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Manifold Learning

• Given training points in     , learn the mapping �
to the underlying K-dimensional articulation manifold 

• Exploit local geometry  
to capture parameter  
differences by embedding  
distances 

• ISOMAP, LLE, HLLE, … 

• Ex:�images of �
� rotating teapot�
�
articulation space�
� = circle



Compressive Manifold Learning

• Isomap algorithm approximates geodesic distances 
using    distances between neighboring points 

• Random measurements preserve these distances 

• Theorem:     If                            , then the Isomap 
                     residual variance in the projected  
                    domain is bounded by the additive �
         error factor

N  = 4096 (Full Data) M = 100 M = 50 M = 25

translating  
disk manifold  

(K=2)

[Hegde, Wakin, 
Baraniuk 2008]

• Given training points in     , learn the mapping �
to the underlying K-dimensional articulation manifold



Custom Projection Operators

•Goal of Dimensionality Reduction: To preserve distances 
between points in the manifold, i.e.,  for  

•Collect pairwise differences into set of  
secant vectors 

•Search for projection that preserves norms of secants: 

[Hegde, Sankaranarayanan, Baraniuk 2012]



•Usual approach: Principal Component Analysis (PCA) 
•Collect all secants into a matrix: 

• Perform eigenvalue decomposition on S: 

•Select top eigenvectors as projections 

• PCA minimizes the average squared distortion over secants, but 
can distort individual secants arbitrarily and therefore warp 
manifold structure

Custom Projection Operators

[Hegde, Sankaranarayanan, Baraniuk 2012]



• For target distortion  , find matrix    featuring the smallest 
number of rows that yields 

• This is equivalent to minimizing the rank 
of the matrix               such that  

•Use nuclear norm as proxy for rank to  
obtain computationally efficient approach 
• Improves over random projections since matrix    is  

specifically tailored to manifold observed 
•May be difficult to link target distortion   to matrix rank/  

number of rows

Custom Projection Operators: NuMax

[Hegde, Sankaranarayanan, Baraniuk 2012]



• Projections matrices have entries  
with arbitrary values 
• Physics of sensing process,  

hardware devices restrict types  
of projections we can obtain 
• Example: Low-power imaging  

for computational eyeglasses 
• Low-power imaging sensor  

allows for individual selection of  
pixels to record 
• Power consumption proportional  

to number of pixels sampled 
•Random projections/NuMax involve  

half/all pixels and do not enable  
power savings 
•How to derive constrained  

projection matrices that involve  
only few pixels?

Issues with Randomness and NuMax

[Mayberry, Hu, Marlin,  
Salthouse, Ganesan 2014]



•Select only a subset of the pixels of 
size M that minimizes distortion to 
manifold structure 

• Emulate strategies for projection 
design into mask design 

•Random Masking:  
Pick M pixels uniformly at random 
across image

Masking Strategies for Manifold Data

M = 100  
pixels



•Select only a subset of the pixels of 
size M that minimizes distortion to 
manifold structure 

• Emulate strategies for projection 
design into mask design 

•Principal coordinate analysis:  
Pick M coordinates that maximize 
variance among secants 

Masking Strategies for Manifold Data

M = 100  
pixels

[Dadkhahi and Duarte 2014]



•Select only a subset of the pixels of 
size M that minimizes distortion to 
manifold structure 
• Emulate strategies for projection 

design into mask design 

•Adaptation of NuMax:  
•Define secants from k-nearest 

neighbor graph:  

• Pick             masking matrix     (row 
submatrix of I) to minimize secant 
norm distortion after scaling:  

•Combinatorial integer program 
replaced by greedy approximation 

Masking Strategies for Manifold Data

M = 100  
pixels

[Dadkhahi and Duarte 2014]



Isomap vs. Locally Linear Embedding

•While Isomap employs distances between neighbors when 
designing the embedding, Locally Linear Embedding (LLE) 
employs additional local geometry,  
representing each vector as a weighted  
linear combination of its neighbors  

• In particular, Isomap embedding is  
sensitive to scaling of the point clouds,  
while LLE isn’t
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employs additional local geometry,  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Isomap vs. Locally Linear Embedding



• Expand the set of secants considered:  
 

•Compute squared norms of secants  
in           obtained from the original  
images and from masked images;  
collect into “norm” vectors             

•Choose mask that maximizes sum of  
cosine similarities between original and  
masked “norm” vectors:  
 
 

•Replace combinatorial optimization by  
greedy forward selection algorithm 
•Cosine similarity is invariant to (local) scaling of point cloud

Manifold-Aware Pixel Selection for LLE



Manifold-Aware Pixel Selection for LLE

M = 100 pixelsM = 100 pixels
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LLE Embedding Error
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Performance Analysis:  
LLE Embedding Error
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Performance Analysis: 2-D LLE

M = 100 pixels
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Conclusions
• Compressive sensing (CS) for manifold-modeled images 

via random or customized projections (NuMax) 
• New sensors enable CS by masking images,  

i.e., restricting the type of projections 
• Our MAPS algorithms find image masks that best 

preserve geometric structure used during manifold 
learning for image datasets 

• Greedy algorithms provide good preservation of learned 
manifold embeddings, suitable for parameter estimation 

• While Isomap relies on distances between neighbors, 
LLE also leverages local geometric structure; different 
algorithms are optimal for these cases 

• Concept of subsampling as feature selection - 
supervised and unsupervised learning?

http://www.ecs.umass.edu/~mduarte       mduarte@ecs.umass.edu


