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Abstract

Compressive sensing (CS) is an emerging approach for the acquisition of signals having a sparse

or compressible representation in some basis. While the CS literature has mostly focused on problems

involving 1-D signals and 2-D images, many important applications involve multidimensional signals;

the construction of sparsifying bases and measurement systems for such signals is complicated by their

higher dimensionality. In this paper, we propose the use of Kronecker product matrices in CS for two

purposes. First, such matrices can act as sparsifying bases that jointly model the structure present in

all of the signal dimensions. Second, such matrices can represent the measurement protocols used in

distributed settings. Our formulation enables the derivation of analytical bounds for sparse approximation

of multidimensional signals and CS recovery performance as well as a means to evaluate novel distributed

measurement schemes.

I. INTRODUCTION

A. CS and multidimensional signals

Compressive sensing (CS) [1, 2] is a new approach to simultaneous sensing and compression that

enables a potentially large reduction in the sampling and computation costs at a sensor for a signal x
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having a sparse or compressible representation θ in some basis Ψ, i.e., x = Ψθ. By a sparse representation,

we mean that only K out of the N signal coefficients in θ are nonzero, with K � N . By a compressible

representation, we mean that the coefficient’s magnitudes, when sorted, have a fast power-law decay.

Many natural signals are sparse or compressible; for example, smooth signals are compressible in the

Fourier basis, while piecewise smooth images are compressible in a wavelet basis. In CS the signal is

measured not via standard point samples but rather through the projection by a measurement matrix

y = Φx. Such measurements multiplex the entries of x when the matrix Φ is dense.

To date the CS literature has mostly focused on problems involving single sensors and one-dimensional

(1-D) signal or 2-D image data. However, many important applications that hold the most promise

for CS involve higher-dimensional signals. The coordinates of these signals may span several physical,

temporal, or spectral dimensions. Additionally, these signals are often measured in a progressive fashion,

in a sequence of captures corresponding to subsets of the coordinates. Examples include hyperspectral

imaging (with spatial and spectral dimensions), video acquisition (with spatial and temporal dimensions),

and synthetic aperture radar imaging (with progressive acquisition in the spatial dimensions). Another class

of promising applications for CS involves distributed networks or arrays of sensors, e.g., environmental

sensors, microphone arrays, and camera arrays. These properties of multidimensional data and the

corresponding acquisition hardware complicate the design of both the CS measurement matrix Φ and the

sparsifying basis Ψ to achieve maximum CS efficiency.

B. CS measurements for multidimensional signals

For signals of any dimension, global CS measurements that multiplex most or all of the values of the

signal together (corresponding to dense matrices Φ) are required for universality to the choice of basis

Ψ, since dense measurements are needed to capture arbitrary sparsity structure [3]. However, for multidi-

mensional signals, such measurements require the use of multiplexing sensors that operate simultaneously

along all data dimensions, increasing the physical complexity or acquisition time/latency of the CS device.

In many settings it can be difficult to implement such sensors due to the large dimensionality of the signals

involved and the ephemeral availability of the data during acquisition. For example, each image frame in

a video sequence is available only for a limited time, and global multiplexing measurements require

aggregation throughout the video acquisition. Similarly, global CS measurements of a hyperspectral

datacube would require simultaneous multiplexing in the spectral and spatial dimensions, which is a

challenge with current optical and spectral modulators [4, 5]; such independent multiplexing nature limits
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the structure of the measurements obtained.

These application-specific limitations naturally point us in the direction of partitioned measurements

that depend only on a subset of the entries of the multidimensional signal being acquired. Each portion

usually corresponds to a section of the signal along a given dimension, such as one frame in a video

signal or the image of one spectral band of a hyperspectral datacube.

C. Sparsifying and measurement bases for multidimensional signals

For multidimensional signals, we can often characterize the signal structure present on each of its

different dimensions or coordinates in terms of a sparse representation. For example, each image frame

in a video sequence is often sparse or compressible in a wavelet basis, since it corresponds to an image

obtained at a particular time instant. Simultaneously, the temporal structure of each pixel in a video

sequence is often smooth or piecewise smooth, due to camera movement, object motion and occlusion,

illumination changes, etc. A similar situation is observed in hyperspectral signals: the reflectivity values

at a given spectral band correspond to an image with known structure; additionally, the spectral signature

of a given pixel is usually smooth or piecewise smooth, depending on the spectral range and materials

present in the observed area.

Initial work on the sparsity and compressibility of multidimensional signals and signal ensembles for

CS [6–18] has provided new sparsity models for multidimensional signals. These models consider sections

of the multidimensional data corresponding to fixed values for a subset of the coordinates as independent

signals and impose correlation models between the values and locations of their sparse representations.

To date, the resulting models are rather limited in the types of structures admitted. Additionally, for

almost all models, theoretical guarantees on signal recovery have been provided only for strictly sparse

signals, for noiseless measurement settings, or in asymptotic regimes. Furthermore, nearly all of these

models are tied to ad-hoc signal recovery procedures.

Clearly, more generic models for sparse and compressible multidimensional signals are needed in order

to leverage the CS framework to a higher degree of effective compression. Ideally, we should be able to

formulate a sparsifying basis for an entire multidimensional signal that simultaneously accounts for all

the types of structure present in the data.

In this paper, we show that Kronecker product matrices offer a natural means to generate both

sparsifying bases Ψ and measurement matrices Φ for CS of multidimensional signals, resulting in a

formulation that we dub Kronecker Compressive Sensing (KCS). Kronecker product sparsifying bases
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combine the structures encoded by the sparsifying bases for each signal dimension into a single matrix.

Kronecker product measurement matrices can be implemented by performing a sequence of independent

multiplexing operations on each signal dimension. As we will see below, KCS enables the derivation of

analytical bounds for recovery of compressible multidimensional signals from randomized or incoherent

measurements.

