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ABSTRACT

Compressive sensing (CS) is an emerging approach for acquisition

of signals having a sparse or compressible representation in some ba-

sis. While CS literature has mostly focused on problems involving

1-D and 2-D signals, many important applications involve signals

that are multidimensional. We propose the use of Kronecker product

matrices in CS for two purposes. First, we can use such matrices as

sparsifying bases that jointly model the different types of structure

present in the signal. Second, the measurement matrices used in dis-

tributed measurement settings can be easily expressed as Kronecker

products. This new formulation enables the derivation of analytical

bounds for sparse approximation and CS recovery of multidimen-

sional signals.

Index Terms— Data compression, multidimensional signal pro-

cessing, signal reconstruction

1. INTRODUCTION

Compressive sensing (CS) is a new approach to simultaneous sens-

ing and compression that enables a potentially large reduction in

the sampling and computation costs at a sensor for a signal x hav-

ing a sparse or compressible representation θ in some basis Ψ (i.e.

x = Ψθ) [2, 3]. The CS literature has mostly focused on problems

involving single sensors and one-dimensional (1-D) or 2-D data.

However, many important applications that hold the most promise

for CS involve signals that are inherently multidimensional. The co-

ordinates of these signals may span several physical, temporal, or

spectral dimensions. Examples include hyperspectral imaging (with

spatial and spectral dimensions), video acquisition (with spatial and

temporal dimensions), and synthetic aperture radar imaging (with

progressive acquisition in the spatial dimensions). Another class of

promising applications for CS involves distributed networks or ar-

rays of sensors, including for example environmental sensors, mi-

crophone arrays, and camera arrays.

Initial work on sparsity and compressibility of multidimensional

signals and signal ensembles [4–10] has provided new sparsity and

compressibility models for multidimensional signals. These models

consider sections of the multidimensional data corresponding to a

fixed value for a subset of the coordinates as separate signals; the

correlations are defined between the values and locations of their

sparse representations. The resulting models are rather limited in

the types of structures admitted. For almost all of these models,
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theoretical guarantees on signal recovery have been provided only

for strictly sparse signals, for noiseless measurement settings, or in

asymptotic regimes. Additionally, almost all of these models are tied

to ad-hoc recovery procedures.

In this paper, we show that Kronecker product matrices are a

natural way to generate sparsifying and measurement matrices for

CS of multidimensional signals, resulting in a formulation that we

dub Kronecker Compressive Sensing (KCS). When the signal struc-

ture along each dimension can be expressed via sparsity, Kronecker

product sparsity bases combine the structures for each signal dimen-

sion into a single matrix and representation. Similarly, Kronecker

product measurement matrices for multidimensional signals can be

implemented by performing a sequence of separate measurements

obtained along each dimension. KCS enables the derivation of an-

alytical bounds for recovery of compressible multidimensional sig-

nals from randomized or incoherent measurements.

This paper is organized as follows. Section 2 provides back-

ground material. Section 3 studies Kronecker product matrices for

CS, and Section 4 studies wavelet-sparse signals as an example. Sec-

tion 5 provides experimental results and Section 6 provides conclu-

sions.

2. BACKGROUND

Compressive sensing: CS is a efficient signal acquisition frame-

work for signals that are sparse or compressible in an appropriate

domain. Let x ∈ R
N be the signal of interest. We say that x is

K-sparse or has sparsity K in a basis or frame Ψ if θ = ΨT x obeys

‖θ‖0 = K, with K ≪ N and ΨT denoting the transpose matrix

of Ψ. Here, ‖ · ‖0 denotes the ℓ0 norm, which simply counts the

number of nonzero entries in the vector. Similarly, we say that x is

s-compressible in Ψ if the vector eθ, containing the entries of θ sorted

by absolute value, has entries with magnitudes that decay according

to a power law

˛̨
˛eθ(n)

˛̨
˛ ≤ Cn−s−1/2, for all n = 1, . . . , N , where

C < ∞. Such vectors can be compressed by preserving only the

coefficients with largest absolute magnitude.

