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ABSTRACT

We consider the problem of selecting a subset of the dimen-
sions of an image manifold that best preserves the underlying
local structure in the original data. We have previously shown
that masks which preserve the data neighborhood graph are
well suited to global manifold learning algorithms. How-
ever, local manifold learning algorithms leverage a geometric
structure beyond that captured by this neighborhood graph.
In this paper, we present a mask selection algorithm that fur-
ther preserves this additional structure by designing an ex-
tended data neighborhood graph that connects all neighbors
of each data point, forming local cliques. Numerical exper-
iments show the improvements achieved by employing the
extended graph in the mask selection process.

Index Terms— Dimensionality Reduction, Manifold
Learning, Locally Linear Embedding, Masking

1. INTRODUCTION

Recent advances in sensing technology have enabled a mas-
sive increase in the dimensionality of data captured from dig-
ital sensing systems. Naturally, the high dimensionality of
data affects various stages of the digital systems, from acqui-
sition to processing and analysis of the data. To meet com-
munication, computation, and storage constraints, in many
applications one seeks a low-dimensional embedding of the
high-dimensional data that shrinks the size of the data repre-
sentation while retaining the information we are interested in
capturing. This problem of dimensionality reduction has at-
tracted significant attention in the signal processing and ma-
chine learning communities.

For high-dimensional data, the process of data acquisition
followed by a dimensionality reduction method is inherently
wasteful, since we are often not interested in obtaining the
full-length representation of the data. This issue has been ad-
dressed by compressed sensing, a technique to simultaneously
acquire and reduce the dimensionality of sparse signals in a
randomized fashion [2]. Compressed sensing provides a good
match to the requirements of cyber-physical systems, where
power constraints are paramount.

Email: {hdadkhahi, mduarte}@ecs.umass.edu. This work was sup-
ported by NSF Grant IIS-1239341. We thank the authors of [1] for providing
us with the eyeglasses dataset.

Novel designs of imaging sensors for low-power applica-
tions follow a pixel-level addressable architecture, yielding
a power expense that is proportional to the number of pix-
els sensed [1, 3]. Thus, to achieve the benefits of compres-
sive sensing with such architectures, we require an a priori
selection of a subset of the image pixels to monitor for in-
formation extraction purposes. This necessitates a change
in the premise of CS from projection-based embeddings to
mask-based embeddings. The resulting data-dependent im-
age masking schemes are therefore to be designed with the
goal of preserving the information of interest present in the
original data. Our work focuses in particular on nonlinear
manifold models for images, which are commonly used in
computer vision applications. Hence, in this context the infor-
mation of interest refers to the geometric structure of the un-
derlying manifold-modeled dataset. In practice, a compressed
imaging system applies the proposed masking scheme in the
following way. In the training stage, where power resources
are not constrained, full-length data is collected. The mask-
ing pattern obtained via the proposed scheme is then used to
only sense the pixels contained in the mask for subsequent
captures in order to reduce the power consumption.

Previously, we have proposed an algorithm [4] for the
derivation of an optimal masking pattern for Isomap [5], a
global manifold learning algorithm. The performance of man-
ifold learning from data masked by such a pattern has been
shown to be not only superior to baseline masking schemes,
but also similar to the performance of common projection-
based dimensionality reduction schemes for sufficiently large
mask sizes. However, there exist alternative manifold learn-
ing algorithms that are local in nature (e.g., Locally Linear
Embedding, LLE [6]) and target a different type of geomet-
ric structure underlying the manifold model. We have seen
that applying our previously designed masks with these algo-
rithms does not accurately preserve the relevant local struc-
ture of the manifold. Thus, in this paper we consider the prob-
lem of designing masking patterns that preserve the geomet-
ric structure relevant to a local manifold learning algorithm,
where we focus on LLE as a landmark example of the class
of local manifold learning algorithms.

2. BACKGROUND

Manifolds and Linear Dimensionality Reduction: A set of
data points X = {x1, x2, . . . , xn} in a high-dimensional am-



bient space Rd that have been generated by an `-dimensional
parameter correspond to a sampling of an `-dimensional man-
ifold M ⊂ Rd. Given the high-dimensional data set X ,
we would like to find the parameterization that has generated
the manifold. One way to discover this parametrization is to
embed the high-dimensional data on the manifold to a low-
dimensional space Rm so that the local geometry of the man-
ifold is preserved. This process is known as dimensionality
reduction, since m� d.