D. Stylized applications

To better motivate the KCS concept, we will consider in this paper three relevant multidimensional CS

applications: hyperspectral imaging, video acquisition, and distributed sensing. Consider the hyperspectral

imaging application (the other two applications have similar attributes and are discussed in more detail

below in Section V). In the single-pixel hyperspectral camera (SPHC) [4, 19], the hyperspectral lightfield

is focused onto a digital micromirror device (DMD). The DMD acts as a optical spatial modulator and

reflects part of the incident lightfield into a scalar spectrometer. In this way, the DMD computes inner

products of the image of each spectral band in the hyperspectral lightfield against a measurement vector

with 0/1 entries, coded in the orientation of the mirrors. Each spectral band’s image is multiplexed by the

same binary functions, since the DMD reflects all of the imaged spectra simultaneously. This results in

the same measurement matrix Φ being applied to each spectral band image. The resulting measurement

matrix applied to the hyperspectral datacube can be represented as the Kronecker product IS ⊗Φ, where

IS is an S ×S identity matrix and S denotes the number of spectral bands recorded. Additionally, there

are known sparsifying bases for each spectral band image (e.g., wavelets, DCT) as well as each pixel’s

spectral signature (e.g., wavelets), which can be integrated into a single Kronecker product sparsifying

basis. An example SPHC datacube recovered via KCS is shown in Fig. 1.

E. Contributions

This paper makes three main contributions. First, we propose Kronecker product matrices as sparsifying

bases for multidimensional signals to jointly model the signal structure along each of its dimensions. In

some cases, such as Kronecker product wavelet bases, we can obtain theoretical bounds for the rate of

decay of the signal coefficient magnitudes for certain kinds of data. This rate of decay is dependent on

the rates of decay for the coefficient magnitudes of sections of the signals across the different dimensions

using the individual bases. When the decay rates using the individual bases for each of the dimensions

are different, we show that the Kronecker product basis rate falls between the maximum and minimum
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Fig. 1. Example single-pixel hyperspectral camera [19] capture of the Mandrill test image printed and illuminated by a desk lamp at

resolutionN = 128 × 128 pixels × 64 spectral bands (220 voxels) covering the 450nm–850nm wavelength range fromM = 4096

CS measurements per band (4× sub-Nyquist). Left: Hyperspectral datacube obtained via independent CS recovery of each spectral

band as a independent image. Right: Hyperspectral datacube obtained via KCS; marked improvement is seen in bands with low

signal-to-noise ratios. Data courtesy of Kevin Kelly, Ting Sun, and Dharmpal Takhar [19, 20].

of these rates; therefore, when all individual rates of decay are equal, a Kronecker product basis attains

the same rate.

Second, we show that several different CS measurements schemes proposed for multidimensional

signals can be easily expressed in our Kronecker product framework. KCS also inspires the design of

new multi-stage CS acquisition devices where the first stage applies the same measurement matrix on each

portion of the signal along a subset of its dimensions and subsequent stages operate on the measurements

previously obtained and aligned in a multidimensional fashion.

Third, we provide metrics to evaluate partitioned measurement schemes against Kronecker measurement

matrices; these metrics provide guidance on the improvements that may be afforded by the use of such

multidimensional structures. In particular, we provide some initial theoretical and practical results for

Besov space signals that are compressible in a Kronecker product of wavelet bases. By comparing the

recovery error decay rate, we establish conditions under which KCS outperforms standard partitioned CS

recovery from independent measurements. Finally, we verify our theoretical findings using experimental

results with synthetic and real-world multidimensional signals.

This paper is organized as follows. Section II provides the necessary background on CS. Section III

introduces KCS and Section IV provides initial results for wavelet-sparse signals. Section V provides

experimental results, Section VI summarizes related work, and Section VII closes with conclusions and

suggestions for future work.
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II. BACKGROUND ON COMPRESSIVE SENSING

Let x ∈ RN be the signal of interest. We say that an orthonormal basis Ψ ∈ RN×N sparsifies x if

θ = ΨTx has only K � N nonzero entries, with ΨT the transpose of Ψ. We also say that x is K-sparse

or has sparsity K in Ψ. We say that Ψ compresses x if the entries of θ, when sorted by magnitude, decay

according to |θ(i)| < Ci−1/p for some p ≤ 1 and C <∞. In this case, we say that θ is s-compressible

in Ψ, with s = 1/p− 1/2. Such vectors can be compressed using transform coding by retaining the K

largest coefficients by magnitude and setting the rest to zero; θK will denote this approximation. For

a K-sparse signal, the approximation error σK(θ) := ‖θ − θK‖2 = 0, where ‖ · ‖2 denotes the `2 or

Euclidean norm. For an s-compressible signal, σK(θ) ≤ C ′K−s, i.e., the approximation error decays

exponentially fast.

The CS acquisition protocol measures inner products of the signal against a set of measurement

vectors {φ1, . . . , φM}. When M < N , this procedure effectively compresses the signal. By collecting

the measurement vectors as rows of a measurement matrix Φ ∈ RM×N , the acquisition procedure can be

written succinctly as y = Φx+n = ΦΨθ+n, with the vector y ∈ RM containing the CS measurements

contaminated by measurement noise n ∈ RM .

One important goal of CS is to recover the signal x from the fewest possible measurements y. Infinitely

many vectors x can yield the recorded measurements y due to the rank deficiency of the matrix Υ = ΦΨ.

A key enabler of CS is the fact that, when the signal is sparse enough, it can be accurately recovered

from its compressive measurements by solving the quadratic program [1]

θ̂ = arg min ‖θ‖1 s.t. ‖y −Υθ‖2 ≤ ε, (1)

where ε is an upper bound on the `2 norm of the noise vector n, and ‖ · ‖1 denotes the `1 norm, which

is equal to the sum of the absolute values of the vector entries.

Previous contributors have developed conditions on the number and type of measurement vectors

necessary for stable signal recovery [1, 21]. The Restricted Isometry Property (RIP) has been proposed

to measure the fitness of a matrix Υ for CS.

Definition 1. The K-restricted isometry constant for the matrix Υ, denoted by δK , is the smallest

nonnegative number such that, for all θ ∈ RN with ‖θ‖0 = K,

(1− δK)‖θ‖22 ≤ ‖Υθ‖22 ≤ (1 + δK)‖θ‖22.
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Once the constants δK are determined, they can be used to provide guarantees for CS recovery.

