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ABSTRACT

This paper proposes an out-of-sample extension framework
for a global manifold learning algorithm (Isomap) that uses
temporal information in out-of-sample points in order to make
the embedding more robust to noise and artifacts. Given a
set of noise-free training data and its embedding, the pro-
posed framework extends the embedding for a noisy time se-
ries. This is achieved by adding a spatio-temporal compact-
ness term to the optimization objective of the embedding. To
the best of our knowledge, this is the first method for out-
of-sample extension of manifold embeddings that leverages
timing information available for the extension set. Experi-
mental results demonstrate that our out-of-sample extension
algorithm renders a more robust and accurate embedding of
sequentially ordered image data in the presence of various
noise and artifacts when compared to other timing-aware em-
beddings.

Index Terms— Dimensionality reduction, manifold
learning, time series, out-of-sample extension

1. INTRODUCTION

Recent advances in sensing technology have enabled a mas-
sive increase in the dimensionality of data captured from dig-
ital sensing systems. Naturally, the high dimensionality of
data affects various stages of the digital systems, from acqui-
sition to processing and analysis of the data. To meet com-
munication, computation, and storage constraints, in many
applications one seeks a low-dimensional embedding of the
high-dimensional data that shrinks the size of the data repre-
sentation while retaining the information we are interested in
capturing. This problem of dimensionality reduction has at-
tracted significant attention in the signal processing and ma-
chine learning communities.

The traditional method for dimensionality reduction is
principal component analysis (PCA) [1], which successfully
captures the structure of datasets well approximated by a lin-
ear subspace. However, in many applications, the data can
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be best modeled by a nonlinear manifold whose geometry
cannot be captured by PCA. Manifolds are low-dimensional
geometric structures that reside in a high-dimensional ambi-
ent space despite possessing merely a few degrees of freedom.
Manifold learning methods aim to obtain a suitable nonlinear
embedding into a low-dimensional space that preserves the
local structure present in the higher-dimensional data in order
to simplify data visualization and exploratory data analysis.
Examples of manifold learning methods include Isomap [2],
locally linear embedding [3], Laplacian eigenmaps [4], and
Hessian eigenmaps [5].

All the aforementioned dimensionality reduction methods
assume that the data points are stationary and independent.
However, in many real-world applications in vision we en-
counter time series data. In recent years, several attempts have
been made to take advantage of temporal information of data
in order to discover the dynamics underlying the manifold [6—
9]. In particular, spatio-temporal Isomap (ST-Isomap) [6]
empirically alters the original weights in the graph of local
neighbors to emphasize similarity between temporally related
points. When the data to be embedded corresponds to a time
series, all these temporal frameworks of dimensionality re-
duction generate better quality embedded spaces than the ini-
tial approaches in some sense. However, all of the mentioned
methods are designed only for a given set of training points,
with no extension of these timing-aware embeddings for out-
of-sample points.

On the other hand, many of these dimensionality reduc-
tion algorithms (and Isomap in particular) are sensitive to
noise and artifacts [10]. This is not desirable for real-world
applications since the data are usually contaminated with
noise and various artifacts due to imperfect sensors or hu-
man mistakes. This sensitivity is particularly relevant for
emerging architectures for very low power sensing, which are
subject to increased presence of noise and artifacts [11]. Note
that the literature on manifold models for noisy data [12-15]
fails to (i) address the out-of-sample extension problem in
the presence of noise and artifacts, and (i) take advantage of
temporal information among the images.

In this paper, we address the out-of-sample extension of
nonlinear manifold embeddings for the specific case where



the points to be extended correspond to a time series. The aim
is to use the sequential ordering of data points to improve the
resilience of the embedding of out-of-sample points to vari-
ous noise and artifact models. This improvement is achieved
by adding a spatio-temporal compactness constraint for pairs
of points within a temporal neighborhood window. Our fo-
cus in this paper is on Isomap for the sake of concreteness,
but we believe that our formulation is generic enough that it
can also be applied to additional nonlinear manifold learning
algorithms.

The application scenario of our proposed scheme is as fol-
lows. In a training stage for nonlinear manifold learning, we
have full control of the environment, which enables us to cap-
ture noise-free data. We then use the captured training data to
learn the underlying manifold. In the testing stage (which cor-
responds to the normal operation of the sensors), we capture
data points of lower quality, possibly contaminated with dif-
ferent artifacts/noise patterns, in a sequential order (i.e., as a
time series). We then extend the original nonlinear manifold
embedding to the newly acquired (noisy) samples using our
proposed algorithm that leverages their timing information.

