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Abstract

Compressive sensing (CS) is an emerging approach for the acquisition of signals having
a sparse or compressible representation in some basis. While the CS literature has mostly
focused on problems involving 1-D signals and 2-D images, many important applications involve
multidimensional signals; in this case, CS works best with representations that encapsulate the
structure of such signals in every dimension. We propose the use of Kronecker product matrices
in CS for two purposes. First, such matrices can act as sparsifying bases that jointly model
the different types of structure present in the signal. Second, the measurement matrices used
in distributed settings can be easily expressed as Kronecker product matrices. The Kronecker
product formulation in these two settings enables the derivation of analytical bounds for sparse
approximation of multidimensional signals and CS recovery performance as well as a means to
evaluate novel distributed measurement schemes.

1 Introduction

1.1 CS and multidimensional signals

Compressive sensing (CS) is a new approach to simultaneous sensing and compression that enables
a potentially large reduction in the sampling and computation costs at a sensor for a signal x
having a sparse or compressible representation θ in some basis Ψ (i.e. x = Ψθ) [1, 2]. By a sparse
representation, we mean that only K out of the N signal coefficients in θ are nonzero, with K � N .
By a compressible representation, we mean that the coefficient’s magnitudes, when sorted, have a
fast power-law decay, i.e.,

|θ(i)| < Ci−1/p (1)
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for p ≤ 1 and C <∞. Many natural signals are sparse or compressible; for example, smooth signals
are compressible in the Fourier basis, while piecewise smooth signals and images are compressible
in a wavelet basis.

CS builds on the work of Candès, Romberg, and Tao [1] and Donoho [2], who showed that a
signal having a sparse or compressible representation in one basis can be recovered from its linear
projections onto a small set of M = O (K log(N/K)) measurement vectors that are incoherent with
the sparsifying basis, meaning that the representation of the measurement vectors in this basis is
not sparse. When the measurement vectors are stacked as rows of a measurement matrix Φ, the
CS measurements can be expressed as a vector

y = Φx (2)

of length M . CS acquisition devices multiplex the signal, as they read inner products of the signal
vector against the measurement vectors instead of reading the signal vector itself [3]. We can obtain
a compressed representation of the signal by obtaining a number of inner products smaller than the
signal length. Random vectors play a central role as universal measurements in the sense that they
are incoherent with any fixed basis with high probability. The CS measurement process is nonadap-
tive, and the recovery process is nonlinear; there exist a variety of CS recovery algorithms inspired
by sparse approximation techniques [1, 2, 4, 5]. To recover the signal from the measurements, we
search for the sparsest signal among all those that yield the observed measurement values.

The CS literature has mostly focused on problems involving single sensors and one-dimensional
(1-D) signal or 2-D image data. However, some important applications that hold the most promise
for CS involve higher-dimensional signals. The coordinates of these signals may span several physi-
cal, temporal, or spectral dimensions. Additionally, these signals are often captured in a progressive
fashion, in a sequence of captures corresponding to subsets of the coordinates. Examples include
hyperspectral imaging (with spatial and spectral dimensions), video acquisition (with spatial and
temporal dimensions), and synthetic aperture radar imaging (with progressive acquisition in the
spatial dimensions). Another class of promising applications for CS involves distributed networks
or arrays of sensors, including for example environmental sensors, microphone arrays, and camera
arrays.

These properties of multidimensional data and the corresponding acquisition hardware compli-
cate the design of both the measurement matrix Φ and the sparsifying basis Ψ to achieve maximum
efficiency in CS.

1.2 CS measurement matrices for multidimensional signals

For signals of any dimension, global CS measurements that multiplex most or all of the values of
the signal together (corresponding to dense matrices Φ) are required for universality, since they
are needed to capture arbitrary sparsity structure [6]. However, for multidimensional signals, such
measurements require the use of multiplexing sensors that operate simultaneously along all data
dimensions, increasing the physical complexity or acquisition time/latency of the CS device. In
many settings it can be difficult to implement such multiplex sensors due to the large dimensionality
of the signals involved and the ephemeral availability of the data during acquisition. For example,
each image frame in a video sequence is available only for a limited time; therefore, any multiplexing
sensor that calculates global CS measurements would have to sum of the M partial inner products
from each of the frames from the beginning to the end of the video sequence. Similarly, global CS
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measurements of a hyperspectral datacube would require simultaneous multiplexing in the spectral
and spatial dimensions, which is a challenge with current optical and spectral modulators [7, 8];
such separate multiplexing nature limits the structure of the measurements obtained.

These application-specific limitations naturally point us in the direction of measurement systems
Φ that depend only on a portion of the entries of the multidimensional signal being acquired. Many
applications and practical hardware designs demand partitioned measurements that process only a
portion of the multidimensional signal at a time. Each portion usually corresponds to a section of
the signal along a given dimension, such as one frame in a video signal or the image of one spectral
band of a hyperspectral datacube.

1.3 Sparsifying bases for multidimensional signals

For multidimensional signals, we can often characterize the signal structure present on each of its
different dimensions or coordinates in terms of a sparse representation. For example, each image
frame in a video sequence is often sparse or compressible in a wavelet basis, since it corresponds
to an image obtained at a particular time instant. Simultaneously, the temporal structure of each
pixel in a video sequence is often smooth or piecewise smooth, due to camera movement, object
motion and occlusion, illumination changes, etc. A similar situation is observed in hyperspectral
signals: the reflectivity values at a given spectral band correspond to an image with known structure;
additionally, the spectral signature of a given pixel is usually smooth or piecewise smooth, depending
on the spectral range and materials present in the observed area.

Initial work on the sparsity and compressibility of multidimensional signals and signal ensembles
for CS [9–21] has provided new sparsity models for multidimensional signals. These models consider
sections of the multidimensional data corresponding to fixed values for a subset of the coordinates
as separate signals and pose correlation models between the values and locations of their sparse
representations. To date, the resulting models are rather limited in the types of structures admitted.
For almost all models, theoretical guarantees on signal recovery have been provided only for strictly
sparse signals, for noiseless measurement settings, or in asymptotic regimes. Additionally, almost
all of these models are tied to ad-hoc signal recovery procedures.

Clearly, more generic models for sparse and compressible multidimensional signals are needed in
order to leverage the CS framework to a higher degree of effective compression. Ideally, we should
be able to formulate a sparsifying basis for the entire multidimensional signal that simultaneously
accounts for all the types of structure present in the data.

In this paper, we show that Kronecker product matrices offer a natural means to generate both
sparsifying bases Ψ and measurement matrices Φ for CS of multidimensional signals, resulting in
a formulation that we dub Kronecker Compressive Sensing (KCS). Kronecker product sparsifying
bases combine the structures encoded by the sparsifying bases for each signal dimension into a single
matrix. Kronecker product measurement matrices can be implemented by performing a sequence
of separate multiplexing operations on each signal dimension. The Kronecker product formulation
for sparsifying bases and measurement matrices enables the derivation of analytical bounds for
recovery of compressible multidimensional signals from randomized or incoherent measurements.

1.4 Stylized applications

To better motivate the KCS concept, we consider now in more detail three relevant multidimensional
CS applications: hyperspectral imaging, video acquisition, and distributed sensing.
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(a) (b) (c)

Figure 1: Example capture from a single-pixel hyperspectral camera [22] at resolution N = 128 × 128 pixels × 64
spectral bands (220 voxels) for the 450nm–850nm wavelength range from M = 4096 CS measurements per band (4×
sub-Nyquist) [23]. (a) Mandrill test image printed and illuminated by a desk lamp for acquisition. (b) Hyperspectral
datacube obtained via independent CS recovery of each spectral band as a separate image. (c) Hyperspectral datacube
obtained via KCS; marked improvement is seen in bands with low signal-to-noise ratios. Data courtesy of Kevin Kelly,
Ting Sun, and Dharmpal Takhar from Rice University.

1.4.1 Hyperspectral imaging

Consider the single-pixel hyperspectral camera (SPHC) [7, 22], where the hyperspectral lightfield
is focused onto a digital micromirror device (DMD). The DMD acts as a optical spatial modula-
tor and reflects part of the incident lightfield into a scalar spectrometer. In this way, the DMD
computes inner products of the image of each spectral band in the hyperspectral lightfield against
a measurement vector with 0/1 entries, coded in the orientation of the mirrors. Each spectral
band’s image is multiplexed by the same binary functions, since the DMD reflects all of the imaged
spectra simultaneously. This results in the same measurement matrix Φ being applied to each
spectral band image. The resulting measurement matrix applied to the hyperspectral datacube
can be represented as a Kronecker product IS ⊗ Φ, where IS is an S × S identity matrix and S
denotes the number of spectral bands recorded. Additionally, there are known sparsifying bases for
each spectral band image as well as each pixel’s spectral signature, which can be integrated into a
single Kronecker product sparsifying basis. An example datacube captured with a SPHC via KCS
is shown in Fig. 1 [23].