Theorem 1. [22] If the matrix Υ has δ2K <
√

2− 1, then the solution θ̂ to (1) obeys

‖θ − θ̂‖2 ≤ C0K
−1/2‖θ − θK‖1 + C1ε,

where C0 and C1 depend only on δ2K .

In words, Theorem 1 guarantees that sparse signals can be recovered perfectly from noiseless measure-

ments; that compressible signals can be recovered to a distortion similar to that of the transform coding

compression; and that the recovery process is robust to the presence of measurement noise.

Unfortunately, calculating the constants δK for a given matrix requires combinatorially complex com-

putation. Consequently, many probabilistic classes of matrices have been advocated. For example, a matrix

of size M ×N with independent Gaussian entries with mean zero and variance 1/M obeys the condition

of Theorem 1 with very high probability if K ≤ O (M/ log(N/M)) [1, 2]. The same is true of matrices

following subgaussian distributions [3].

In some applications, the sensing system constrains the types of measurement matrices that are feasible,

either due to the computational power needed to take the measurements or due to the limitations of feasible

multiplexing. To formalize this notion, we assume that a basis Φ ∈ RN×N is provided for measurement

purposes and that we have the option to choose a subset of the signal’s coefficients in this transform as

measurements. That is, set Φ̃ to be an N×M submatrix of Φ that preserves the basis vectors with indices

Γ ⊆ {1, . . . , N}, |Γ| = M , and y = Φ̃Tx. In this case, a new metric arises to evaluate the performance

of CS.

Definition 2. The mutual coherence of the orthonormal bases Φ ∈ RN×N and Ψ ∈ RN×N is the

maximum absolute value for the inner product between elements of the two bases:

µ(Φ,Ψ) = max
1≤i,j≤N

|〈φi, ψj〉| .

The mutual coherence determines the number of measurements necessary for accurate CS recovery.

Theorem 2. [23, Remark 3.5.2] Choose a subset Γ ⊆ {1, . . . , N} for the set of observed CS measure-

ments, with M = |Γ|, uniformly at random. Suppose that

M ≥ CK
√
Ntµ(Φ,Ψ) log(tK logN) log2K (2)

for a fixed value of C. Then with probability at least 1− 5e−t over the choice of Γ, the matrix ΦT
ΓΨ has

the RIP with constant δ2K ≤
√

2− 1, where ΦΓ denotes the restriction of Φ to the columns indexed by
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Γ.

Using this theorem, we obtain the guarantee of Theorem 1 for compressible signals with the number

of measurements M dictated by the mutual coherence value µ(Φ,Ψ). Since the range of possible mutual

coherence values µ(Φ,Ψ) is [N−1/2, 1], the number of measurements required by Theorem 2 ranges from

O(K log(N)) to O(K log(N)
√
N).

III. KRONECKER PRODUCT MATRICES FOR MULTIDIMENSIONAL COMPRESSIVE SENSING

We now develop our framework for the use of Kronecker product matrices in multidimensional CS. We

term the restriction of a multidimensional signal to fixed indices for all but its dth dimension a d-section of

the signal. For example, for a 3-D signal x ∈ RN1×N2×N3 , the portion xi,j,· := [x(i, j, 1) . . . x(i, j,N3)]

is a 3-section of x. The definition can be extended to subsets of the dimensions; for example, x·,·,i =

[x(1, 1, i) . . . x(N1, N2, i)] is a {1, 2}-section of x.

The Kronecker product of two matrices A and B of sizes P ×Q and R×S, respectively, is defined as

A⊗B :=


A(1, 1)B . . . A(1, Q)B

...
. . .

...

A(P, 1)B . . . A(P,Q)B

 .
Thus, A⊗B is a matrix of size PR×QS. The definition has a straightforward extension to the Kronecker

product of vectors a ⊗ b. Additionally, if ΨV and ΨW are bases for Rv and Rw, respectively, then

ΨV⊗W = ΨV ⊗ΨW is a basis for Rvw.

A. Kronecker product sparsifying bases

We can obtain a single sparsifying basis for an entire multidimensional signal as the Kronecker product

of sparsifying bases for each of its d-sections. This encodes all of the available structure using a single

transformation. More formally, we let x ∈ RN1 ⊗ . . . ⊗ RNd = RN1×...×Nd ∼= R
∏D

d=1Nd and assume

that each d-section is sparse or compressible in a basis Ψd. A sparsifying basis for x is then obtained

using Kronecker products as Ψ = Ψ1⊗ . . .⊗ΨD; the coefficient vector Θ for the signal ensemble gives

X = ΨΘ, where X is a vector-reshaped representation of x.

B. Kronecker product measurement matrices

We can also design measurement matrices using Kronecker products; such matrices correspond to

measurement processes that independently multiplex portions of the multidimensional signal. We call
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this approach Kronecker CS (KCS). For simplicity, we assume in this section that each portion consists

of a single d-section of the multidimensional signal, even though other configurations are possible (see

Section V for examples). The resulting measurement matrix can be expressed as Φ = Φ1 ⊗ . . .⊗ ΦD.

Consider the example of distributed sensing of signal ensembles from Section I-D where we obtain

independent measurements, in the sense that each measurement depends on only one of the signals

{x1 x2 . . . xJ}. The signals could be collected as a matrix x so that each signal is a 1-section of x and the

measurements are distributed along the first dimension of x. More formally, for each signal xj , 1 ≤ j ≤ J

we obtain independent measurements yj = Φjx·,j with an independent measurement matrix being applied

to each signal. The structure of such measurements can be succinctly captured by Kronecker products.

To compactly represent the signal and measurement ensembles, we denote X = [xT1 xT2 . . . xTJ ]T ,

Y = [yT1 yT2 . . . yTJ ]T , and

Φ =


Φ1 0 . . . 0

0 Φ2 . . . 0
...

...
. . .

...

0 0 . . . ΦJ

 , (3)

with 0 denoting a matrix of appropriate size with all entries equal to 0. We then have Y = ΦX.

Equation (3) shows that the measurement matrix that arises from distributed sensing has a characteristic

block-diagonal structure when the entries of the sparse vector are grouped by signal. If a matrix Φj = Φ′

is used at each sensor to obtain its independent measurements, then we can express the joint measurement

matrix as Φ = IJ ⊗ Φ′, where IJ denotes the J × J identity matrix.