2. BACKGROUND

Manifold Models and Manifold Learning: A set of data
points U = {uy,us,...,u,} in a high-dimensional am-
bient space R? that have been generated by an event fea-
turing m degrees of freedom correspond to a sampling of
an m-dimensional manifold M C R? Given the high-
dimensional data set I/, we would like to find the parameteri-
zation that has generated the manifold. One way to discover
this parametrization is to embed the high-dimensional data
on the manifold to a low-dimensional space R™ so that the
local geometry of the manifold is preserved. Dimensionality
reduction methods are devised so as to preserve such geome-
try, which is measured by a neighborhood-preserving criteria
that varies depending on the specific algorithm.

Isomap: For nonlinear manifold learning, this paper fo-
cuses on the Isomap algorithm, which aims to preserve the
pairwise geodesic distances between data points [2]. The
geodesic distance is defined as the length of the shortest path
between two data points u; and u; (u;,u; € M) along the
surface of the manifold M and is denoted by d¢(u;,u;).
Isomap first finds an approximation to the geodesic distances
between each pair of data points in a sampling of the manifold
U by constructing a neighborhood graph in which each point
is connected only to its k£ nearest neighbors; the edge weights
are equal to the corresponding pairwise distances. For neigh-
boring pairs of data points, the Euclidean distance provides a

good approximation for the geodesic distance, i.e.,
dg(ui,Uj) = ||ul — Uj||2 for u; € Nk(ui), (1)

where N, (u;) designates the set of k nearest neighbors in U
to the point u; € U. For non-neighboring points, the geodesic

distance is estimated as the length of the shortest path along
the neighborhood graph, which can be found via Dijkstra’s
algorithm. Then, multidimensional scaling is applied to
the resulting geodesic distance matrix to find a set of low-
dimensional points £ = {¢1,{s, ..., ¢, } that best match such
distances. More precisely, the centralized squared geodesic
distance matrix can be obtained as A, = —%HnAan,
where A, is the matrix of squared geodesic distances for
U (e, (An)ij = d%(u;,u ) and Hy, is the centering ma-
trix defined by the formula (H,);; = 6;; — % Then, the
m-dimensional embedding £ for the data U/ is given as the
columns of the matrix

vV )\1 . ’Uip
AV )\2 . Ug

Vvl

where \; and v; are the eigenvalues and eigenvectors of the
A, respectively.

Out-of-Sample Extension for Isomap: Out-of-sample
extension (OoSE) generalizes the result of the nonlinear man-
ifold embedding for new data points. Suppose we have n
training data points I/ and their embedding £. To obtain the
extension of the embedding £ to the out-of-sample (testing)
set Y = {y1,92,...,Yn}, let Ax denote the n x N matrix
of squared geodesic distances between the N out-of-sample
(testing) points ) and the n training points /. The out-of
sample extension X = {1, Za, ...,z N} of the embedding £
to the points ) is given by the columns of the matrix [16]

1 _
X = L* (An1} = Ax), @

where 1, denotes an all—ongs vector of length NV, A,, is the
column mean of A,, ie., A, = %Anln, and L# is the
pseudo-inverse transpose of L, given by

v;/\/ﬂ
F=hyi=| /.\/E
o

Note that, to the best of our knowledge, the literature on
out-of-sample extension does not exploit the sequential order-
ing of data to mitigate the possibility of embedding errors due
to the presence of noisy and contaminated data.

Spatio-Temporal Isomap: In Isomap, the neighhorhood
graph is formed by linking each point in I/ to its k-nearest
neighbors in the same set. Spatio-Temporal Isomap (ST-
Isomap) leverages sequence/timing information {(u;,t;)}
present for each of the points u; € U. ST-Isomap appends
edges between pairs of adjacent temporal neighbors (ATN),
i.e., pairs of immediate temporal neighbors where ¢; = ¢; &1,
to the neighborhood graph. The addition of ATN edges to the



neighborhood graph introduces a first-order Markov depen-
dency into the resulting embedding. The distances between
ATNs are scaled down by a factor given by the constant pa-
rameter c47y, which emphasizes the correlation between a
point and its adjacent temporal neighbors.

ST-Isomap also modifies the graph distances of a subset
of the k-nearest neighbors of each point that satisfy certain
spatio-temporal conditions. First, the set of points in a tem-
poral window of size e around each point u; is considered
as its trivial matches, denoted by T¢(u;). Suppose that the
point u} € Tc(u;) is the closest trivial match to point u;, i.e.,
da(us,uj) = ming, e7; (u;) da(ui, ug). Now, the subset of
k-nearest neighbors with distances at most dg(u;, u}) from
u; are considered as non-trivial matches and the resultlng set
is referred to as common temporal neighbors (CTN):

CTN(u;) = {uj € Nip(wi) : da(wi, uj) < dg(uq,ui)}.