The CS acquisition procedure consists of measuring the product

of the signal against a measurement matrix Φ ∈ R
M×N ; the ac-

quisiton procedure can be written as y = Φx+n = ΦΨθ+n, with

the vector y ∈ R
M containing the CS measurements and the vector

n denoting the noise introduced in the measurement process. When

the signal being observed is sparse enough, it can be estimated by

solving
bθ = arg min ‖θ‖1 s.t. ‖y − ΦΨθ‖2 ≤ ǫ, (1)

where ǫ is an upper bound on the Euclidean norm of the noise vector

n. In this case, ‖ · ‖1 denotes the ℓ1 norm, which is equal to the sum

of the absolute values of the vector entries.

In particular cases, we do not have freedom to choose a mea-

surement matrix to apply. Under this type of setup, we can assume
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that a basis Φ ∈ R
N×N is provided for measurement purposes, and

we have the option to choose a subset of the signal’s coefficients in

this transform as measurements. That is, we let Φ be an N × M
submatrix of Φ that preserves the basis vectors with indices Γ and

y = Φ
T
x. In this case there exists a different metric that evaluates

the performance of CS: the mutual coherence of the orthonormal

bases Φ ∈ R
N×N and Ψ ∈ R

N×N is the maximum absolute value

for the inner product between elements of the two bases

µ(Φ,Ψ) = max
1≤i,j≤N

|〈φi, ψj〉| ,

with φi and ψi denoting the ith column of Φ and Ψ, respectively.

The mutual coherence determines the value of M necessary for ac-

curate recovery: if

M ≥ CKNµ2(Φ,Ψ) log(N/δ),

then with probability at least 1 − δ, θ is the solution to (1) [2].

Since µ(Φ,Ψ) ∈ [N−1/2, 1], the number of measurements required

ranges from O(K log(N)) to O(N).

Kronecker products: The Kronecker product of two matrices

A and B of sizes P ×Q and R× S, respectively, is defined as

A⊗B :=

2
6664

A(1, 1)B A(1, 2)B . . . A(1, Q)B
A(2, 1)B A(2, 2)B . . . A(2, Q)B

..

.
..
.

. . .
..
.

A(P, 1)B A(P, 2)B . . . A(P,Q)B

3
7775 .

Thus, A ⊗ B is a matrix of size PR × QS. Let Ψ1 and Ψ2 be

bases for R
N1 and R

N2 , respectively. Then one can find a basis for

R
N1 ⊗ R

N2 ∼= R
N1N2 as eΨ = Ψ1 ⊗ Ψ2.

Signal ensembles: In distributed sensing problems, we aim

to acquire an ensemble of signals x1, . . . ,xJ ∈ R
N that vary

in time, space, etc. We assume that each signal’s structure can

be encoded using sparsity with an appropriate basis Ψ′. This

ensemble of signals can be expressed as a N × J matrix X =

[x1 x2 . . . xJ ] = [x1T
x2T

. . . xN T
]T , where the individual sig-

nals x1, . . . ,xj corresponding to columns of the matrix, and where

the rows x1, . . . ,xN of the matrix correspond to values of the signal

ensembles at a given time, location, etc; thus, signal ensembles can

also be posed as multidimensional signals.

3. KRONECKER PRODUCT MATRICES FOR

MULTIDIMENSIONAL COMPRESSIVE SENSING

In this section, we describe our framework for the use of Kro-

necker product matrices in multidimensional CS. We call the re-

striction of a multidimensional signal to fixed indices for all but

its dth dimension a d-section of the signal. For example, for

a 3-D signal x ∈ R
N1×N2×N3 , the subset xi,j,· := [x(i, j, 1)

x(i, j, 2) . . . x(i, j,N3)] is a 3-section of the signal x.

Kronecker product sparsity bases: It is possible to simulta-

neously exploit the sparsity properties of a multidimensional signal

along each of its dimensions to provide a new representation for their

structure. We obtain a single sparsity basis for the entire multidimen-

sional signal as the Kronecker product of the bases used for each of

its d-sections. For multidimensional signals, this encodes all of the

available structure using a single transformation. More formally, we

let x ∈ R
N1 ⊗ . . . ⊗ R

ND = R
N1×...×ND ∼= R

Q

D

d=1
Nd and as-

sume that each d-section is sparse or compressible in a basis Ψd. We

then pose a sparsity/compressibility basis for X obtained from Kro-

necker products as Ψ = Ψ1 ⊗ . . . ⊗ ΨD, and obtain a coefficient

vector Θ for the signal ensemble so that X = ΨΘ, where X is a

vector-reshaped representation of X.