C. CS performance with Kronecker product matrices

The CS recovery guarantees provided in Theorems 1 and 2 induce corresponding constraints on the KCS

sparsifying and measurement matrices. These results provide a link between the CS recovery performance

of the Kronecker product matrix and that of the individual matrices comprising the product.

1) Mutual coherence: Consider a Kronecker sparsifying basis Ψ = Ψ1 ⊗ . . . ⊗ ΨD and a global

measurement basis obtained through a Kronecker product of individual measurement bases: Φ = Φ1 ⊗

. . . ⊗ ΦD, where each pair Φd and Ψd is mutually incoherent for d = 1, . . . , D. The following lemma

provides a conservation of mutual coherence across Kronecker products (see [24–26] for a proof).
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Lemma 1. Let Φd, Ψd be bases or frames for RNd for d = 1, . . . , D. Then

µ(Φ1 ⊗ . . .⊗ ΦD,Ψ1 ⊗ . . .⊗ΨD) =

D∏
d=1

µ(Φd,Ψd).

Since the mutual coherence of each d-section’s sparsifying basis and measurement matrix is upper

bounded by one, the number of Kronecker product-based measurements necessary for successful recovery

of the multidimensional signal is always smaller than or equal to the corresponding necessary number

of partitioned measurements. This reduction is maximized when the measurement matrix Φe for the

dimension e along which measurements are to be partitioned is maximally incoherent with the e-section

sparsifying basis Ψe.

2) Restricted isometry constants: The constants δK for a matrix Φ are intrinsically tied to the singular

values of all column submatrices of a certain size. The convenient structure of Kronecker product matrices

yields simple bounds for their restricted isometry constants. The following lemma is proven in [24].

Lemma 2. Let Φ1, . . . ,ΦD be matrices with restricted isometry constants δK(Φ1), . . . , δK(ΦD), respec-

tively. Then,

δK(Φ1 ⊗ Φ2 ⊗ . . .⊗ ΦD) ≤
D∏
d=1

(1 + δK(Φd))− 1.

When Φd is an orthonormal basis, it has restricted isometry constant δK(Φd) = 0 for all K ≤ N .

Therefore, the restricted isometry constant of the Kronecker product of an orthonormal basis and a

measurement matrix is equal to that of the measurement matrix. While this bound is loose in general

due to the use of a matrix with K2 columns in the proof in [24], we note that the RIP constant of

the Kronecker product matrix is bounded below, by construction, by the largest RIP constant among its

component matrices; that is, δK(Φ1⊗Φ2⊗ . . .⊗ΦD) ≥ max1≤d≤D δK(Φd) [27]. Therefore, the resulting

pair of bounds is tight in the case where there is a dominant (larger) RIP constant among the matrices

{Φd}Dd=1 involved in the product.

D. Computational considerations

We briefly consider the computational complexity of KCS. There exist several solvers for the opti-

mization program (1), including interior point methods, that have computational complexity O
(
N3
)
,

where N denotes the length of the vector θ [28]. Thus, independent recovery of each d′-section of a
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multidimensional dataset incurs a total complexity of O
(
N3
d′
∏
d6=d′ Nd

)
. In contrast, KCS solves a single

higher-dimensional optimization problem of complexity O
(∏D

d=1N
3
d

)
, providing a O

(∏
d6=d′ N

2
d

)
-

times larger computational cost for the improved performance afforded by the Kronecker product spar-

sity/compressibility basis. When the measurement matrix (and its transpose) can be applied efficiently to

a vector (with complexity A(N) < O
(
N2
)
), the computational complexity of the optimization solver

drops to O(NA(N)) and the computational overhead of KCS is reduced to O (A(N)/A(Nd′)). There

exist CS matrices with efficient implementations requiring just A(N) = O (N logN), which yield a

computational cost for KCS of approximately O
(∏

d 6=d′ Nd

∑D
d=1 log(Nd)
log(Nd′ )

)
. A rough interpretation of this

result (for data of similar size among all dimensions) is that the computational cost of KCS is proportional

to the dimensionality of the data times the number of data partitions in the d′th dimension, i.e., DN/Nd′ .

IV. CASE STUDY: KCS WITH MULTIDIMENSIONAL WAVELET BASES

Kronecker products play a central role in generating wavelet bases for multidimensional signals [29–

31]. There are several different multidimensional wavelet constructions; for each our interest is in the

relationship between the compressibility of the multidimensional signal in the Kronecker product wavelet

basis vs. the compressibility of a partitioned version of the same multidimensional signal in “partial”

wavelet bases that cover fewer data dimensions.

In this section, we assume that the N -length, D-D signal x is a sampled representation of a continuous-

indexed D-D signal f(t1, ...tD), with td ∈ Ω := [0, 1], 1 ≤ d ≤ D, such that x(n1, . . . , nD) =

f(n1/N1, . . . , nd/ND), with N = N1 × . . .×ND.

A. Isotropic and hyperbolic wavelets

The wavelet representation of a 1-D signal f(t) : Ω→ R with Ω = [0, 1] is given by

f = v0ν +
∑
i≥0

2i−1∑
j=0

wi,jψi,j ,

where ν is the scaling function and ψi,j is the wavelet function at scale i and offset j. The wavelet

transform consists of the scaling coefficient v0 and wavelet coefficients wi,j at scale i, i ≥ 0, and

position j, 0 ≤ j < 2i; the support of the corresponding wavelet ψi,j is roughly [2−ij, 2−i(j + 1)]. In

terms of our earlier matrix notation, the sampled signal x has the representation x = Ψθ, where Ψ is a

matrix containing the sampled scaling and wavelet functions for scales 1, . . . , L = log2N as columns,

and θ = [v0, w0,0, w1,0, w1,1, w2,0, . . .]
T is the vector of corresponding scaling and wavelet coefficients.