In a sense, CTN are used to identify data points in the local
spatial neighborhood of each point w; that are more likely to
be analogous to u;. Finally, the constant parameter cor is
used to emphasize the similarity between each point and its
CTN set via reducing the corresponding distances by a scaling
factor of cor .

Note that ST-Isomap is devised to uncover spatio-temporal
structure underlying manifold data, rather than faithfully re-
cover the embedding of data contaminated by noise or artifact
models. In addition, ST-Isomap does not address the out-of-
sample extension problem. Nonetheless, we formulate an
adaptation of out-of-sample extension from Isomap to ST-
Isomap in Section 4.

3. PROPOSED ALGORITHM

We propose a new algorithm for out-of-sample extension
of Isomap nonlinear manifold embeddings that also aims to
leverage temporal information in order to improve the quality
of the embedding of noisy and corrupted time series data.

Recall that the embedding of out-of-sample points is
given by the matrix equation (2). Alternatively, the em-
bedding X = {x1,22,...,2n} of out-of-sample points
Y = {y1,y2,...,yn} can be obtained via the following
optimization problem:

2

NE)

X = argmin
X F

’; (Bn1% — Ax) — LTX

where ||.||r denotes the Frobenius matrix norm, and the

columns of the matrix X correspond with the embeddings in

X. In our problem setup, we assume that the out-of-sample

points {y1, Y2, ..., yn } have been sampled at time instances

{t1,t2,...,tn}, respectively. We define the set of temporal

distances 7 in the following way: 7 = {7;; = [t; —t;| 1 4,5 =
N}

To characterize the spatio-temporal similarity, we first de-
fine the spatio-temporal compactness function C,(Y, ) of
geodesic distances and temporal information for the time se-
ries:

% (Yi yj) - w(rj), 4

)

where w is a temporal weighting function and Tk (y;) is the
set of K nearest temporal neighbors to point y; in ). Note that
K # k from (1) in general. In this work, the identity function
is used for the temporal weighting function, i.e., w(7;;) = 7.
Note that there could be many other choices for the temporal
weighting function. This particular choice is made so as to
pull the more temporally distant points closer to each other.

We assume that the geodesic distances in the ambient
space of each temporal neighborhood of the out-of-sample
data points should be small so that the compactness term
in (4) is also small. We aim to incorporate this compact-
ness in the embedding framework. This can be achieved by
leveraging the fact that the Euclidean distances in the em-
bedding space are matched to their geodesic counterparts
in the ambient space. Therefore, we modify the expres-
sion for the compactness by leveraging the expected rela-
tionship between the original geodesic distances for )) and
the Euclidean distances of the embedded data points X:
d2(yi,y;) ~ ||zi — 2|3 = Tr(B;; XT X), where Tr(.) rep-
resents the trace operator and B;; is an all zeros matrix of
size N x N except for four elements, B;; = B;; = 1 and
B;; = Bj; = —1. The compactness term in (4) can then be
reformulated as

N
XTZZ Z (Te(B;; X7 X) - wyj)
i=1 jETk(

where w;; = w(7;;).

We incorporate the temporal information among the se-
quence of out-of-sample points into the objective function of
the optimization as follows:

2
+A-Cu(X,7)
F

:argn}}HHQ—PXHF—|—/\-CW(X,T). 5)

X =arg mln

(A 15— AX)fLTX

where A > 0 is a Lagrangian multiplier, and we denote P =
LT and Q = (A, 1% — Ax) for brevity. In words, the op-
timization balances a tradeoff between the fidelity of the em-
bedding and the desired spatio-temporal compactness among
successive points. Note that [|A|%2 = Tr(AT A). Hence, the
first term in (5) can be written as

IQ - PX||% = Te((Q - PX)(Q — PX)).  (6)



Furthermore, we can rewrite the compactness as follows:

N
CW(X,T) =Tr Z Z wijBinTX
i=1 j€Tk (i)
=Tr (AXTX), @)

where the matrix A = SN > jeTic (v Wij Bij- Plugging
|Q — PX||% and C, (X, 7) from Equations (6) and (7) into
the optimization in (5) yields

X = argminTr ((Q - PX)"(Q - PX)) +A-Tr(AXTX)
= arg minTr (QTQ —2Q"PX + X"PTPX + )\AXTX)
(a) . T T
2 argminTr (CX) + Tr (DXX ) AT (AX X) )

where in (a) the constant matrix Q7 @ has been dropped from
the objective function, we denote C' = —2QTP and D =
PT P, and use the fact that Tr (X7 DX) = Tr (DX XT) due
to invariance of trace under cyclic permutations. Next, we de-
note the objective function in (8) by J, and take the derivative
of J with respect to the embedding matrix X as follows:

aJ

8—X:OT+(D+DT)X+)\-X(A+AT)
®)

= 0T 4 2DX 4+ 20X A, 9)

where (b) is due to the matrices D and A being symmetric.