Kronecker product measurement matrices: We can also de-

sign measurement matrices that are Kronecker products; such matri-

ces correspond to measurement processes that operate individually

on a single d-section of the multidimensional signal. The resulting

measurement matrix can be expressed as eΦ = Φ1⊗ . . .⊗ΦD. As an

example with D = 2, if we have Φ1 ∈ R
M1×N and Φ2 ∈ R

M2×J ,

we obtain Φ ∈ R
M1M2×NJ . This results in a matrix that provides

M = M1M2 measurements of the 2-D signal X.

Consider the example of a signal ensemble where we obtain dis-

tributed measurements, in the sense that each measurement depends

on only one of the signals. More formally, for each signal (or 1-

section) x·,j , 1 ≤ j ≤ J we obtain independent measurements

yj = Φjx·,j with an individual measurement matrix being applied

to each 1-section. The structure of such measurements is often suc-

cinctly captured by Kronecker products. To compactly represent the

signal and measurement ensembles, we denote Y = [yT
1 . . .yT

J ]T

and eΦ = diag(Φ1, . . . ,ΦJ ), where diag denotes a block-diagonal

matrix with corresponding block entries. We then have Y = eΦX.

If a matrix Φj = Φ′ is used at each sensor to obtain its individual

measurements, then we can express the joint measurement matrix as
eΦ = IJ ⊗ Φ′, where IJ denotes the J × J identity matrix.

Mutual coherence for Kronecker product matrices: We now

derive results for the coherence metric described in Section 2 ap-

plied to Kronecker product sparsifying and measurement matrices.

This metric will determine the suitability of KCS for signal recovery.

The following lemma provides a conservation of mutual coherence

across Kronecker products.

Lemma 3.1. [11, 12] Let Φd, Ψd be bases or frames for R
Nd for

d = 1, . . . ,D. Then

µ(Φ1 ⊗ . . .⊗ ΦD,Ψ1 ⊗ . . .⊗ ΨD) =
DY

d=1

µ(Φd,Ψd).

Since the mutual coherence of each d-section’s sparsity and

measurement bases is upper bounded by one, the number of Kro-

necker product-based measurements necessary for successful recov-

ery of the multidimensional signal is always lower than or equal to

the corresponding number of necessary partitioned measurements

that process only a portion of the multidimensional signal along its

dth dimension at a time, for some d ∈ {1, . . . ,D}. This reduction

is maximized when the d-section measurement basis is Φ maximally

incoherent with the d-section sparsity basis Ψ.

4. CS WITH MULTIDIMENSIONAL WAVELET BASES

Kronecker products are prevalent in the extension of wavelet trans-

forms to multidimensional settings. There are several different

wavelet basis constructions depending on the choice of basis ele-

ments involved in the Kronecker products. For these constructions,

our interest is in the relationship between the compressibility of each

d-section in a wavelet component basis and the compressibility of

the multidimensional signal in the wavelet Kronecker product basis.

Multidimensional wavelets: Several different extensions exist

for the construction of D-D wavelet basis elements as a Kronecker

product of 1-D wavelets [1]. In each case, a D-D wavelet basis

element is obtained from the Kronecker product of D 1-D wavelet



basis elements:

ψi1,j1,...,iD ,jD
= ψi1,j1 ⊗ . . .⊗ ψiD ,jD

.

Many multidimensional bases can then be obtained through the use

of appropriate combinations of 1-D wavelets in the Kronecker prod-

uct. For example, isotropic wavelets arise when the same scale

j = j1 = . . . = jD is selected for all wavelets involved, while

anisotropic wavelets force a fixed factor between any two scales, i.e.

ad,d′ = jd/jd′ , 1 ≤ d, d′ ≤ D. Additionally, hyperbolic wavelets

result when no restriction is placed on the scales j1, . . . , jD . There-

fore, the hyperbolic wavelet basis is obtained as the Kronecker prod-

uct of the individual wavelet bases [1]. We denote the isotropic,

anisotropic, and hyperbolic wavelet bases by ΨI , ΨA, and ΨH , re-

spectively.