We are, of course, interested in sparse and compressible θ.
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Several different extensions from 1-D to D-D wavelets can be generated using different combinations

of Kronecker products [29–31]. In each case, a D-D wavelet is obtained from the Kronecker product

of D 1-D wavelets: ψi1,j1,...,iD,jD = ψi1,j1 ⊗ . . . ⊗ ψiD,jD . For example, isotropic wavelets are formed

from Kronecker products of 1-D wavelets that all live at the same scale i, while hyperbolic wavelets are

formed from Kronecker products of 1-D wavelets at all possible combinations of different scales. In the

sequel, we will identify the isotropic and hyperbolic wavelet bases using ΨI and ΨH , respectively.

B. Multidimensional Besov spaces

Besov spaces are featured prominently in modern signal compression and processing; they contain

signals that are compressible using wavelets. The 1D Besov space Bs
p,q contains functions that have

(roughly speaking) s derivatives in Lp; the parameter q makes finer distinctions in smoothness [32, 33].

Just as there are several different wavelet basis constructions in higher dimensions, there are several

different types of Besov spaces. The isotropic wavelet basis compresses signals from isotropic Besov

spaces, which contain signals having the same degree of smoothness along each of their dimensions.

The hyperbolic wavelet basis compresses signals from anisotropic Besov spaces, which contain signals

with different degrees of smoothness along each of their dimensions.Our interest will be primarily in the

latter spaces. A video sequence, for instance, has different degrees of smoothness along its spatial and

temporal dimensions, while a hyperspectral datacube can have different degrees of smoothness in the

spatial and spectral dimensions.

We provide a brief overview of anisotropic Besov spaces for completeness [30, 31]. Consider the D-

D function f(t) := f(t1, . . . , tD) : ΩD → R. Define the d-directional derivative of f in the direction

h as (∆1
h,df)(t) := f(t + hed) − f(t), 1 ≤ d ≤ D, where ed is the dth canonical vector, i.e., its

dth entry is one and all others are zero. Recursively define the higher-degree directional derivatives as

(∆m
h,df)(t) := (∆h,d(∆

m−1
h,d f))(t), m ≥ 2. For r ∈ R+, md ∈ N and 0 < p <∞, define the d-directional

moduli of smoothness as

ωmd,d(f, r,Ω
D)p = sup

|h|≤r
‖∆md

h,df‖p,ΩD .

By setting the anisotropy parameter s = (s1, . . . , sD), define the anisotropic Besov quasi-seminorm as

|f |Bs
p,q

=

(∫ 1

0

[
D∑
d=1

r−sdωmd,d(f, r,Ω
D)p

]q
dr

r

)1/q

.
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We say that a signal f ∈ Bs
p,q if it has finite anisotropic Besov norm, defined as ‖f‖Bs

p,q
= ‖f‖p+ |f |Bs

p,q
.

Signals in an anisotropic Besov space Bs
p,q are λ-compressible by hyperbolic wavelet bases, where

λ =
D∑D

d=1 1/sd
; (4)

see [24, 29–31, 34] for details. This property is particularly relevant since the hyperbolic wavelet basis

can be expressed as a D-term Kronecker product matrix, a fact that we leverage to characterize the

performance of KCS in the next subsection.

Isotropic Besov spaces are a special case of anisotropic Besov spaces where the smoothness sd along

each dimension d is the same, and so λ = sd = s.

C. KCS with hyperbolic wavelets

We now compare the approximation rate obtained by KCS vs. independent measurements of each

d-section of a multidimensional signal. The following Theorem is proven in [24].

Theorem 3. Assume that a D-D signal x ∈ RN1×...×ND is the sampled version of a continuous-time

signal f ∈ Bs
p,q, with s = (s1, . . . , sD). In particular, x has sd-compressible d-sections in sufficiently

smooth wavelet bases Ψd, 1 ≤ d ≤ D. Denote by Φd, 1 ≤ d ≤ D a set of CS measurement bases that

can be applied along each dimension of x. If M total measurements are obtained using a random subset

of the columns of Φ1⊗ . . .⊗ΦD, then with high probability the recovery error from these measurements

is such that

‖x− x̂‖2 ≤ C

(
M√

N
∏D
d=1 µ(Φd,Ψd)

)−β
, (5)

where β = D
2
∑D

d=1 1/sd
+ 1

4 . In contrast, the recovery error from M measurements equally distributed

among the eth dimension of the signal using a subsampling of the basis Φ1⊗. . .⊗Φe−1⊗Φe+1⊗. . .⊗ΦD

on each {1, . . . , e− 1, e+ 1, . . . , D}-section of x is such that

‖x− x̂‖2 ≤ C
√
Ne

(
M√

N/Ne
∏
d6=e µ(Φd,Ψd)

)−βe

, (6)

where βe = D−1
2
∑

d 6=e 1/sd
+ 1

4 .

To put Theorem 3 in perspective, we study the bases and the exponents of the bounds separately.

With regards to the bases, the denominators in (5)–(6) provide a scaling for the number of measurements

needed to achieve a target recovery accuracy. This scaling is dependent on the measurement matrices via

mutual coherences; the denominators take values in the ranges [1,
√
N ] and [1,

√
N/Ne], respectively.
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With regards to the exponents, the rates of decay for the recovery error match those of the signal’s

compressibility approximation error rates λ from (4) for the entire signal and its partitions, respectively.

The error decay rate for KCS recovery is higher than that for independent recovery from partitioned

measurements when se >
D−1∑
d 6=e 1/sd

, i.e., when the compressibility exponent of the e-sections is larger

than the harmonic mean of the compressibility exponents of all other sections. Thus, KCS provides the

most significant improvement in the error rate of decay when the measurement partitioning is applied

along the dimension(s) that feature highest compressibility or smoothness. Note also the
√
Ne cost in (6)

of partitioning measurements, which comes from the triangle inequality.

V. EXPERIMENTAL RESULTS

In this section, we experimentally verify the performance of KCS. In addition to synthetic data, we

use 3-D hyperspectral imagery and video sequences, since they can be compressed effectively by well-

studied, albeit data-dependent, compression algorithms (the Karhunen-Loève transform (KLT) and motion

compensation, respectively). Our intent is to see how close we can come to this nonlinear compression

performance using the simpler linear Kronecker product wavelet basis for compression and CS recovery.