Solving g—g{ = 0 for X gives us the solution to the optimiza-

tion in (8), where 0 is an all-zeros matrix of size N x m. In
aJ

order to solve the matrix equation 5% = 0, we use the Kro-

necker product and the vectorized format of each term:

vect (g)‘]() = vect(CT +2DX + 20X A)

= vect(CT) +2 (I ® D) vect(X)
42X (AT ® I) vect(X), (10)
where ® designates the Kronecker product operator and [ is

the identity matrix. Setting (10) equal to zero and solving for
vect(X) provides the embedding given by the solution to (5):

veet(X) = —%(A-(AT®I)+(I®D))71 veat(CT). (11)

Note that the complexity of (11) is O(max{nmN, (mN)'}),
where ¢ is determined by the complexity of matrix inversion.

4. NUMERICAL EXPERIMENTS

We investigate the robustness of the proposed algorithm to
two types of artifacts. For our experiments, we use a cus-
tom eye-tracking dataset of 111 x 112-pixel captures from a
computational eyeglasses prototype [11]. The prototype fea-
tures low-power cameras mounted on a pair of eyeglasses that

Fig. 1: Top: Example images from the eyeglasses dataset used for
out-of-sample extension. The sequence depicts every second image
in a sequence of 8 successive data points. Bottom: Sample noisy
images. From left to right: noise-free, salt-and-pepper noise with
p = 0.3, motion blur with length of 30 pixels and angle of 45°.

are trained on the user’s eyes, with the goal of tracking the
gaze location of the user over time. The dataset contains
n + N = 900 + 100 images and the dimensionality of the
learned manifold is m = 2. A uniform sequential ordering
exists among the IV out-of-sample points. A subset of con-
secutive out-of-sample points is shown in Fig. 1. We start
from a dataset of original images that we treat as “clean”
images, and we synthesize noisy images by adding noise to
them. We consider salt-and-pepper noise and motion blur-
ring caused by camera movement. Example noisy images are
shown in Fig. 1.

The experiments in this section pursue the following gen-
eral framework. First, we obtain the Isomap embedding for
n training points. Next, we obtain the OoSE of both clean
and noisy N out-of-sample points. The OoSE of clean points
is considered as a reference for performance measure, and
we would like the embedded noisy version of out-of-sample
points to be as close to that of clean data as possible. We set
k =20 and K = 10 in all the experiments. For each value of
the noise parameter, we generate 6 instances of noise. We use
the first instance of noise to find the value of the parameter A
by a grid search. The selected value of A (which is dependent
on the value of the noise parameters) is used with the pro-
posed algorithm on the remaining instances of noise. Finally,
we average the error over the latter instances.

Note that for [somap we cannot directly compare the two
sets of out-of-sample points [17], as the embeddings learned
from different samplings of the manifold are often subject to
translation, rotation, and scaling. These variations must be
addressed via manifold alignment before the embedded points
are compared. We find the optimal alignment of the clean
and noisy embeddings via Procrustes analysis [18] and apply
the resulting translational, rotational, and scaling components
on the OoSE manifold. Finally, we measure the OoSE er-
ror as the average ¢, distance between matching points in the
two embeddings, i.e., the out-of-sample extension of aligned
clean and denoised testing data: E = % ZII\; lz: — wil|2,
where Z = {21, 22,...,2n} is the out-of-sample extension



of clean data via Isomap OoSE, and W = {wy, wa, ..., wy}
is the OoSE from noisy data for the algorithm under test after
alignment with Z.

We compare the performance of the proposed algorithm
against an adaptation of Isomap out-of-sample extension to
ST-Isomap. To obtain the out-of-sample extension of ST-
Isomap, we find the distances of the out-of-sample points
with training points via the neighborhood graph of the ST-
algorithm, and then use (2) to find the embedding for the
out-of-sample points. Note that since Isomap and ST-Isomap
use different graphs regardless of parameter values, the em-
bedding of clean data via ST-Isomap differs from that of
Isomap. Hence, we cannot directly compare the two embed-
ding spaces. Thus we first align the two embedding spaces,
and then evaluate the error between the aligned embedding
obtained via ST-Isomap on clean and noisy data. We set the
value of the parameter cao7n to one as experimentally this
selection produces the minimum error. We then perform a
grid search over the window size € and parameter cory, in
a similar manner to the evaluation of the parameter of the
proposed algorithm, i.e., using 6 instances of noise. Note
that we are giving an advantage to ST-Isomap out-of-sample
extension over our proposed method by supplying temporal
information about both training and out-of-sample points to
the algorithm.