Besov spaces: A Besov space Bs
p,q contains D-D signals that

have (roughly speaking) s derivatives in Lp(ΩD) in all directions;

the parameter q provides finer distinctions of smoothness. One ex-

ample is the class of natural images [13]. Signals that are inBs
p,q are

s-compressible in a sufficiently smooth isotropic wavelet basis.

In applications other than natural image processing, such as

PDEs, the type of structure present is different in each of the

signal’s dimensions. In these cases, anisotropic and hyperbolic

wavelets can be used to achieve sparse and compressible represen-

tations for signals of this type. An anisotropic Besov space Bs
p,q,

where s = {s1, . . . , sD}, contains D-D signals that have (roughly

speaking) sd derivatives in Lp(Ω) for any d-section of the D-D

function. Similarly to isotropic Besov spaces, signals in Bs
p,q are

λ-compressible in a suitable anisotropic or hyperbolic wavelet ba-

sis, with λ = D/
PD

d=1
1/sd [1]. In contrast, such signals are

ρ-compressible in a sufficiently smooth isotropic wavelet basis, with

ρ = min1≤d≤D sd [1].

The disadvantage of anisotropic wavelets, as compared with hy-

perbolic wavelets, is that they must have smoothness ratios between

the dimensions that match that of the signal in order to achieve the

optimal approximation rate [1]. Additionally, the hyperbolic wavelet

basis is the only one out of the three basis types described that can

be expressed as the Kronecker product of lower dimensional wavelet

bases. Therefore, we use hyperbolic wavelets in the sequel and in the

experiments of Section 5.

Performance of CS recovery: When Kronecker product matri-

ces are used for measurement and transform coding of compressible

signals, it is possible to compare the rates of approximation that can

be obtained by using independent measurements of each signal snap-

shot (or signal). The following Theorem is proven in [12].

Theorem 4.1. Assume that a D-D signal X ∈ R
N1×...×ND is

in Bs
p,q . That is, X has sd-compressible d-sections in sufficiently

smooth wavelet bases Ψd, 1 ≤ d ≤ D. Denote by Φd, 1 ≤ d ≤ D
a set of measurement matrices that can be applied along each di-

mension of X. If M measurements are obtained using a random

subset of the columns of Φ1 ⊗ . . .⊗ ΦD , then with high probability

the recovery error from these measurements has the property

‖X − bX‖2 ≤ CM−β
DY

d=1

µ(Φd,Ψd)
β,

where β = λ − 1/4, while the recovery from M measurements

equally distributed among sections of the signal in the dth dimen-

sion has the property

‖X − bX‖2 ≤ CM−γdµ(Φd,Ψd)
γd ,

for d = 1, . . . ,D, where γd = sd/2 − 1/4.

To summarize the theorem, as the number of measurements in-

creases, the recovery error decay rate matches that of the signal’s

compressibility approximation error; however, there is an additional

factor dependent on the inverse of the mutual coherences that af-

fects the decay with the same exponential rate of decay. To put

Theorem 4.1 in perspective, we consider the isotropic and extreme

anisotropic cases. In the anisotropic case, when sd = s, 1 ≤ d ≤
D, all approaches provide the same CS recovery approximation rate,

i.e., β = γd, 1 ≤ d ≤ D. In the extreme anisotropic case, i.e.,when

se ≪ sd, d 6= e, the approximation rate of KCS recovery ap-

proaches β ≈ Dse, while the approximation rate using standard

CS on the sections of the signal along the dth dimension is approxi-

mately γd ≈ sd. Thus, using KCS would only provide an advantage

if the measurements are to be distributed along the eth dimension.

5. EXPERIMENTAL RESULTS

We perform experiments to verify the compressibility properties of

multidimensional hyperspectral signals in a hyperbolic wavelet ba-

sis. We also perform experiments that showcase the advantage of

using Kronecker product sparsity bases and measurement matrices

against schemes that operate on partitioned versions of the multidi-

mensional signals. Additional results are available in [12].