We will also experimentally verify the tradeoffs provided in Sections III and IV and contrast the recovery

performance to that reached by integrating such task-specific compression schemes to distributed CS

recovery.

Our experiments use the `1-norm minimization solvers from [35] and [36] for the hyperspectral and

video data, respectively. All experiments were executed on a Linux workstation with a 3.166 GHz Intel

Xeon CPU with 4 GB of memory. A Matlab toolbox containing the scripts that generate the results and

figures provided in this section is available for download at http://dsp.rice.edu/kcs. Additional experimental

results are available in [24, 34].

A. Empirical Performance of KCS

Our first experiment considers synthetically generated signals of size N = 8× 8× 8 that are K = 10-

sparse in a Kronecker product hyperbolic wavelet basis and compares CS recovery from: (i) dense, global

measurements; (ii) a single dense KCS recovery via a Kronecker product measurement matrix obtained

from two dense matrices of sizes 64× 64 (for each 1-section) and 8× 8 (for each {2,3}-section); (iii) a

single distributed KCS recovery from the set of measurements obtained independently from each 8 × 8

1-section; (iv) independent recovery of each 8× 8 1-section from its individual measurements.

We let the number of measurements M vary from 0 to N with the measurements evenly split among

the 1-sections in the independent and KCS recovery cases. For each value of M , we average 100 iterations
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Fig. 2. Empirical performance of KCS. We generate 3-D signals of size N = 8 × 8 × 8 that are K = 10-sparse in

a hyperbolic wavelet basis. While distributed and dense KCS do not match the performance of global measurements,

they perform significantly better than independent recovery.

by generating K-sparse signals x with independent and identically distributed (i.i.d.) Gaussian entries and

with support following a uniform distribution among all supports of size K, and generating measurement

matrices with i.i.d. Gaussian entries. We then measure the probability of successful recovery for each

value of M , where a success is declared if the signal estimate x̂ obeys ‖x − x̂‖2 ≤ 10−3‖x‖2. We

see in Fig. 2 that the above approaches perform best to worst in the order (i)–(iv) presented above. In

particular, the measurement-to-sparsity ratio M/K required for 95% successful recovery are 6, 15, and

30 for global measurements, KCS, and independent recovery, respectively.

B. Hyperspectral data

1) Compressibility: We first evaluate the compressibility of a real-world hyperspectral datacube using

independent spatial and spectral sparsifying bases and compare it with a Kronecker product basis. The

datacube for this experiment is a N = 128 × 128 × 128 voxel portion of the AVIRIS Moffett Field

database [37]. We process the signal through six different transforms. The first three (Space Wavelet,

Frequency Wavelet, Frequency KLT) perform transforms along a subset of the dimensions of the data (a

1-D wavelet basis W1 for the spectral dimension, a 2-D wavelet basis W2 for the spatial dimensions, and

a 1-D KLT basis1 P1 for the spectral dimension, respectively). The fourth (Isotropic Wavelet) transforms

the entire datacube with a 3-D isotropic wavelet basis. The fifth and sixth (Hyperbolic Wavelet and

Wavelet/KLT) transform the entire datacube with a basis formed from the Kronecker products W1⊗W2

of a 1-D wavelet basis in frequency and a 2-D isotropic wavelet basis in space, and P1 ⊗W2 of a a

1-D KLT basis in frequency and a 2-D isotropic wavelet basis in space, respectively. In all cases the

1A KLT basis is learned from a datacube of the same size extracted from a different spatial region of the original AVIRIS

dataset [17, 38, 39]. The resulting transformation provides a linear approximation scheme that preserves the coefficients for the

most significant principal components, rather than the nonlinear approximation scheme used in sparse approximation.
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Fig. 3. Empirical performance of Kronecker product sparsity for hyperspectral imaging. The figure shows the

compression SNR as a function of the number of coefficients K. Kronecker products performs better than either

component basis independently.

Daubechies-8 wavelet was used. For each one of these transforms, we measured the signal-to-noise ratio

(SNR) when the various representations are thresholded to K terms for varying values of K. As we

see in Fig. 3, the Kronecker (hyperbolic wavelet) transform provides the best compression of the signal,

outperforming the partial transforms in terms of SNR. However, the decay rate for the normalized error

of the Kronecker (hyperbolic wavelet) transform is only slightly better than the minimum rate of decay

among the partial (spatial and frequency) wavelet transforms [24]. Our analysis indicates that this result

is due to the difference between the degrees of smoothness among the various signal dimensions.

2) KCS: We compare the performance of KCS to CS using the 2-D basis W2 to yield compressible

coefficient vectors for individual spectral band images. In our experiments we take CS measurements

using the subsampled permuted Hadamard transform of [4] on each spectral band image with a matrix Φ2.

As a baseline, we also take global CS measurements that multiplex all the voxels of the datacube; such

measurements result in a fully dense measurement matrix Φ and therefore are difficult to obtain in real-

world applications. We operate with two “flattened” datacubes of sizes 128×128×16 and 128×128×64

voxels. The flattening was performed by aggregating the intensities among the bands in each spectral

neighborhood for each of the pixels in the image.

Figure 4 shows the recovery error for each datacube from several different recovery setups: Independent

recovery operates on each spectral band independently with the measurement matrix Φ2 using the basis

W2 to sparsify each spectral band. KCS employs the Kronecker product measurement matrix I⊗Φ2 to

16



(a)
0.1 0.2 0.3 0.4 0.5

5

10

15

20

Normalized number of measurements, M/N

S
N

R
, 
d
B

 

 

Kronecker KLT/Global
KCS−KLT
Kronecker Wavelet/Global
KCS−Wavelet
Independent Recovery

(b)
0.1 0.2 0.3 0.4 0.5

10

15

20

Normalized number of measurements, M/N

S
N

R
, 
d
B

 

 

Kronecker KLT/Global
KCS−KLT
Kronecker Wavelet/Global
KCS−Wavelet
Independent Recovery

Fig. 4. Empirical performance of KCS and standard CS for hyperspectral imaging for datacubes of sizes (a) N =

128 × 128 × 16 and (b) N = 128 × 128 × 64 voxels. Recovery using the Kronecker product sparsifying bases

outperforms independent recovery in (a). Additionally, there is an advantage to applying distributed rather than global

measurements when the number of measurements M is low. Furthermore, as the resolution of the spectral dimension

increases in (b), the Kronecker sparsity and Kronecker measurement bases become increasingly coherent, hampering

the performance of joint recovery techniques.

perform joint recovery. We test two different Kronecker product sparsifying bases: KCS-Wavelet uses a

Kronecker product of wavelet bases W1 ⊗W2, and KCS-KLT uses a Kronecker product P1 ⊗W2 of a

KLT basis P1 in the spectral dimension and a 2-D wavelet basis W2 in the spatial dimensions. We also

show results using these two Kronecker product sparsifying bases together with Global measurements Φ

that depend on all voxels of the datacube for reference.

