1000, N = 1002, K = 5, P = 100: P × L = 105

vs. K log(N/K) ≈ 38. When compared to distributing the

full sensor network data, there is a significant reduction;

however, LVSS is still not competitive with sending an RSS

estimate per sensor.1 However, when RSS estimates are sent

in the presence of multiple targets, signal interference effects

and data association issues decrease the localization perfor-

mance. In general, the estimated localization dictionary is

noisy; hence, a larger number of measurements is needed.

Another way of understanding the minimum required

inter-sensor communications is to use information theoretic

arguments to determine the minimum number of bits re-

quired to localize K-coordinates in an N-dimensional space:

we need K log2 N bits to encode this information. Since we

process the received signals to obtain θ , we can only lose

entropy. Thus, the resulting K log2 N number of bits of our

analysis presents a lower bound the number of bits that each

sensor needs to receive for localization over a grid size N

to determine K target locations. Even when quantization is

considered for the O(K log(N/K)) measurements needed by

LVSS, there is an evident gap between the lower limit and the

LVSS requirement, since LVSS recovers both the location of

the nonzero coefficients and their values.

The aforementioned gap can be explored via quanti-

zation of the CS measurements. It is known within the

CS framework that compressive measurements are robust

against quantization noise as the CS reconstruction is robust

against additive noise [18]. Thus, we obtain two degrees of

freedom to determine the message size required in LVSS. In

practice with simulated and field data, we have found that

assigning 1-bit to encode the mean of the absolute values of

the compressive measurements is effective in recovery (see

also [4]). In this quantization scheme, the sensors pass the

sign of the compressive measurements as well as the mean

of their absolute values. Hence, the inter-sensor messages

would incorporate one additional number, which also needs

to be quantized, encoding the quantization level, along with

1-bit messages encoding the sign of the measurements.

6. SIMULATIONS

Our objectives in this section are two fold. We first demon-

strate the distributed estimation capabilities of the proposed

1We assume that there is no communication overhead. If there is some

overhead in sending messages, then LVSS becomes competitive.

(a) Sensor 30 (b) Sensor 25 (c) Sensor 21

(d) Sensor 18 (e) Sensor 12 (f) Sensor 7

Figure 1: Distributed estimation results: each sensor obtains lo-

calization estimates independently from random measurements re-

ceived from all sensors in the network. The results are similar for

most sensors.

framework. We then examine the effects of the inter-sensor

communication message sizes and signal-to-noise (SNR) ra-

tio on the performance of the algorithm.

Our simulation setup consists of P = 30 sensor nodes

sensing two coherent targets that transmit a standard signal-

ing frame in MSK modulation with a random phase shift.

The sent signals have length L = 512 and a unit grid of

N = 30×30 points is used for localization, where the speed

of propagation c = 1. For each simulation, a fixed point con-

tinuation solver [10] was used for the sparse approximations.

The algorithm employs a parameter µ that weights the good-

ness of fit of the solution against its sparsity; this parameter

is fixed for all simulations at all sensors. We note that when

the number of compressive measurements change, adjusting

this parameter can improve the localization results.

In the first experiment, we study the dependence of the

localization performance on the choice of sensor. We fix the

number of measurements per sensor M = 30 and set the SNR

to 20dB. Figure 1 illustrates the sparse approximation results

at a representative subset of the sensors. In the figure, the

sensors are represented by filled stars at the ceiling, and the

ground truth for the source locations is represented by the

yellow asterisks. The surface plots show the output of the

sparse approximation, each normalized so that they sum up

to 1, defining a PDF of the multitarget posterior. The figure

shows consistent localization PDFs at the different sensors.

Within the 30 sensor network, a few sensors miss one of the

targets (e.g., sensor 25). Note that these PDFs are calculated

at each sensor independently after receiving the compressive

measurements from the network.

In the second experiment, we study the dependence of

the localization performance on the number of measurements

per sensor M and the SNR. For each combination of these

parameters, we performed a Monte Carlo simulation involv-

ing 100 realizations of a uniformly random sensor deploy-

ment, as well as 50 realizations of Gaussian noise per de-

ployment. The location estimates in each Monte Carlo run

are obtained using K-means clustering on the estimated θ ,



(a) RMS=0.34, Div.=16% (b) RMS=0.28, Div.=21% (c) RMS=0.24, Div.=23%

(d) RMS=0.26, Div.=0% (e) RMS=0.19, Div.=0% (f) RMS=0.17, Div.=0%

Figure 2: Results from Monte Carlo simulations. Top row: M = 2,

bottom row: M = 10. From left to right, SNR = 0dB, 5dB, 30dB.

with the number of clusters equal to the number of targets.

Figure 2 shows scatter plots for the localization estimates

for the different setups, together with the root mean square

(RMS) error and the likelihood of divergence (Div.) in the

sparse approximation algorithm. Intuitively, the figure shows

improvement in performance as the SNR or the number of

measurements increases. Reducing the number of measure-

ments, however, increases the likelihood of divergence in the

sparse reconstruction. For Fig. 2(a-c) each sensor receives

58 > K log(N/K) ≈ 12 measurements for localization. In

general, this increase is due to the noisy localization dic-

tionary estimates in the presence of multiple targets and the

block-diagonal nature of the measurement matrix.

7. CONCLUSIONS

Our fusion of existing sparse approximation techniques for

localization and the CS framework enables the formulation

of a communication-efficient distributed algorithm for target

localization. LVSS exhibits tolerance to noise, packet drops

and quantization, and provides a natural distributed estima-

tion framework for sensor networks. The performance of

the algorithm is dependent on both the number of measure-

ments and the SNR, as well as the observed signal, the sen-

sor deployment and the localization grid. Furthermore, the

algorithm performance can be improved by increasing the

number of measurements taken at each of the sensors, pro-

viding a tradeoff between the communication bandwidth and

the accuracy of estimation. Future work will investigate the

fundamental limits of localization within the sparsity frame-

work and compare the sparsity based localization algorithms

with other state-of-the-art distributed localization algorithms

to provide a Pareto frontier of the localization performance

as a function of communications. We also plan to study the

inclusion of signal sparsity into our framework.
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