1.4.2 Video acquisition

Consider the example of compressive video acquisition, where a single-pixel camera applies the same
set of measurements to each image frame in the video sequence, resulting once again in a Kronecker
product measurement matrix [10]. We can sparsify or compress the temporal structure at each
pixel using a Fourier or wavelet transform depending on the video characteristics. Furthermore,
we can sparsify each image frame using a standard cosine or wavelet transform. We can then use
a Kronecker product of these two bases to sparsify or compress the video sequence.
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1.4.3 Distributed sensing

In distributed sensing problems, we aim to acquire an ensemble of signals x1, . . . ,xJ ∈ RN that
vary in time, space, etc. We assume that each signal’s structure can be encoded using sparsity
with an appropriate basis Ψ1. This ensemble of signals can be expressed as a N × J matrix

X = [x1 x2 . . . xJ ] = [x1T x2T . . . xN
T

]T , where the individual signals x1, . . . ,xj corresponding
to columns of the matrix, and where the rows x1, . . . ,xN of the matrix correspond to different
snapshots of the signal ensemble at different values of time, space, etc. Under this construction,
the structure of each signal is observable on each of the columns of the matrix, while the structure
of each snapshot (spanning all the signals) is present on each of the rows of the matrix X.

We expect that, in certain applications, the snapshot structure can also be modeled using spar-
sity; that is, that a basis or frame Ψ2 can be used to compress or sparsify x1, . . . xN . For example,
in sensor network applications, the structure of each snapshot is determined by the geometry of
the sensing deployment, and can also be captured by a sparsity basis [24]. In such cases, we obtain
a single sparsifying basis Ψ1 ⊗ Ψ2 for the signal ensemble x that encodes the structure of both
the signals and the snapshots; such representation significantly simplifies the analysis of the signal
ensemble sparsity and compressibility. Furthermore, if separate measurements yj = Φxj of each
signal are obtained using the same measurement Φ, we can express the resulting measurement
matrix acting on the signal ensemble as the Kronecker product IJ ⊗ Φ.

1.5 Contributions

This paper has three main contributions. First, we propose Kronecker product matrices as sparsi-
fying bases for multidimensional signals to jointly model the signal structure along each one of its
dimensions. In some cases, such as Kronecker product wavelet bases, we can to obtain bounds for
the magnitude rate of decay of the signal coefficients for certain kinds of data. This rate of decay
is dependent on the rates of decay for the coefficients of sections of the signals across the different
dimensions using the individual bases. When the rates of decay using the corresponding bases for
each of the dimensions are different, we show that the Kronecker product basis rate falls between
the maximum and minimum rates among the different dimensions; when the rates of decay are all
the same, they are matched by that of the Kronecker product basis.

Second, we show that several different CS measurements schemes proposed for multidimensional
signals can be easily expressed in our Kronecker product framework. In particular, when partitioned
measurements are used and the same measurement matrix is applied to each portion of the signal,
the resulting measurement matrix can be expressed as the Kronecker product of an identity matrix
with the measurement matrix. We can also build new D-stage CS acquisition devices that use
Kronecker measurement matrices: the first stage applies the same lower-dimensional measurement
matrix on each portion of the signal along its first dimension, and each subsequent stage applies
additional low-dimensional measurement matrices on previously obtained measurements along the
remaining dimensions of the signal. The resulting measurement matrix for the high-dimensional
signal is simply the Kronecker product of the low-dimensional matrices used at each stage.

Third, we provide metrics to evaluate partitioned measurement schemes against Kronecker
measurement matrices, as well as guidance on the improvements that may be afforded by the use
of such multidimensional structures. In particular, we provide some initial results by studying
the special case of signals that are compressible in a Kronecker product of wavelet bases. We also
compare the rate of decay for the recovery error of KCS to the rate of decay for the recovery error of
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standard CS recovery from separate measurements of each portion of the signal. Finally, we verify
our theoretical findings using experimental results with synthetic and real-world multidimensional
signals.

This paper is organized as follows. Section 2 provides background in compressive sensing and
tensor and Kronecker products. Section 3 introduces Kronecker compressive sensing, and Section 4
provides initial results for wavelet-sparse signals. Section 5 provides experimental results, Section 6
summarizes related work, and Section 7 closes the document with conclusions and suggestions for
future work.

2 Background

2.1 Compressive sensing

Compressive sensing (CS) is a efficient signal acquisition framework for signals that are sparse or
compressible in an appropriate domain. Let x ∈ RN be the signal of interest. We say that an
orthonormal basis1 Ψ ∈ RN×N sparsifies the signal x if θ = ΨTx has only K nonzero entries, with
K � N and ΨT denoting the transpose of Ψ. We then say that x is K-sparse or has sparsity K
in Ψ. Similarly, we say that Ψ compresses x if the entries of θ, when sorted by magnitude, decay
according to (1). In this case, we say that θ is in weak `p (noted as θ ∈ w`p) or, alternatively,
that θ is s-compressible in Ψ, with s = 1/p− 1/2. Such vectors can be compressed using transform
coding by preserving only the coefficients with largest absolute magnitude; we term by θK the
approximation with the K largest coefficients of θ. Thus, for a K-sparse signal, the approximation
error σK(θ) := ‖θ − θK‖2 = 0, where ‖ · ‖2 denotes the `2 or Euclidean norm. For s-compressible
signals, σK(θ) ≤ C ′K−s, i.e., the approximation error decays exponentially. Many types of signals
of interest are known to be compressible in appropriate bases. For example, smooth signals such
as audio recordings are compressible in the Fourier basis, and piecewise smooth signals such as
natural images are compressible in a wavelet basis.

The CS acquisition procedure consists of measuring inner products of the signal against a set of
measurement vectors {φ1, . . . , φM}; when M < N , the acquisition procedure effectively compresses
the signal. By collecting the measurement vectors as rows of a measurement matrix Φ ∈ RM×N ,
the acquisition procedure can be written as y = Φx = ΦΨθ, with the vector y ∈ RM containing
the CS measurements.

The goal of CS is to recover the full signal x from the fewest possible measurements y. Infinitely
many vectors x can yield the recorded measurements y due to the rank deficiency of the matrix
Υ = ΦΨ. One of the main enablers of CS was the discovery that when the signal being observed is
sparse enough, it can be exactly recovered by solving the linear program [1, 2, 25]

θ̂ = arg min ‖θ‖1 s.t. y = Υθ. (3)

In this case, ‖ · ‖1 denotes the `1 norm, which is equal to the sum of the absolute values of the
vector entries.

In the real world, the CS measurements are corrupted by noise. This provides us with CS
measurements y = Φx + n, with n denoting the noise vector. In this case, the signal can also be

1In the sequel, we will use the same notation Ψ to refer to the set of basis vectors and to the matrix having these
basis vectors as columns.
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successfully recovered using the quadratic program [1]

θ̂ = arg min ‖θ‖1 s.t. ‖y −Υθ‖2 ≤ ε, (4)

where ε is an upper bound on the `2 norm of the noise vector n. The penalty paid is an additional
distortion in the recovered version of the signal proportional to ε in the worst case.

Previous contributions have posed conditions on the number and type of measurement vectors
necessary for signal recovery [1, 26]. The Restricted Isometry Property (RIP) has been proposed
to measure the fitness of a matrix Υ for CS.

Definition 2.1 The K-restricted isometry constant for the matrix Υ, denoted by δK , is the small-
est nonnegative number such that, for all θ ∈ RN with ‖θ‖0 = K,

(1− δK)‖θ‖22 ≤ ‖Υθ‖22 ≤ (1 + δK)‖θ‖22.

Once the RIP constants are determined, they can be used to provide guarantees for CS recovery.

Theorem 2.1 [27] If the matrix Υ has δ2K <
√

2− 1, then the solution θ̂ to (4) obeys

‖θ − θ̂‖2 ≤ C0
‖θ − θK‖1
K1/2

+ C1ε,

where C0 and C1 are fixed constants dependent on δ2K .

In words, Theorem 2.1 guarantees that sparse signals can be recovered perfectly from noiseless
measurements; that compressible signals can be recovered to a distortion similar to that of the
transform coding compression; and that the recovery process is robust to the presence of noise
in the measurements. Unfortunately, calculating the RIP constants for a given matrix requires
combinatorially complex computation. Interestingly, many probabilistic classes of matrices have
been advocated. For example, a matrix of size M ×N with independent and identically distributed
normal entries with variance 1/M obeys the condition of Theorem 2.1 with very high probability if
K ≤ O (M/ log(N/M)) [1, 2, 6]. The same is true of matrices following Rademacher or subgaussian
distributions.

In some applications, the sensing system constrains the types of measurement matrices that are
feasible. This could be due either to the computational power needed to generate the matrix, or
due to limitations in the sensing modalities. For example, the single pixel camera [7] uses a subset
of the Hadamard transform basis vectors as a measurement matrix. To formalize this framework,
we can assume that a basis Φ ∈ RN×N is provided for measurement purposes, and we have the
option to choose a subset of the signal’s coefficients in this transform as measurements. That is,
we let Φ̃ be an N ×M submatrix of Φ that preserves the basis vectors with indices Γ ⊆ {1, . . . , N},
|Γ| = M , and y = Φ̃Tx. In this case, a different metric arises to evaluate the performance of CS.