When the dimensionality reduction embedding is linear,
it is defined by a matrix Φ ∈ Rm×d that maps the data in
the ambient space Rd into a low-dimensional space Rm.
One such popular scheme is principal component analysis
(PCA) [7], defined as the orthogonal projection of the data
onto a linear subspace of lower dimension m such that the
variance of the projected data is maximized.

Nonlinear Manifolds and Manifold Learning: Unfor-
tunately, PCA fails to preserve the geometric structure of
a nonlinear manifold, i.e., a manifold where the map from
the parameter space to the data space is nonlinear. Par-
ticularly, since PCA arbitrarily distorts individual pairwise
distances, it can significantly change the local geometry of
the manifold. Fortunately, nonlinear manifold learning (or
embedding) methods can successfully embed the data into a
low-dimensional space while preserving the local geometry
of the manifold, measured by a neighborhood-preserving cri-
teria that varies depending on the specific method, in order to
simplify parameter estimation.

The Isomap method aims to preserve the pairwise geodesic
distances between data points [5]. The geodesic distance
dG(xi, xj) is defined as the length of the shortest path be-
tween two data points xi, xj ∈ M along the surface of the
manifold M. Isomap first finds an approximation to the
geodesic distances between each pair of data points by con-
structing a neighborhood graph in which each point is con-
nected only to its k nearest neighbors; the edge weights are
equal to the corresponding pairwise distances. For neigh-
boring pairs of data points, the Euclidean distance pro-
vides a good approximation for the geodesic distance, i.e.,
dG(xi, xj) ≈ ‖xi−xj‖2 for xj ∈ Nk(xi), whereNk(xi)
designates the set of k nearest neighbors to the point xi ∈ X .
For non-neighboring points, the length of the shortest path
along the neighborhood graph is used to estimate the geodesic
distance. Then, multidimensional scaling (MDS) [8] is ap-
plied to the resulting geodesic distance matrix to find a set of
low-dimensional points that best match such distances.

As an alternative, the locally linear embedding (LLE)
method retains the geometric structure of the manifold as
captured by locally linear fits [6]. More precisely, LLE com-
putes coefficients of the best approximation to each data point
by a weighted linear combination of its k nearest neighbors.
The weights W = [wij ] are found such that the squared

Euclidean approximation error is minimized:

W = arg min
W

n∑
i=1

∥∥∥∥∥xi − ∑
j:xj∈Nk(xi)

wijxj

∥∥∥∥∥
2

2

(1)

subject to
k∑
j=1

wij = 1, i = 1, . . . , n.

LLE then finds a set of points in an m-dimensional space
that minimizes the error of the local approximations given
by the weights W . More precisely, LLE finds the set Y =
{y1, y2, . . . , yn} ⊂ Rm that minimizes the squared Euclidean
error function

Y = arg min
{yi}

n∑
i=1

∥∥∥∥∥yi − ∑
j:xj∈Nk(xi)

wijyj

∥∥∥∥∥
2

2

(2)

subject to
n∑
i=1

yi = 0,
1

n

n∑
i=1

yiy
T
i = I,

where the first and second constraints are to remove the de-
grees of freedom due to translation and scaling of the coordi-
nates, in order to obtain a unique solution for the embedding.
Note that LLE is considered as a local method, since the man-
ifold structure is determined only by neighboring data points.

Linear Dimensionality Reduction for Manifolds: An
alternative linear embedding approach to PCA is the method
of random projections, where the entries of the linear dimen-
sionality reduction matrix are drawn independently following
a standard probability distribution such as normal Gaussian
or Rademacher. One can show that such random projections
preserve the relevant pairwise distances with high probabil-
ity [9, 10], and so they preserve the structure relevant for man-
ifold learning methods. Unfortunately, random embeddings
are independent of the geometric structure of the data, and
thus cannot take advantage of training data.