In Fig. 4, we see an improvement in recovery using KCS over global measurements when the number

of measurements M obtained for each band is small; as M increases, this advantage vanishes due to

the availability of sufficient information. We also see that the performance of independent recovery

improves as the number of spectral bands increases and eventually matches the performance of global

measurements [24]. In other words, the performance of the Kronecker-based approaches, which involve

the same CS measurement matrix and spatial transform as independent recovery, fails to improve in a

similar fashion as the number of spectral bands increases. We conjecture that this penalty is due to the

localized nature (in the spectral dimension) of the elements used in the sparsity bases (wavelets and KLT

basis functions). Since the measurements used in KCS are localized, the measurement and sparsity bases

become increasingly coherent as the spectral dimension resolution increases.

We finish by examining the computational complexity of the recovery algorithms for the 128×128×128

voxel datacube problem. Approximate average execution times were measured as follows: independent

recovery of all spectral bands took 9 minutes, while KCS and recovery from global measurements using
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the hyperbolic wavelet basis for sparsity took 25 and 31 minutes, respectively; KCS and recovery from

global measurements using the wavelet/KLT Kronecker product basis for sparsity took 35 and 36 minutes,

respectively. These increases are much more modest than what would be anticipated by the theoretical

discussion in Section III-D.

3) Single-pixel hyperspectral camera: Our next experiment uses real-world data obtained from the

SPHC [19] described in Section I-D using the independent measurements of (3). Figure 1 shows an

example capture from the SPHC. The target is a printout of the Mandrill test image (illuminated by

a desk lamp), for which 64 spectral bands spanning the 450–850 nm wavelength range at a resolution

of 128× 128 pixels were obtained. In Fig. 1 (left), each spectral band was recovered independently. In

Fig. 1 (right), the spectral bands were recovered jointly with KCS using the measurement structure of (3)

and a hyperbolic wavelet basis. The results show a considerable quality improvement over independent

recovery, particularly for spectral frames with low signal power.

C. Video data

1) Compressibility: We evaluate the compressibility of video sequences in an independent spatial (per

frame) sparsifying basis and compare it with a standard isotropic wavelet basis and a Kronecker product

wavelet basis. We use the standard Foreman video sequence, which we crop around the center to produce

frames of size 128 × 128 pixels. We select 128 frames to obtain a 3-D signal of total size N = 221

voxels. We process the signal through three different transforms: (i) (Space) applies the 2-D wavelet

basis W2 along the spatial dimensions of the data, with no compression on the temporal dimension;

(ii) (Isotropic) applies the standard isotropic 3D wavelet basis W3 on the entire video sequence; (iii)

(Kronecker) transforms the entire sequence with the Kronecker product basis W1 ⊗W2, providing a

hyperbolic wavelet basis. For each one of these transforms, we measured the compression signal-to-noise

ratio (SNR) when transform coding is used to preserve K coefficients of the data for varying values of

K.

The results are shown in Fig. 5 and closely resemble those obtained for hyperspectral data. In particular,

the Kronecker product outperforms isotropic wavelets due to the difference in smoothness between the

temporal and spatial dimensions.

2) KCS: We compare the performance of KCS to that of CS using the low-dimensional basis W2

to yield compressible coefficient vectors for individual frames. In our experiments, we obtain CS mea-

surements on each video frame using a matrix Φ2 obtained from a subsampled permuted Hadamard

transform [4]. For KCS we use a single Kronecker product measurement matrix as shown in (3), while
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Fig. 5. Empirical performance of Kronecker product sparsifying basis for transform coding of the Foreman video

sequence,N = 128×128×128 = 221 voxels. The Kronecker product performs better in distortion than the alternative

bases.

for standard CS we perform independent recovery of each frame using the measurement matrix Φ2. We

also use a global CS measurement matrix Φ, where the measurements multiple all the pixels of the video

sequence, as a baseline.

Figure 6 shows the recovery error from several different setups. Independent recovery uses CS on each

video frame independently with the sparsifying basis W2. KCS employs the Kronecker product mea-

surement and sparsity/compressibility transform matrices I⊗Φ2 and W1⊗W2, respectively, to perform

joint recovery of all frames. We also show results using the Kronecker product sparsity/compressibility

transform basis W1 ⊗W2 paired with the Global measurement matrix Φ.

Finally, we compare the above linear approaches to a state-of-the-art recovery algorithm based on

nonlinear motion compensated block-based CS (MC-BCS) [18]. In MS-BCS disjoint blocks of each

video frame are independently measured using both a random measurement matrix and a 2-D discrete

cosine transform (DCT) for sparsity/compressibility. The blocks of a reference frame are recovered using

standard CS recovery algorithms. MC-BCS then calculates measurements for the difference with the

subsequent frame by subtracting the corresponding measurement vectors, and recovers the blocks of

the frame difference using standard CS algorithms. The frame difference is then refined using motion

compensation (MC); the MC output is used to obtain a new frame difference and the process is repeated

iteratively for each frame, and again for each subsequent frame in the group of pictures (GOP). Further

refinements enable additional improvements in the quality of the recovered video sequence. A toolbox

implementing MC-BCS was released while this paper was under review [18]. We set the GOP size to

8 and use blocks of size 16 × 16, following the parameter values of the toolbox implementation. In

contrast to [18], we set the number of measurements for each of the frames to be equal to match the

KCS partitioning of measurements.