Definition 2.2 The mutual coherence of the orthonormal bases Φ ∈ RN×N and Ψ ∈ RN×N is the
maximum absolute value for the inner product between elements of the two bases:

µ(Φ,Ψ) = max
1≤i,j≤N

|〈φi, ψj〉| .
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The mutual coherence then determines the number of measurements necessary for accurate CS
recovery:

Theorem 2.2 [26] Let x = Ψθ be a K-sparse signal in Ψ with support Ω ⊂ {1, . . . , N}, |Ω| = K,
and with entries having signs chosen uniformly at random. Choose a subset Γ ⊆ {1, . . . , N} for
the set of observed measurements, with M = |Γ|. Suppose that M ≥ CKNµ2(Φ,Ψ) log(N/δ) and
M ≥ C ′ log2(N/δ) for fixed values of δ < 1, C, C ′. Then with probability at least 1 − δ, θ is the
solution to (3).

Since the range of possible mutual coherence values µ(Φ,Ψ) is [N−1/2, 1], the number of mea-
surements required by Theorem 2.2 ranges from O(K log(N)) to O(N). It is possible to expand
the guarantee of Theorem 2.2 to compressible signals by adapting an argument of Rudelson and
Vershynin in [28] that links mutual coherence and restricted isometry constants.

Theorem 2.3 [28, Remark 3.5.2] Choose a subset Γ ⊆ {1, . . . , N} for the set of observed mea-
surements, with M = |Γ|, uniformly at random. Suppose that

M ≥ CK
√
Ntµ(Φ,Ψ) log(tK logN) log2K (5)

for a fixed value of C. Then with probability at least 1 − 5e−t over the choice of Γ, the resulting
matrix ΦT

ΓΨ has the RIP with constant δ2K ≤
√

2− 1, where ΦΓ denotes the restriction of Φ to the
columns indexed by Γ.

Using this theorem, we obtain the guarantee of Theorem 2.1 for compressible signals with the
number of measurements M dictated by the mutual coherence value µ(Φ,Ψ).

2.2 Tensor and Kronecker products

Let V and W represent Hilbert spaces. The tensor product of V and W is a new vector space
V ⊗W together with a bilinear map T : V ×W → V ⊗W such that for every vector space X and
every bilinear map S : V ×W → X there is a unique linear map S′ : V ⊗W → X such that for all
v ∈ V and w ∈W , S(v, w) = S′(T(v, w)).

For example, the Kronecker product of two matrices A and B of sizes P × Q and R × S,
respectively, is defined as

A⊗B :=


A(1, 1)B A(1, 2)B . . . A(1, Q)B
A(2, 1)B A(2, 2)B . . . A(2, Q)B

...
...

. . .
...

A(P, 1)B A(P, 2)B . . . A(P,Q)B

 . (6)

Thus, A ⊗ B is a matrix of size PR × QS. The definition has a straightforward extension to the
Kronecker product of vectors a⊗ b. In the case where V = Rv and W = Rw, it can be shown that
V ⊗W ∼= Rvw, and a suitable map T : Rv ×Rw → Rv ⊗Rw is defined by the Kronecker product as
T(a, b) := a⊗ b.

Let ΨV = {ψV,1, ψV,2, . . .} and ΨW = {ψW,1, ψW,2, . . .} be bases for the spaces V and W ,
respectively. Then one can find a basis for V ⊗W as ΨV⊗W = {T(ψv, ψw) : ψv ∈ ΨV , ψw ∈ ΨW }.
Once again, when V = Rv and W = Rw, we will have ΨV⊗W = ΨV ⊗ΨW .
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3 Kronecker Product Matrices for Multidimensional Compressive
Sensing

We now describe our framework for the use of Kronecker product matrices in multidimensional CS.
We term the restriction of a multidimensional signal to fixed indices for all but its dth dimension
a d-section of the signal. For example, for a 3-D signal x ∈ RN1×N2×N3 , the portion xi,j,· :=
[x(i, j, 1) x(i, j, 2) . . . x(i, j,N3)] is a 3-section of x. The definition can be extended to subsets of
the dimensions; for example, x·,·,i = [x(1, 1, i) x(1, 2, i) . . . x(N1, N2, i)] is a {1, 2}-section of x.

3.1 Kronecker product sparsifying bases

We can obtain a single sparsifying basis for an entire multidimensional signal as the Kronecker
product sparsifying bases for each of its d-sections. This encodes all of the available structure using

a single transformation. More formally, we let x ∈ RN1 ⊗ . . .⊗ RNd = RN1×...×Nd ∼= R
∏D

d=1Nd and
assume that each d-section is sparse or compressible in a basis Ψd. We then pose a sparsifying basis
for x obtained from Kronecker products as Ψ = Ψ1⊗. . .⊗ΨD = {ψ1⊗. . .⊗ψD, ψd ∈ Ψd, 1 ≤ d ≤ D},
and obtain a coefficient vector Θ for the signal ensemble so that x = ΨΘ, where x is a vector-
reshaped representation of x.

3.2 Kronecker product measurement matrices

We can also design measurement matrices that are Kronecker products; such matrices correspond
to measurement processes that operate individually on portions of the multidimensional signal.
For simplicity, we assume in this section that each portion consists of a single d-section of the
multidimensional signal, even though other configurations are possible (see Section 5 for examples).
The resulting measurement matrix can be expressed as Φ = Φ1⊗ . . .⊗ΦD. Consider the example of
distributed sensing of signal ensembles from Section 1.4 where we obtain separate measurements, in
the sense that each measurement depends on only one of the signals. More formally, for each signal
(or 1-section) x·,j , 1 ≤ j ≤ J we obtain separate measurements yj = Φjx·,j with an individual
measurement matrix being applied to each 1-section. The structure of such measurements can be
succinctly captured by Kronecker products. To compactly represent the signal and measurement
ensembles, we denote

Y =


y1

y2
...

yJ

 and Φ =


Φ1 0 . . . 0
0 Φ2 . . . 0
...

...
. . .

...
0 0 . . . ΦJ

 , (7)

with 0 denoting a matrix of appropriate size with all entries equal to 0. We then have Y =
Φx. Equation (7) shows that the measurement matrix that arises from distributed sensing has a
characteristic block-diagonal structure when the entries of the sparse vector are grouped by signal.
If a matrix Φj = Φ′ is used at each sensor to obtain its individual measurements, then we can
express the joint measurement matrix as Φ = IJ ⊗Φ′, where IJ denotes the J × J identity matrix.
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3.3 CS performance for Kronecker product matrices

We now derive results for metrics of Kronecker product sparsifying and measurement matrices
required by the CS recovery guarantees provided in Theorems 2.1 and 2.3. The results obtained
provide a link between the performance of the Kronecker product matrix and that of the individual
matrices used in the product for CS recovery.

3.3.1 Mutual coherence

Consider a Kronecker sparsifying basis Ψ = Ψ1⊗ . . .⊗ΨD and a global measurement basis obtained
through a Kronecker product of individual measurement bases: Φ = Φ1⊗. . .⊗ΦD, with each pair Φd

and Ψd being mutually incoherent for d = 1, . . . , D. The following lemma provides a conservation
of mutual coherence across Kronecker products (see also [29, 30]).

Lemma 3.1 Let Φd, Ψd be bases or frames for RNd for d = 1, . . . , D. Then

µ(Φ1 ⊗ . . .⊗ ΦD,Ψ1 ⊗ . . .⊗ΨD) =
D∏
d=1

µ(Φd,Ψd).

Proof. We rewrite the coherence as

µ(Φ,Ψ) = ‖ΦTΨ‖max,

where ‖ · ‖max denotes the matrix max norm, i.e., the largest entry of the matrix. Since

(Φ1 ⊗ . . .⊗ ΦD)T (Ψ1 ⊗ . . .⊗ΨD) = ΦT
1 Ψ1 ⊗ . . .⊗ ΦT

DΨD,

and since ‖Φ⊗Ψ‖max = ‖Φ‖max‖Ψ‖max, the theorem follows. �
Since the mutual coherence of each d-section’s sparsifying basis and measurement matrix is up-

per bounded by one, the number of Kronecker product-based measurements necessary for successful
recovery of the multidimensional signal is always lower than or equal to the corresponding number
of necessary partitioned measurements. This reduction is maximized when the measurement matrix
Φe for the dimension e along which measurements are to be partitioned is maximally incoherent
with the e-section sparsifying basis Ψe.

3.3.2 Restricted isometry constants

The restricted isometry constants for a matrix Φ are intrinsically tied to the singular values of all
submatrices of Φ of a certain size. The structure of Kronecker product matrices enables simple
bounds for their restricted isometry constants.

Lemma 3.2 Let Φ1, . . . ,ΦD be matrices with restricted isometry constants δK(Φ1), . . . , δK(ΦD),
respectively. Then,

δK(Φ1 ⊗ Φ2 ⊗ . . .⊗ ΦD) ≤
D∏
d=1

(1 + δK(Φd))− 1.
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Proof. We begin with the case D = 2 and denote by ΦΩ the K-column submatrix of Φ
containing the columns φt, t ∈ Ω; its nonzero singular values obey

1− δK(Φ) ≤ σmin(ΦΩ) ≤ σmax(ΦΩ) ≤ 1 + δK(Φ).