Our first experiment considers synthetically generated signals of

size 8×8×8 (i.e.,N = 512) that areK = 10-sparse in a Kronecker

product basis, and compares three CS recovery schemes: the first one

uses a single recovery from dense, global measurements; the second

one uses a single KCS recovery from the set of measurements ob-

tained independently from each 8 × 8 3-section; and the third one

uses independent recovery of each 8×8 3-section from its individual

measurements. We let the number of measurements M vary from 0

to N , with the measurements evenly split among the 3-sections in

the independent and KCS recovery cases. For each value of M , we

perform 100 iterations by generating K-sparse signals x with inde-

pendent and identically distributed (i.i.d.) Gaussian entries and with

support following a uniform distribution among all supports of size

K, and generating measurement matrices with i.i.d. Gaussian entries

for each 3-section as well. We then measure the probability of suc-

cessful recovery for each value of M , where a success is declared

if the signal estimate bx obeys ‖x − bx‖2 ≤ 10−3‖x‖2. The over-

measuring factors M/K required for 95% success rate are 6, 15,

and 30 for global measurements, KCS, and independent recovery,

respectively; see [12] for details.

Our second experiment performs an experimental evaluation of

the compressibility of a real-world hyperspectral datacube using in-

dependent spatial and spectral sparsity bases and compares it with

a Kronecker product basis. The datacube for this experiment is ob-

tained from the AVIRIS database. A 128 × 128 × 128 voxel sam-

ple is taken, obtaining a signal of length N = 221 samples. We

then process the signal through three different transforms: the first

two (Space, Frequency) perform wavelet transforms along a subset

of the dimensions of the data; the third one (Kronecker) transforms

the entire datacube with a basis formed from the Kronecker product

of a 2-D isotropic wavelet basis in space and a 1-D wavelet basis

in frequency. In all cases the Daubechies-8 wavelet was used. For

each one of these transforms, we measured normalized error mag-

nitude when transform coding is used to preserve K coefficients of

the data for varying values of K. The results are shown in Figure 1;

the Kronecker transform provides the sparsest representation of the

signal, outperforming the partial transforms. However, the rate of
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Fig. 1. Performance of Kronecker product transform coding for hy-

perspectral imaging. The Kronecker product performs better than

either basis independently. However, the rate of decay of the com-

pression error using the Kronecker product basis is approximately

the same as the lower rate obtained from the individual bases.
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Fig. 2. Performance of Kronecker product sparsity and measure-

ments matrices for hyperspectral imaging. Recovery using the Kro-

necker product sparsifying basis outperforms separate recovery. Ad-

ditionally, there is an advantage to applying distributed rather than

global measurements when the number of measurements M is low.

decay for the normalized error of the Kronecker transform is slightly

higher than the minimum rate of decay among the individual trans-

forms. Our analysis indicates that this result is due to the difference

between the degrees of smoothness among the signal dimensions.

We also compare the performance of KCS to CS using standard

bases to sparsify individual spectral frames. In our simulations we

obtain CS measurements using a subsampled permuted Hadamard

transform on each spectral frame. The datacube from the previous

experiment was ”flattened” to 128 × 128 × 16 voxels to reduce the

amount of computation required. Figure 2 shows the recovery er-

ror magnitude from several different setups: independent recovery

operates on each spectral band independently using a wavelet ba-

sis to sparsify each spectral band. KCS Wavelet employs the Kro-

necker product formulations to perform joint recovery. We also ob-

tain global CS measurements that depend on all the voxels of the

datacube as a baseline; such measurements result in a fully dense

measurement matrix Φ and therefore are difficult to obtain in real-

world applications. In this case, we use the Kronecker Wavelet basis

for sparsity and recover all frames at once. We see a strong ad-

vantage to the use of Kronecker product wavelet basis with joint

recovery as compared to independent recovery. We also see an im-

provement on KCS over global measurements when the number of

measurements M is small; as M increases, this advantage vanishes

due to the availability of sufficient information.

6. CONCLUSIONS

In this paper we have developed the concept of KCS and presented

initial analytical results on its performance. This theoretical frame-

work is motivated by new sensing applications that acquire multi-

dimensional signals in a progressive fashion, as well as by settings

where the measurement process is distributed, such as sensor net-

works and arrays. We have also provided analytical results for the

recovery of signals that live in anisotropic Besov spaces, where there

is a well-defined relationship between the degrees of compressibility

obtained using lower-dimensional wavelet bases on subsets of the

signal and multidimensional anisotropic wavelet bases on the entire

signal. Furthermore, because the formulation follows the standard

CS approach of single measurement and sparsifying matrices, stan-

dard recovery algorithms that provide provable recovery guarantees

can be used; this obviates the need to develop ad-hoc algorithms to

exploit additional signal structure.
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