The Foreman sequence features camera movement, which is reflected in sharp changes in the value of
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Fig. 6. Empirical performance of KCS on the Foreman video sequence. While KCS does not perform as well as CS

using global measurements, it shows an improvement over independent recovery of each frame in the video sequence

using the same measurements. The motion compensation-aided approach outperforms the generic approaches.

each pixel across frames. We see, once again, that while KCS does not perform as well as CS with global

measurements, it does outperform independent recovery of each frame in the sequence operating on the

same measurements. Furthermore, the quality of KCS recovery comes within 5 dB of that of MC-BCS,

which may be surprising considering that the motion compensation performed in MC-BCS is especially

designed for video coding and compression.

Approximate average execution time were as follows: independent recovery of all video frames took

13 seconds, while KCS and recovery from global measurements using the hyperbolic wavelet basis for

sparsity took 104 and 220 minutes, respectively; MC-BCS recovery took 34 minutes. These results agree

with the discussion in Section III-D, since the computational time of KCS is increased by a factor of

about 128× 3 = 384 over independent recovery.

VI. RELATED WORK

Prior work for CS of multidimensional signals focuses on the example applications given in this paper –

hyperspectral imaging [8, 38–40] and video acquisition [7, 9–12, 14, 17, 18] – with limited additional work

in sensor networks [6, 15, 16] and confocal microscopy [13]. Some formulations employ measurement

schemes that act on a partition of the data {x1, . . . ,xJ}, such as frames of a video sequence [6–14, 17,

18]. For those cases, individual measurement vectors {y1, . . . ,yJ} are obtained using a set of matrices

{Φ1, . . . ,ΦJ}, resulting in the measurement matrix structure of (3). While global measurements that

multiplex the entire set of data have been proposed [5, 7, 13, 17], practical architectures that provide

such measurements are rare [5]. Similarly, partitioned measurements have been proposed for CS of low-

dimensional signals for computational purposes [25, 26, 41]. Below we contrast the signal model and
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algorithms used in these approaches with those used in KCS.

Several frameworks have been proposed to sparsify multidimensional signals. The most significant

class of structures link signal partitions through overlap of nonzero coefficient values and locations. That

is, there exists a matrix P of size JN ×D with binary entries (0 or 1) and a vector Θ of length D such

that x = (I⊗Ψ)PΘ. The vector Θ encodes the correlations among partitions and has length lower than

the sum of the sparsities of the partitions [6, 10, 12, 15, 16]. Such matrices are very limited in the kinds

of structures they can represent. Kronecker product matrices can represent a variety of multidimensional

structures by using sparse representations for each of the signal dimensions.

Kronecker product matrices have been proposed for use as sparsifying bases in CS for certain spatiotem-

poral signals [9, 11, 17]. In other cases, specialized compression bases are combined with custom recovery

algorithms [8, 12, 14, 17, 18]; a prime example is motion compensation for video sequences [12, 18]. While

such algorithms often provide superior performance, they seldom come with theoretical tractability and

performance guarantees. In contrast, KCS can use a variety of standard CS recovery algorithms and

preserves their guarantees, since it relies on standard matrices for measure and sparsity/compressibility

transforms. Standard sparsifying bases for multidimensional CS, such as isotropic wavelets, suffice only

for very specific signal classes that do feature similar degrees of smoothness in each dimension [7, 13];

KCS using hyperbolic wavelets is suitable for signals with different degrees of smoothness in each of

their dimensions.

In transform coding, hyperbolic wavelet bases have been proposed for compression of hyperspectral

datacubes and video sequences [17, 40, 42]; however, to date no mathematical analysis of their perfor-

mance has been provided. Kronecker products involving matrices obtained from principal component

analysis and Karhunen-Loève transforms have also been used for this purpose. However, they rely on

linear low-dimensional approximations rather than nonlinear sparse representations [17, 38, 39]; thus, the

approaches are more data-dependent and more difficult to generalize among different datasets.

Finally, we are aware of two initial studies on the properties of Kronecker product matrices for CS [25–

27]. Our study of mutual coherence matches that independently obtained in [25, 26], while [27] provides

only a lower bound for their restricted isometry constants; we have provide an upper bound based on the

properties of the eigendecomposition of their submatrices.

VII. CONCLUSIONS AND FURTHER WORK

In this paper we have developed the concept of Kronecker compressive sensing (KCS) and presented

initial analytical and experimental results on its performance. Out theoretical framework is motivated by
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new sensing applications that acquire multidimensional signals in a progressive fashion, as well as by

settings where the measurement process is distributed, such as sensor networks and arrays. We have also

provided analytical results for the recovery of signals that live in anisotropic Besov spaces, where there

is a well-defined relationship between the degrees of compressibility obtained using lower-dimensional

wavelet bases on portions of the signal and multidimensional hyberpolic wavelet bases on the entire

signal. Furthermore, because the formulation follows the standard CS approach of single measurement

and sparsifying matrices, standard recovery algorithms that provide provable guarantees can be used; this

obviates the need to develop ad-hoc algorithms to exploit additional signal structure.

Further work remains in finding additional signal classes for which the use of multidimensional

structures provides an advantage during compression. Some promising candidates include modulation

spaces, which contain signals that can be compressed using Wilson and brushlet bases [43, 44]. Our KCS

framework also motivates the formulation of novel structured representations using sparsifying bases in

applications where transform coding compression schemes have not been developed.

While we have focused on hyperspectral imaging and video acquisition, there exist other interesting

applications where KCS is relevant. In sensor networks and arrays, sparsity-based distributed localiza-

tion [45–47] obtains a sparse estimate of the vector containing the samples obtained in a dictionary that

contains the responses of a known source at a set of feasible locations. The sparse vector will encode the

location of the source within the feasible set. When the source signal is not known, we can assume that

it is sparse in a known basis and employ a Kronecker product matrix that encodes both the propagation

physics and the sparse or compressible structure of the source signal. In medical imaging, there are

many applications where estimates of high-dimensional data are obtained from highly undersampled

measurements, including 3-D computed tomography, angiography [9], 3-D magnetic resonance imaging

(MRI) [9], and functional MRI.
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