Since each φt = φ1,u ⊗ φ2,v for specific u, v, we can build sets Ω1, Ω2 of cardinality up to K that
contain the values of u, v, respectively, corresponding to the indices t ∈ Ω. Then, it is easy to see
that ΦΩ is a submatrix of Φ1,Ω1⊗Φ2,Ω2 , which has up to K2 columns. Furthermore, it is well known
that σmin(Φ1⊗Φ2) = σmin(Φ1)σmin(Φ2) and σmax(Φ1⊗Φ2) = σmax(Φ1)σmax(Φ2). Additionally, the
range of singular values of a submatrix are interlaced inside those of the original matrix [31]. Thus,

σmin(Φ1,Ω1 ⊗ Φ2,Ω2) ≤ σmin(ΦΩ) ≤ σmax(ΦΩ) ≤ σmax(Φ1,Ω1 ⊗ Φ2,Ω2),

σmin(Φ1,Ω1)σmin(Φ2,Ω2) ≤ σmin(ΦΩ) ≤ σmax(ΦΩ) ≤ σmax(Φ1,Ω1)σmax(Φ2,Ω2).

By using the K-restricted isometry constants for Φ1 and Φ2, we obtain the following bounds:

(1− δK(Φ1))(1− δK(Φ2)) ≤ σmin(ΦΩ) ≤ σmax(ΦΩ) ≤ (1 + δK(Φ1))(1 + δK(Φ2)).

For D > 2 an inductive argument provides

D∏
d=1

(1− δK(Φd)) ≤ σmin(ΦΩ) ≤ σmax(ΦΩ) ≤
D∏
d=1

(1 + δK(Φd)),

and so we must have

δK(Φ1 ⊗ Φ2 ⊗ . . .⊗ ΦD) = max

(
1−

D∏
d=1

(1− δK(Φd)),
D∏
d=1

(1 + δK(Φd))− 1

)
.

It is simple to show that the second term is always larger than the first, proving the lemma. �
When Φ1 is an orthonormal basis, it has restricted isometry constant δK(Φ1) = 0 for all K ≤ N .

Therefore the restricted isometry constant of the Kronecker product of an orthonormal basis and
a measurement matrix is equal to that of the measurement matrix. While the bound is in general
loose due to the use of a matrix with K2 columns in the proof, we note that the RIP constant of the
Kronecker product matrix is bounded below, by construction, by the largest RIP constant among
the individual matrices; that is, δK(Φ1 ⊗ Φ2 ⊗ . . .⊗ ΦD) ≥ max1≤d≤D δK(Φd) [32]. Therefore, the
resulting pair of bounds is tight in the case where there is a dominant (larger) RIP constant among
the matrices {Φd}Dd=1 involved in the product.

3.4 Computational Aspects

We briefly consider the computational complexity of KCS. There exist several solvers of the op-
timization programs (3-4), such as interior point methods, that have computational complexity
O
(
N3
)
, where N denotes the length of the vector θ [33]. Thus, independent recovery of each

e-section of a multidimensional dataset yields total complexity O
(
N3
e

∏
d 6=eNd

)
. In contrast, the

KCS approach relies on solving a single higher-dimensional optimization problem of complexity

O
(∏D

d=1N
3
d

)
, providing a computational overhead of O

(∏
d6=eN

2
d

)
for the improved performance

afforded by the Kronecker product sparsity/compressibility basis (as detailed in the next section).
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When the measurement matrix (and its transpose) can be applied efficiently to a vector (with
complexity A(N) < O

(
N2
)
), the computational complexity of the optimization solver drops to

O(NA(N)) and the computational overhead of KCS is reduced to O (A(N)/A(Ne)). There exist
CS matrices with efficient implementations featuring A(N) = O (N logN), which yield a compu-

tational cost for KCS of approximately O
(∏

d6=eNd

∑D
d=1 log(Nd)
log(Ne)

)
. A rough interpretation of this

result (for data of similar size among all dimensions) is that the computational cost of KCS is pro-
portional to the dimensionality of the data times the number of data partitions in the eth dimension,
i.e., DN/Ne.

4 Case Study: CS with Multidimensional Wavelet Bases

Kronecker products are prevalent in the extension of wavelet transforms to multidimensional set-
tings. There are several different multidimensional wavelet basis constructions depending on the
choice of basis vectors involved in the Kronecker products. For these constructions, our interest
is in the relationship between the compressibility of the multidimensional signal in the Kronecker
product wavelet basis vs. the compressibility of a partitioned version of the same multidimensional
signal in “partial” wavelet bases that cover fewer data dimensions. In this section we assume
that the N -length, D-D signal x is a sampled representation of a continuous-indexed D-D signal
f(t1, ...tD), with td ∈ Ω := [0, 1], 1 ≤ d ≤ D, such that x(n1, . . . , nD) = f(n1/N1, . . . , nd/ND), with
N = N1 × . . .×ND.

4.1 Isotropic, anisotropic, and hyperbolic wavelets

Consider a 1-D signal f(t) : Ω→ R with Ω = [0, 1]; its wavelet representation is given by

f = v0ν +
∑
i≥0

2i−1∑
j=0

wi,jψi,j ,

where ν is the scaling function and ψi,j is the wavelet function at scale i and offset j. The wavelet
transform consists of the scaling coefficient v0 and wavelet coefficients wi,j at scale i, i ≥ 0, and
position j, 0 ≤ j < 2i; the support of the corresponding wavelet ψi,j is roughly [2−ij, 2−i(j + 1)].
In terms of our earlier matrix notation, the sampled signal x has the representation x = Ψθ, where
Ψ is a matrix containing the sampled scaling and wavelet functions for scales 1, . . . , L = log2N
as columns, and θ = [v0, w0,0, w1,0, w1,1, w2,0, . . .]

T is the vector of corresponding scaling and
wavelet coefficients. We are, of course, interested in sparse and compressible θ.

Several different extensions exist for the construction of D-D wavelets as a Kronecker product of
1-D wavelet functions [34–36]. In each case, a D-D wavelet is obtained from the Kronecker product
of D 1-D wavelets: ψi1,j1,...,iD,jD = ψi1,j1 ⊗ . . . ⊗ ψiD,jD . Different bases for the multidimensional
space can then be obtained through the use of appropriate combinations of 1-D wavelets in the
Kronecker product. For example, isotropic wavelets arise when the same scale i = i1 = . . . = iD is
selected for all wavelet functions involved, while anisotropic wavelets force a fixed factor between
any two scales, i.e. ad,d′ = id/id′ , 1 ≤ d, d′ ≤ D. Additionally, hyperbolic wavelets result when no
restriction is placed on the scales i1, . . . , iD. Therefore, a hyperbolic wavelet basis for RN1⊗. . .⊗RND

is obtained as the Kronecker product of the individual wavelet bases for RNd , 1 ≤ d ≤ D. In the
sequel, we identify the isotropic, anisotropic, and hyperbolic wavelet bases as ΨI , ΨA, and ΨH ,
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(a) (b) (c)

Figure 2: Example basis elements from 2-D wavelet bases. In each case, green (light) pixels represent zeros,
while blue and red (dark) pixels represent large positive and negative values, respectively. (a) Isotropic
wavelets have the same degree of smoothness on all dimensions, and are obtained from the Kronecker product
of two 1-D wavelets of the same scale; (b) Anisotropic wavelets have different degrees of smoothness in each
dimension, but with a constant ratio, and are obtained from the Kronecker product of two 1-D wavelets
at ratio-matching scales; (c) Hyperbolic wavelets have different degrees of smoothness in each dimension
without restrictions and are obtained from the Kronecker product of two 1-D wavelets of all scales.

respectively; example basis elements for each type of multidimensional wavelet basis are shown in
Fig. 2.

4.2 Isotropic Besov spaces

Isotropic wavelets have been popularized by their suitability for analysis of 2-D signals (images).
Significant study has been devoted to identify the types of signals that are sparse or compressible
in an isotropic wavelet basis. A fundamental result in this direction states that the discretizations
of signals in isotropic Besov spaces are compressible in an isotropic wavelet basis using a sufficiently
smooth wavelet function. Such signals have the same degree of smoothness in all dimensions. We
begin by providing a brief formal definition of Besov spaces; see [35–37] for details.

We define the directional derivative of f in the direction h as (∆hf)(t) := f(t + h) − f(x),
with higher-degree derivatives defined as (∆m

h f)(t) := (∆h(∆m−1
h f))(t), m ≥ 2. Here and later we

define (∆hf)(t) = 0 if t + h /∈ ΩD. For r ∈ R+, m ∈ N and 0 < p < ∞, we define the modulus of
smoothness as

ωm(f, r,ΩD)p = sup
|h|≤r

‖∆m
h f‖p,ΩD .

It is easy to see that ωm(f, r,ΩD)p → 0 as r → 0; smoother functions have faster decay in this
asymptotic behavior.