Salt-and-Pepper Noise: We consider salt-and-pepper
noise where each pixel’s intensity is randomly flipped with
a probability of p to either zero or one, with both having
equal probability £. We vary p from 0.1 to 0.9 with a step
size of 0.2. The selected values for the parameter )\ are
[0.05,0.1,0.5,1.8,2.7] x 10°, respectively. Figure 4a com-
pares the performance of the proposed algorithm at different
noise levels against that of Isomap OoSE and ST-Isomap
OoSE. As can be observed from this figure, the average /o-
norm error of the proposed algorithm is substantially lower
than those of Isomap and ST-Isomap OoSEs.

Figure 2a depicts the Isomap trajectory for the clean out-
of-sample points. Its noisy counterpart with the addition of
an instance of salt-and-pepper noise with p = 0.5 is shown in
Figure 2b. In each plot, sequentially adjacent points are con-
nected by a blue line and temporal order is color coded from
blue to red. We obtained the out-of-sample extension of the
noisy data by the proposed algorithm with two settings of the
parameter \; 0.3 x 10°, and 20 x 10° as depicted in Figures
2c, and 2d, respectively. Among the mentioned values of the
parameter A\, A = 0.3 x 10° produces the minimum ¢5-norm
error in the recovered trajectory when compared to Isomap
trajectory for the clean out-of-sample points. This can be ver-
ified by the similarity of the trajectory shown in Figure 2c to
that of Figure 2a. As can be observed from the figure, increas-
ing the value of the parameter \ eventually converts the em-
bedding’s trajectory to an almost-straight curve, as depicted
in Figure 2d, where A = 20 x 105. This is to be expected
since eventually the spatial information will be neglected and

© (d)
Fig. 2: Effect of the value of the parameter \. (a) Isomap OoSE
trajectory for clean data, (b) Isomap OoSE trajectory for noisy data
with salt-and-pepper noise with p = 0.5, OoSE of noisy data via the
proposed algorithm for (c¢) A = 0.3 x 10%, and (d) A = 20 x 10,
respectively.

Fig. 3: ST-Isomap OoSE trajectory for (left) clean and (right) noisy
data with salt-and-pepper noise with p = 0.5.

the embedding will retain only the temporal information of
the time series. Note that setting A = 0 in the proposed al-
gorithm, converts it into the plain Isomap OoSE and returns
the noisy trajectory, i.e., Figure 2b. Figure 3 demonstrates the
aligned ST-Isomap OoSE trajectory on clean and noisy data,
respectively.

Motion Blur: We use a linear motion model to simulate
the motion blur artifact. The artifact is applied via convolu-
tion by a filter that approximates the linear motion of a camera
by 7 pixels, with an angle of # degrees in a counterclockwise
direction. We consider a Gaussian model for 6 with zero mean
and variance of o = 45 degrees. In order to model the motion
length 1), we use a Gamma distribution (with PDF of p(x) =
Wmo‘*l exp(7), where I'(.) denotes the Gamma func-
tion) with shape parameter & = 1 and vary the scale param-
eter 3 from 10 to 50 by step size of 10 in order to produce
different strengths of motion blur. The selected values for the
parameter \ are [0.5,1.5,2,2.5,2.5] x 10%, respectively. Fig-
ure 4b compares the performance of the proposed algorithm
at different values of the scale parameter /3 against that of
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Fig. 4: Performance evaluation for OoSE of the data points con-
taminated by (a) salt and pepper noise and (b) motion blur.

Isomap OoSE and ST-Isomap OoSE.

S. DISCUSSION

In this paper we devised an extension of Isomap for sequen-
tially ordered out-of-sample data points. Numerical exper-
iments indicate the robustness of the proposed algorithm
against different noise and artifact models. The smooth-
ness/behavior of the embedding is determined by the regu-
larization parameter A, the optimal value of which depends
on the level of noise/artifacts. The more noise is present in
the data, the larger the value of the parameter A needs to be,
in order to recover the embedding of the clean out-of-sample
data. Future work can address automatic selection of the
regularization parameter as a function of noise parameters.

In the future, we will evaluate the performance of the pro-
posed algorithm on other data sets as well. In addition, it
would be interesting to explore the possibility of employing
the same idea of spatio-temoral compactness to other mani-
fold learning algorithms such as LLE.
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