A signal can be classified according to its smoothness simply by imposing conditions on the
rate of decay of its moduli of smoothness. The resulting classes are known as Besov spaces. A
Besov space Bs

p,q contains D-D functions that have (roughly speaking) s derivatives in Lp(Ω
D);

this smoothness is measured by the rate of decay of the modulus of smoothness as a function of
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the step size r. The Besov quasi-seminorm is then defined as

|f |Bs
p,q

=

(∫ 1

0

[
r−sωm(f, r,ΩD)p

]q dr
r

)1/q

.

Here the parameter q provides finer distinctions of smoothness. Thus, we say that a signal f ∈ Bs
p,q

if it has finite Besov norm, defined as ‖f‖Bs
p,q

= ‖f‖p + |f |Bs
p,q
.

Similarly to the discrete signal case, we define the best K-term approximation error in the basis
Ψ as

σK(f,Ψ)p = min

{
‖f − g‖p, g =

K∑
k=1

cjψik , ψik ∈ Ψ for each i = 1, . . . ,K

}
.

Such isotropic wavelet-based nonlinear approximations provide provable decay rates for the approx-
imation error.

Theorem 4.1 [37] If the scaling function ν ∈ Bs
p,q, ν has at least s vanishing moments, and

f ∈ Br
p,q, with r ≥ D/p−D/2 and 0 < r < s, then σK(f,ΨI)p < CK−r.

In words, Theorem 4.1 states that Besov-smooth signals are compressible in a sufficiently smooth
isotropic wavelet transform.

4.3 Anisotropic Besov spaces

In many applications outside of natural image processing, the type of structure present is different
in each of the signal’s dimensions [12, 14, 38, 39]. For example, a video sequence has different
degrees of smoothness in its spatial and temporal dimensions, while a hyperspectral datacube
can have different degrees of smoothness in the spatial and spectral dimensions. In these cases,
anisotropic and hyperbolic wavelets can be used to achieve sparse and compressible representations
for signals of this type. Similarly to isotropic Besov spaces, signals in anisotropic Besov spaces
have discretizations that are compressible in an anisotropic wavelet basis. We first provide a formal
definition of anisotropic Besov spaces, which closely mirrors that of isotropic Besov spaces, except
that the smoothness in each dimension is specified separately.

We define the d-directional derivative of f as (∆h,df)(t) := f(t+hed)− f(t), 1 ≤ d ≤ D, where
ed is the dth canonical vector, i.e., its dth entry is one and all others are zero. This corresponds to
the standard directional derivative in which the direction h is a multiple of the canonical vector
ed. We also define higher-degree directional derivatives as (∆m

h,df)(t) := (∆h,d(∆
m−1
h,d f))(t), m ≥ 2.

For r ∈ R+, md ∈ N and 0 < p <∞, we define the d-directional moduli of smoothness as

ωmd,d(f, r,Ω
D)p = sup

|h|≤r
‖∆md

h,df‖p,ΩD .

By defining the anisotropy parameter s = (s1, . . . , sD), we define the anisotropic Besov quasi-
seminorm as [35, 36]

|f |Bs
p,q

=

(∫ 1

0

[
D∑
d=1

r−sdωmd,d(f, r,Ω
D)p

]q
dr

r

)1/q

.

Thus, we say that a signal f ∈ Bs
p,q if it has finite anisotropic Besov norm, defined as ‖f‖Bs

p,q
=

‖f‖p + |f |Bs
p,q
.
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An anisotropic Besov space Bs
p,q contains functions of D continuous variables that have (roughly

speaking) sd derivatives in Lp(Ω) for any d-section of the D-D function; once again, the parameter q
provides finer distinctions of smoothness. An example is a multidimensional signal that is expressed
as the Kronecker product of individual signals that are compressible in wavelet bases.

We now study the conditions for compressibility of a signal in an anisotropic wavelet basis as a
function of the smoothness of the signal in its different dimensions. We will observe that the rate of
decay for the wavelet coefficients will depend on the characteristics of the anisotropic Besov space in
which the signal lives. Some conditions must be imposed on the wavelets used for compressibility.
We denote by ν = {νi,j}i,j the family of scaling functions for each scale j and offset i.

Definition 4.1 A scaling function family ν is Bs
p,q-smooth, s > 0 (i.e. sd > 0, 1 ≤ d ≤ D), if

for some (m1, . . . ,mD) > s, for each i1, . . . , iD ∈ ND0 and for a finite constant C > 0 there exist
jd ∈ N0, 0 ≤ jd < 2id, 1 ≤ d ≤ D such that for each 0 ≤ jd < 2id, d = 1, . . . , D, and k ∈ N0,

ωmd,d(νi1,j1,...,iD,jD , 2
−k,ΩD)p < Cωmd,d(νi1,j1,...,iD,jD , 2

−k,ΩD)p,

and

|νi1,j1,...,iD,jD |Bs
p,q
< C2(i1+...+iD)(1/2−1/p)

D∑
d=1

2idsd .

It can be shown that the scaling functions formed from tensor or Kronecker products of regular
1-D scaling functions νi1,j1,...,iD,jD = νi1,j1 ⊗ . . . ⊗ νiD,jD has this smoothness property when the
component scaling functions are smooth enough [35, 36]. This condition suffices to obtain results
on approximation rates for the different types of Kronecker product wavelet bases. The following
theorem is an extension of a result from [36] to the D-D setting, and is proven in [40, Appendix K].

Theorem 4.2 Assume the scaling function ν that generates the anisotropic wavelet basis ΨA with
anisotropy parameter s = (s1, . . . , sD) is Bs

p,q-smooth and f ∈ Br
p,q, with r = (r1, . . . , rD) and

0 < r < s. Define ρ = min1≤d≤D rd and

λ =
D∑D

d=1 1/rd
. (8)

If ρ > D/p + D/2 then the approximation rate for the function f in an isotropic wavelet basis is
σK(f,ΨI)p < CK−ρ. Similarly, if λ > D/p+D/2, then the approximation rate for the function f
in both an anisotropic and a hyperbolic wavelet basis is σK(f,ΨA)p < CAK

−λ and σK(f,ΨH)p <
CHK

−λ.

To give some perspective to this theorem, we study two example cases: isotropy and extreme
anisotropy. In the isotropic case, all the individual rates rd = r, 1 ≤ d ≤ D, and the approximation
rate under anisotropic and hyperbolic wavelets matches that of isotropic wavelets: λ = ρ = r. In
the extreme anisotropic case, we have that one of the approximation rates is much smaller than all
others: re � rd for all e 6= d. In contrast, in this case we obtain a rate of approximation under
anisotropic and hyperbolic wavelets of λ ≈ Dre, which is D times larger than the rate for isotropic
wavelets, ρ = re. Thus, the approximation rate with anisotropic and hyperbolic wavelets is in the
range λ ∈ [1, D] min1≤d≤D rd. We also note the dependence of the result on the dimensionality of
the signal: as D increases, the requirements on the smoothnesses ρ, λ of the function f become
more strict.
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The disadvantage of anisotropic wavelets, as compared with hyperbolic wavelets, is that they
must have an anisotropy parameter that matches that of the anisotropic smoothness of the signal in
order to achieve the optimal approximation rate [35]. Additionally, the hyperbolic wavelet basis is
the only one out of the three basis types described that can be expressed as the Kronecker product
of lower dimensional wavelet bases. Therefore, we use hyperbolic wavelets in the sequel and in the
experiments of Section 5.

4.4 Performance of KCS with multidimensional hyperbolic wavelet bases

Since KCS uses Kronecker product matrices for measurement and compression of multidimensional
signals, it is possible to compare the rates of approximation that can be obtained by using inde-
pendent measurements of each d-section of the multidimensional signal against those obtained by
KCS. The following Theorem is obtained by amalgamating the results of Theorems 2.1, 2.3, and 4.2
and Lemma 3.1.

Theorem 4.3 Assume that a D-D signal x ∈ RN1×...×ND is the sampled version of a continuous-
time signal f ∈ Bs

1,q, with s = s1, . . . , sD, under the conditions of Theorem 4.2 with p = 1. In
particular, x has sd-compressible d-sections in sufficiently smooth wavelet bases Ψd, 1 ≤ d ≤ D.
Denote by Φd, 1 ≤ d ≤ D a set of CS measurement bases that can be applied along each dimension
of x. If M total measurements are obtained using a random subset of the columns of Φ1⊗ . . .⊗ΦD,
then with high probability the recovery error from these measurements has the property

‖x− x̂‖2 ≤ C

(
M√

N
∏D
d=1 µ(Φd,Ψd)

)−β
, (9)

where β = D
2
∑D

d=1 1/sd
+ 1

4 , while the recovery from M measurements equally distributed among the

eth dimension of the signal using the basis Φ1 ⊗ . . .⊗ Φe−1 ⊗ Φe+1 ⊗ . . .⊗ ΦD on each {1, . . . , e−
1, e+ 1, . . . , D}-section of x has the property

‖x− x̂‖2 ≤ CN1/2
e

(
M√

N/Ne
∏
d6=e µ(Φd,Ψd)

)−βe
, (10)

where βe = D−1
2
∑

d 6=e 1/sd
+ 1

4 .

Proof sketch. For recovery we pair the Kronecker product measurement matrix ΦP := Φ1 ⊗
. . .⊗ ΦD with the hyperbolic wavelet basis ΨH = Ψ1 ⊗ . . .⊗ΨD. From Lemma 3.1, we have that
the mutual coherence of these two bases is µ(ΦP ,ΨH) =

∏D
d=1 µ(Φd,Ψd). Plugging this value into

Theorem 2.3, the number of measurements needed to achieve the RIP having δ2K =
√

2 − 1 with
high probability is

M = CMK
√
N

D∏
d=1

µ(Φd,Ψd) log(tK logN) log2(K). (11)

The RIP, in turn, guarantees that the recovery error obeys ‖x−x̂‖2 = ‖θ− θ̂‖2 ≤ CK−1/2‖θ−θK‖1,
as given in Theorem 2.1, with θ and θ̂ denoting the coefficients of x and x̂, respectively; note that
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the output of the recovery algorithms (3-4) is given by θ̂, with x̂ = ΨH θ̂. The approximation error
is then bounded using Theorem 4.2 by ‖θ − θK‖1 = σK(f,ΨH)1 ≤ CHK−λ, where we use the fact
that θ is the discrete wavelet transform coefficient vector for the vector x, which itself contains N
uniform samples of the continuous signal f ∈ Bs

1,q. We therefore obtain

‖x− x̂‖2 ≤ CCHK−λ−1/2. (12)

At this point we solve for K in (11) to obtain

CKK
2 ≥ K log(tK logN) log2(K) =

M

CM
√
N

D∏
d=1

µ(Φd,Ψd)
−1,

K ≥ C ′K
(
M√
N

)1/2 D∏
d=1

µ(Φd,Ψd)
−1/2.

Plugging into (12), we obtain

‖x− x̂‖2 ≤ CCHC ′λ+1/2
K

(
M√
N

)−λ/2−1/4 D∏
d=1

µ(Φd,Ψd)
λ/2+1/4.

By noticing that β = λ/2 + 1/4, we have obtained (9).
The proof of (10) proceeds similarly by partitioning along the eth dimension and adjusting the

number of measurements per {1, . . . , e−1, e+ 1, . . . , D}-section to M/Ne, so that the term M/
√
N

in (9) is replaced by (M/Ne)/
√
N/Ne = M/

√
NNe, introducing a new multiplicative term N

βe/2
e .

A triangle inequality to assemble the error for the entire D-D signal from the different e-sections
introduces a new additional factor of

√
Ne. �

To put Theorem 4.3 in perspective, we study the bases and the exponents of the bounds sepa-
rately. With regards to the bases, the denominators in (9)–(10) provide a scaling for the number
of measurements needed to achieve a target recovery accuracy. This scaling is dependent on the
measurement matrices via mutual coherences; the denominators take values in the ranges [1,

√
N ]

and [1,
√
N/Ne], respectively. With regards to the exponents, the rates of decay for the recovery

error match those of the signal’s compressibility approximation error rates λ from (8) for the entire
signal and its partitions, respectively. The error decay rate for KCS recovery is higher than that for
independent recovery from partitioned measurements when se >

D−1∑
d 6=e 1/sd

, i.e., when the compress-

ibility exponent of the e-sections is larger than the harmonic mean of the compressibility exponents
of all other sections. Thus, KCS provides the most significant improvement in the error rate of
decay when the measurement partitioning is applied along the dimension(s) that feature highest
compressibility or smoothness. Note also the

√
Ne cost in (10) of partitioning measurements, which

comes from the triangle inequality.

5 Experimental Results

In this section, we perform experiments to verify the compressibility properties of two different
classes of signals in a Kronecker product wavelet basis. We also perform KCS sparse recovery exper-
iments that illustrate the advantages of KCS over standard CS schemes. For the multidimensional
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signals, in addition to synthetic data, we choose 3D hyperspectral imagery and video sequences,
since they can be compressed effectively by well-studied, albeit data-dependent, compression algo-
rithms (the Karhunen-Loève transform (KLT) and motion compensation, respectively). Our intent
is to see how close we can come to this nonlinear compression performance using the simpler linear
Kronecker product wavelet basis for compression and CS recovery. We will also experimentally
verify the tradeoffs provided in Sections 3 and 4 and contrast the recovery performance to that
reached by integrating such task-specific compression schemes to distributed CS recovery.

The experiments use the basis pursuit solvers from [41] and [42] for the hyperspectral and video
data, respectively. The experiments were executed on a Linux workstation with an Intel Xeon CPU
at 3.166 GHz and 4 GB of memory. A Matlab toolbox containing the scripts that generate the
results and figures provided in this section is available for download at http://dsp.rice.edu/kcs.
Additional experimental results are also available in [40].

5.1 Empirical Performance of KCS

Our first experiment considers synthetically generated signals of size N = 8×8×8 that are K = 10-
sparse in a Kronecker product (hyperbolic) wavelet basis and compares three CS recovery schemes:
the first uses a single recovery from dense, global measurements; the second uses a single KCS
recovery from the set of measurements obtained independently from each 8× 8 1-section; and the
third one uses independent recovery of each 8× 8 1-section from its individual measurements. We
let the number of measurements M vary from 0 to N with the measurements evenly split among
the 1-sections in the independent and KCS recovery cases. For each value of M , we average 100
iterations by generating K-sparse signals x with independent and identically distributed (i.i.d.)
Gaussian entries and with support following a uniform distribution among all supports of size K,
and generating measurement matrices with i.i.d. Gaussian entries. We then measure the probability
of successful recovery for each value of M , where a success is declared if the signal estimate x̂ obeys
‖x− x̂‖2 ≤ 10−3‖x‖2. The results are shown in Fig. 3, which shows that KCS outperforms separate
section-by-section recovery while achieving lower success probabilities than recovery from global
measurements. In fact, the measurement-to-sparsity ratio M/K required for 95% success rate are
6, 15, and 30 for global measurements, KCS, and independent recovery, respectively.

5.2 Hyperspectral data

5.2.1 Compressibility

We first evaluate the compressibility of a real-world hyperspectral datacube using independent
spatial and spectral sparsifying bases and compare it with a Kronecker product basis. The datacube
for this experiment is obtained from the AVIRIS Moffett Field database [43]. A N = 128×128×128
voxel portion is used. We then process the signal through six different transforms. The first three
(Space, Frequency Wavelet, Frequency KLT) perform transforms along a subset of the dimensions
of the data (a 1-D wavelet basis W1 for the spectral dimension, a 2-D wavelet basis W2 for the
spatial dimensions, and a 1-D KLT basis2 P1 for the spectral dimension, respectively). The fourth
(Isotropic Wavelet) transforms the entire datacube with a 3-D isotropic wavelet basis. The fifth and

2A KLT basis is learned from a datacube of the same size extracted from a different spatial region of the original
AVIRIS dataset [20, 44, 45]. The resulting transformation provides a linear approximation scheme that preserves the
coefficients for the most significant principal components, rather than the nonlinear approximation scheme used in
sparse approximation.
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Figure 3: Empirical performance of KCS. We generate 3-D signals of size N = 8× 8× 8 that are K = 10-
sparse in a hyperbolic wavelet basis. We compare the performance of three approaches: KCS recovery using
the measurement matrix I8 ⊗ Φ, with Φ denoting an M/8×N random matrix with i.i.d. Gaussian entries;
standard CS recovery using global measurements with a dense random M × N matrix; and independent
recovery of each 1-section using standard CS with an M/8×N random matrix. While KCS does not match
the performance of global measurements, it performs significantly better than independent recovery using
the same measurements.

sixth (Hyperbolic Wavelet and Wavelet/KLT) transform the entire datacube with a basis formed
from the Kronecker products W1 ⊗W2 of a 1-D wavelet basis in frequency and a 2-D isotropic
wavelet basis in space, and P1⊗W2 of a a 1-D KLT basis in frequency and a 2-D isotropic wavelet
basis in space, respectively. In all cases the Daubechies-8 wavelet was used. For each one of these
transforms, we measured the signal-to-noise ratio (SNR) when transform coding is used to preserve
K coefficients of the data for varying values of K. The results are shown in Figs. 4 and 5; the
Kronecker (anisotropic wavelet) transform provides the best compression of the signal, as shown
in Fig. 4, outperforming the partial transforms in terms of SNR. However, Fig. 5(b) shows that
the rate of decay for the normalized error of the Kronecker (anisotropic wavelet) transform is only
slightly higher than the minimum rate of decay among the partial (spatial andfrequency) wavelet
transforms. Our analysis indicates that this result is due to the difference between the degrees of
smoothness among the signal dimensions.

5.2.2 KCS

We also compare the performance of KCS to CS using the 2-D basis W2 to yield compress-
ible/approximately sparse coefficient vectors for individual spectral band images. In our exper-
iments we obtain CS measurements using the subsampled permuted Hadamard transform of [7] on
each spectral band image with a matrix Φ2. We also obtain global CS measurements that depend
on all the voxels of the datacube as a baseline; such measurements result in a fully dense measure-
ment matrix Φ and therefore are difficult to obtain in real-world applications. We operate with two
datacubes: the original 128 × 128 × 128 voxel version from previous experiments, and “flattened”
datacubes of sizes 128 × 128 × 16, 128 × 128 × 32, and 128 × 128 × 64 voxels. The flattening was
performed by aggregating the intensities among the bands in each spectral neighborhood for each
of the pixels in the image.

19



0 1 2

x 10
4

0

1

2

3

x 10
5

Coeff. mag.

C
o
u
n
t

0 1 2

x 10
4

0

5

10

x 10
5

Coeff. mag.

C
o

u
n

t

0 1 2

x 10
4

0

5

10

15

x 10
5

Coeff. mag.

C
o

u
n

t

0 1 2

x 10
4

0

5

10

15

x 10
5

Coeff. mag.

C
o

u
n

t

(a) (b) (c) (d)

Figure 4: Examples of transform coding of a hyperspectral datacube of size 128 × 128 × 128. (a) Original data;
(b) Coefficients in a 1-D wavelet basis W1 applied at each pixel in the spectral domain; (c) Coefficients in a 2-D
isotropic wavelet basis W2 applied at each pixel in the spatial domain; (d) Coefficients in a Kronecker product basis
W1 ⊗ W2. The top row shows the datacube or coefficients flattened to 2-D by concatenating each spectral band’s
image, left to right, top to bottom. In (b-d), blue (dark) pixels represent coefficients with small magnitudes. The
bottom row shows histograms for the coefficient magnitudes, showing the highest concentrations of small coefficients
for the Kronecker product basis.

Figure 6 shows the recovery error for each datacube from several different recovery setups: In-
dependent recovery operates on each spectral band independently with the measurement matrix Φ2

using the basis W2 to sparsify each spectral band. KCS employs the Kronecker product measure-
ment matrix I⊗Φ2 to perform joint recovery. We test two different Kronecker product sparsifying
bases: KCS-Wavelet uses a Kronecker products of wavelet bases W1 ⊗W2, and KCS-KLT uses a
Kronecker product P1 ⊗W2 of a KLT basis P1 in the spectral dimension and a 2-D wavelet basis
W2 in the spatial dimensions. We also show results using these two Kronecker product sparsifying
bases together with Global measurements Φ that depend on all voxels of the datacube.

We see an improvement on recovery from distributed over global measurements when the number
of measurements M obtained for each band is small; as M increases, this advantage vanishes due to
the availability of sufficient information. We also see that the performance of independent recovery
improves as the number of spectral bands increases and eventually matches the performance of
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Figure 5: Empirical performance of Kronecker product sparsity for hyperspectral imaging. A N = 128 ×
128× 128 voxel datacube is transform coded using a 2-D wavelet basis W2 for each spectral section (Space
Wavelet), a 1-D wavelet basis W1 and a 1-D KLT basis P1 for each pixel (Frequency Wavelet, Frequency
KLT), a 3-D isotropic wavelet basis for the entire datacube (Isotropic Wavelet), and Kronecker products bases
W1⊗W2 and P1⊗W2 for the entire datacube (Hyperbolic Wavelet, Wavelet/KLT). In each case a number
K of wavelet coefficients are preserved to obtain a compressed version of the datacube. (a) Compression SNR
and (b) normalized error magnitude as a function of the number of coefficients K. The Kronecker products
performs better than either component basis independently. However, the rate of decay of the compression
error using the Kronecker product bases are approximately the same as the lower rate obtained from the
component bases.

global measurements. In other words, the performance of the Kronecker-based approaches, which
involve the same CS measurement matrix and spatial transform, fails to improve in a similar fashion
as the number of spectral bands increases. We conjecture that such penalty is due to the localized
nature (in the spectral dimension) of the elements used in the sparsity bases (wavelets and KLT
basis functions). Since the measurements used in KCS are localized, the measurement and sparsity
bases become increasingly coherent as the spectral dimension resolution increases.

We finish by examining the computational complexity of the recovery algorithms for the 128×
128 × 128 voxel datacube problem. The average execution time for independent recovery of all
spectral bands is approximately 9 minutes, while the average execution times for KCS and recovery
from global measurements using the anisotropic wavelet basis for sparsity are approximately 25
minutes and 31 minutes, respectively. Similarly, the average execution times for KCS and recovery
from global measurements using the wavelet/KLT Kronecker product basis for sparsity are approx-
imately 35 minutes and 36 minutes, respectively. These increases are much more modest than what
is anticipated by the theoretical discussion in Section 3.4.

5.3 Single-pixel hyperspectral camera

Our next experiment uses real-world data obtained from the SPHC [22] described in Section 1.4
using the separate measurements of (7). Figure 1(a) shows an example capture from the SPHC.
The target is a printout of the Mandrill test image (illuminated by a desk lamp), for which 64
spectral bands spanning the 450–850 nm wavelength range at a resolution of 128× 128 pixels were

21



0.1 0.2 0.3 0.4 0.5
5

10

15

20

Normalized number of measurements, M/N

S
N

R
, 
d
B

 

 

Kronecker KLT/Global
KCS−KLT
Kronecker Wavelet/Global
KCS−Wavelet
Independent Recovery

0.1 0.2 0.3 0.4 0.5
5

10

15

20

Normalized number of measurements, M/N

S
N

R
, 

d
B

 

 

Kronecker KLT/Global
KCS−KLT
Kronecker Wavelet/Global
KCS−Wavelet
Independent Recovery

(a) (b)

0.1 0.2 0.3 0.4 0.5

10

15

20

Normalized number of measurements, M/N

S
N

R
, 
d
B

 

 

Kronecker KLT/Global
KCS−KLT
Kronecker Wavelet/Global
KCS−Wavelet
Independent Recovery

0.1 0.2 0.3 0.4 0.5

8

10

12

14

16

18

20

Normalized number of measurements, M/N

S
N

R
, 

d
B

 

 

Independent Recovery
Kronecker KLT/Global
KCS−KLT
Kronecker Wavelet/Global
KCS Wavelet

(c) (d)

Figure 6: Empirical performance of KCS and standard CS for hyperspectral imaging for datacubes of sizes
(a) N = 128×128×16, (b) N = 128×128×32, (c) N = 128×128×64, and (d) N = 128×128×128 voxels.
Each datacube is recovered from CS measurements of each spectral band image from a matrix Φ2 using
separate CS recovery of each spectral band image using the measurement matrix Φ2 and a sparsifying 2-D
wavelet basis W2 (Independent Recovery); joint CS recovery of all spectral bands using a global measurement
matrix Φ and sparsifying Kronecker product bases W1⊗W2 and P1⊗W2 (Kronecker Wavelet/Global and
Kronecker KLT/Global, respectively); and KCS recovery using the measurement matrix I ⊗ Φ2 and the
sparsifying bases W1 ⊗W2 and P1 ⊗W2 (KCS-Wavelet and KCS-KLT, respectively). Recovery using
the Kronecker product sparsifying bases outperforms separate recovery. Additionally, there is an advantage
to applying distributed rather than global measurements when the number of measurements M is low.
Furthermore, as the resolution of the spectral dimension increases, the Kronecker sparsity and Kronecker
measurement bases become increasingly coherent, hampering the performance of joint recovery techniques.

obtained. In Fig. 1(b), each spectral band was recovered separately. In Fig. 1(c), the spectral bands
were recovered jointly with KCS using the measurement structure of (7) and a hyperbolic wavelet
basis. The results show a considerable quality improvement over independent recovery, particularly
for spectral frames with low signal power.
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Figure 7: (a) Example cropped frame from the QCIF-format Foreman video sequence, size 128× 128. (b)
Empirical performance of Kronecker product sparsifying basis for transform coding of the Foreman video
sequence, N = 128× 128× 128 = 221 voxels. We subject it to transform coding using a spatial 2D wavelet
basis W2 for each frame (Space), a 3-D Isotropic wavelet bases W3 for the entire sequence, and a Kronecker
product basis W1 ⊗W2 for the entire sequence. The Kronecker product performs better in distortion than
the alternative bases.

5.4 Video data

5.4.1 Compressibility

We evaluate the compressibility of video sequences in an independent spatial (per frame) sparsifying
basis and compare it with a standard isotropic wavelet basis and a Kronecker product wavelet basis.
We use the standard Foreman video sequence, which we crop around the center to have frames of
size 128 × 128 pixels, as shown in Fig. 7(a). We select 128 frames to obtain a signal of length
N = 221 samples. We then process the signal through three different transforms: the first (Space)
applies the 2-D wavelet basis W2 along the spatial dimensions of the data, with no compression
on the temporal dimension; the second (Isotropic) applies the standard isotropic 3D wavelet basis
W3 on the entire video sequence, and the third (Kronecker) transforms the entire sequence with
the Kronecker product basis W1 ⊗W2, providing a hyperbolic wavelet basis. For each one of
these transforms, we measured the compression signal-to-noise ratio (SNR) when transform coding
is used to preserve K coefficients of the data for varying values of K. The results are shown in
Fig. 7(b) and closely resemble those obtained for hyperspectral data. Additionally, the Kronecker
product outperforms isotropic wavelets due to the difference in smoothness between the temporal
and spatial dimensions.

5.4.2 KCS

We compare the performance of KCS to that of CS using the low-dimensional basis W2 to yield
compressible/approximately sparse coefficient vectors for individual frames. In our experiments
we obtain CS measurements on each video frame using a matrix Φ2 obtained from a subsampled
permuted Hadamard transform [7]. For KCS we use a single Kronecker product measurement
matrix as shown in (7), while for standard CS we perform independent recovery of each frame
using the measurement matrix Φ2. We also use a global CS measurement matrix Φ, where the
measurements depend on all the pixels of the video sequence, as a baseline. Figure 8 shows the
recovery error from several different setups. Independent recovery uses CS on each video frame
independently with the sparsifying basis W2. KCS employs the Kronecker product measurement
and sparsity/compressibility transform matrices I⊗Φ2 and W1⊗W2, respectively, to perform joint
recovery of all frames. We also show results using the Kronecker product sparsity/compressibility
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Figure 8: Empirical performance of KCS for the Foreman video sequence. We recover the video sequence
using independent recovery of each frame using a measurement matrix Φ2 and sparsifying basis W2; inde-
pendent block-based CS and recovery with motion compensation post-processing on individual frames with
GOP size 8, block-wise random measurement matrix and block-wise 2-D discrete cosine transform (DCT)
sparsifying basis; KCS with measurement matrix I⊗Φ2 and sparsifying basis W1 ⊗W2; and joint recovery
of all frames in the sequence using the Kronecker sparsifying basis W1 ⊗W2 and a global measurement
matrix Φ. While KCS does not perform as well as CS using global measurements, it shows an improve-
ment over separate recovery of each frame in the video sequence using the same measurements. The motion
compensation-aided approach outperforms the generic approaches.

transform basis W1 ⊗W2 paired with the Global measurement matrix Φ.
Finally, we compare the above linear approaches to a state-of-the-art recovery algorithm based

on nonlinear motion compensated block-based CS (MC-BCS) [21]. In MS-BCS disjoint blocks of
each video frame are separately measured using both a random measurement matrix and a 2-D
discrete cosine transform (DCT) for sparsity/compressibility. The blocks of a reference frame are
recovered using standard CS recovery algorithms. MC-BCS then calculates measurements for the
difference with the subsequent frame by subtracting the corresponding measurement vectors, and
recovers the blocks of the frame difference using standard CS algorithms. The frame difference
is then refined using motion compensation (MC); the MC output is used to obtain a new frame
difference and the process is repeated iteratively for each frame, and again for each subsequent
frame in the group of pictures (GOP). Further refinements enable additional improvements in the
quality of the recovered video sequence. A toolbox implementing MC-BCS was made available while
this paper was under review [21]. We set the GOP size to 8 and use blocks of size 16×16, following
the parameter values of the toolbox implementation. In contrast to [21], we set the number of
measurements for each of the frames to be equal to match the KCS partitioning of measurements.

The Foreman sequence features camera movement, which is reflected in sharp changes in the
value of each pixel across frames. We see, once again, that while KCS does not perform as well
as CS with global measurements, it does outperform independent recovery of each frame in the
sequence operating on the same measurements. Furthermore, the quality of KCS recovery comes
within 5 dB of that of MC-BCS, which may be surprising considering that the motion compensation
performed in MC-BCS is especially designed for video coding and compression.

The average execution time for independent recovery of all video frames is approximately 13
seconds. In contrast, the average execution times for KCS and recovery from global measurements
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using the anisotropic wavelet basis for sparsity are approximately 104 minutes and 220 minutes,
respectively. These results agree with the discussion in Section 3.4, since the computational time
of KCS recovery is increased by a factor of about 128× 3 = 384 over that of independent recovery.
The average execution time for motion compensation-aided recovery is 34 minutes.

6 Related work

Prior work for CS of multidimensional signals focuses on the example applications given in this
paper – hyperspectral imaging [11, 44–46] and video acquisition [10, 12–15, 17, 20, 21] – with lim-
ited additional work dealing with applications such as sensor networks [9, 18, 19] and confocal
microscopy [16]. These formulations employ measurement schemes that act on a partition of the
data {x1, . . . ,xJ}, such as frames of a video sequence. For those cases, individual measurement
vectors {y1, . . . ,yJ} are obtained using a set of matrices {Φ1, . . . ,ΦJ} [9–17, 20, 21], resulting in
the measurement matrix structure of (7). While global measurements that depend on the entire set
of data have been proposed [8, 10, 16, 20], practical architectures that provide such measurements
are rare [8]. Similarly, partitioned measurements have been proposed for CS of low-dimensional
signals for computational purposes [29, 30, 47]. Below we contrast the signal model and algorithms
used in these approaches with those used in KCS.

Several frameworks have been proposed to encode the sparse structure of multidimensional sig-
nals. The most significant class of structures link the signals through overlap of nonzero coefficient
values and locations. That is, there exists a matrix P of size JN × D with binary entries (0 or
1) and a vector Θ of length D such that x = (I ⊗ Ψ)PΘ. The vector Θ encodes the correlations
and has length lower than the sum of the sparsities of the signals [9, 13, 15, 18, 19]. Such matrices
are very rigid in the kinds of structures they can represent; in KCS we can represent a variety of
multidimensional structures by using sparse representations on each of the signal dimensions.

Kronecker product matrices have been proposed for use as sparsifying bases in CS for certain
spatiotemporal signals [12, 14, 20]. In other cases, specialized compression bases are combined with
specially tailored recovery algorithms [11, 15, 17, 20, 21]; a prime example is motion compensation
for video sequences [15, 21]. While such tailored algorithms often provide superior performance,
they seldom come with theoretical tractability and performance guarantees. In contrast, KCS can
use a variety of standard CS recovery algorithms and preserves their guarantees, since it relies on
standard matrices for measure and sparsity/compressibility transforms. Standard sparsifying bases
for CS, such as multidimensional isotropic wavelets, suffice only for very specific classes of signals
that do feature similar degrees of smoothness along each of their dimensions [10, 16]; KCS using
hyperbolic wavelet bases can be applied to signals with different degrees of smoothness in each of
their dimensions.

In transform coding, anisotropic and hyperbolic wavelet bases have been proposed for compres-
sion of hyperspectral datacubes and video sequences [20, 38, 46]; however, to date no mathematical
analysis of their performance has been provided. Kronecker products involving matrices obtained
from principal component analysis and Karhunen-Loève transforms have also been used for this pur-
pose. However, they rely on linear low-dimensional approximations rather than nonlinear sparse
representations [20, 44, 45]; thus, the approaches are more data-dependent and more difficult to
generalize among different datasets.

Finally, we are aware of two initial studies on the properties of Kronecker product matrices for
CS [29, 30, 32]. Our study of their mutual coherence properties matches that independently obtained
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in [29, 30], while [32] provides only a lower bound for their restricted isometry constants; we have
provide an upper bound based on the properties of the eigendecomposition of their submatrices.

7 Conclusions and Further Work

In this paper we have developed the concept of Kronecker compressive sensing and presented initial
analytical and experimental results on its performance. Out theoretical framework is motivated
by new sensing applications that acquire multidimensional signals in a progressive fashion, as well
as by settings where the measurement process is distributed, such as sensor networks and arrays.
We have also provided analytical results for the recovery of signals that live in anisotropic Besov
spaces, where there is a well-defined relationship between the degrees of compressibility obtained
using lower-dimensional wavelet bases on portions of the signal and multidimensional anisotropic
wavelet bases on the entire signal. Furthermore, because the formulation follows the standard
CS approach of single measurement and sparsifying matrices, standard recovery algorithms that
provide provable guarantees can be used; this obviates the need to develop ad-hoc algorithms to
exploit additional signal structure.

Further work remains in finding additional signal classes for which the use of multidimensional
structures provides an advantage during compression. Some promising candidates include modula-
tion spaces, which contain signals that can be compressed using Wilson and brushlet bases [48, 49].
Our KCS framework also motivates the formulation of novel structured representations using spar-
sifying bases in applications where transform coding compression schemes have not been developed.

While we focused on hyperspectral imaging and video acquisition, there exist other interesting
applications where Kronecker product sparsifying bases and KCS are relevant. In sensor networks
and arrays, sparsity-based distributed localization [24, 50, 51] obtains a sparse estimate of the vector
containing the samples obtained in a dictionary that contains the responses of a known source at
a set of feasible locations. The sparse vector will encode the location of the source within the
feasible set. When the source signal is not known, we can assume that it is sparse in a known basis
and employ a Kronecker product matrix that encodes both the propagation physics and the sparse
or compressible structure of the source signal. In medical imaging, there are many applications
where estimates of high-dimensional data are obtained from highly undersampled measurements,
including 3-D computed tomography, angiography [12], 3-D magnetic resonance imaging (MRI) [12],
and functional MRI.
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