Manifold Masking for Isomap: A masking index set
Ω = {ω1, . . . , ωm} of cardinality m is defined as a subset of
the dimensions [d] := {1, 2, . . . , d} of the high-dimensional
space containing the original dataset. In [4], we developed
schemes to obtain masking patterns for manifold-modeled
data that preserve the global structure leveraged by Isomap.
Such schemes rely on a set of secants, i.e., pairwise data
point differences that have been normalized to lie on the unit
sphere. Roughly speaking, the aim of the proposed mani-
fold mask design was to minimize the distortion incurred by
secants of neighboring data points, i.e.,

Sk =

{
xi − xj
‖xi − xj‖2

: i ∈ [n], xj ∈ Nk(xi)

}
.

This gives rise to an integer program that minimizes the av-
erage or maximum secant norm distortion with respect to
the expected value

√
m/d of the normalized secants’ norms

after masking. This integer program is intractable but can



be approximated by a fast greedy algorithm, referred to as
Manifold-Aware Pixel Selection for Isomap (MAPS-Isomap).
At iteration i of the algorithm, MAPS-Isomap finds a new
dimension that, when added to the existing dimensions in Ω,
causes the squared norm of the masked secant to match the
expected value of i

d as closely as possible. However, for a
local manifold learning algorithm such as LLE, such a mask-
ing selection process is not effective. This is due to the fact
that the LLE weights, in contrast to Isomap, depend not only
on the distances between neighbors but also on the angles
determined by each point and each pair among its neighbors.

3. MASKING STRATEGIES FOR
LOCAL MANIFOLD LEARNING METHODS

We propose a greedy algorithm for selection of an LLE-
aware masking pattern that attempts to preserve the weights
wij obtained from the optimization in (1). Preserving these
weights would in turn maintain the embedding Y found from
(2) through the image masking process.

The rationale behind the proposed algorithm is as follows.
The weights wij for xj ∈ Nk(xi) are preserved if both the
lengths of the secants involving xi (up to a scaling factor) and
the angles between these secants are preserved. Geometri-
cally, this can be achieved if the distances between all pairs
of points in the set Ck+1(xi) := Nk(xi)∪ {xi} are preserved
up to a scaling factor. Therefore, we define the secant clique
for xi as Sk+1(xi) := {xj1 −xj2 : xj1 , xj2 ∈ Ck+1(xi)}; our
goal for LLE-aware mask selection is to preserve the norms
of these secants up to a scaling factor.

To formulate our algorithm, we define a 3−dimensional
array B of size c × d × n, where c denotes the number of
elements in each secant clique Sk+1(xi). The array has en-
tries B(`, j, i) = si`(j)

2, where si` denotes the `th secant con-
tained in Sk+1(xi). In words, the array encodes the struc-
ture of the secant cliques: every 2-D slice of B, denoted by
Bi := B(:, :, i), contains the squared entries for the secants
contained in the clique Sk+1(xi), and the `th row of Bi corre-
sponds to the `th secant in Sk+1(xi).

We now derive our LLE-aware masking algorithm. De-
fine the d-dimensional mask indicator vector z as z(j) = 1
if j ∈ Ω, and zero otherwise. The vector α = Biz con-
tains the squared norms of the masked secants from Sk+1(xi)
as its entries. Similarly, the vector β = Bi1d will contain
the squared norms of the full secants in the same set. To
measure the similarity between the original and masked se-
cant norms (up to scaling), we use a normalized inner product
commonly referred to as cosine similarity measure, defined
as sim(α, β) := 〈α,β〉

‖α‖2‖β‖2 . Maximizing the cosine similar-
ity measure sim(α, β) promotes these two vectors being a
scaled version of one another, i.e., the norms of the masked
secants to approximately be equal to a scaling of the full se-
cant norms. Note that since LLE is a local algorithm, the
value of this scaling can vary over data points without incur-
ring distortion of the manifold structure. In order to incor-

Algorithm 1 MAPS-LLE
1: Inputs: clique secant array B, mask size m
2: Outputs: masking index set Ω
3: Initialize: Ω← {}
4: α←

∑
j∈[d]B(:, j, :)

5: for i = 1→ m do
6: θ ←

∑
j∈ΩB(:, j, :)

7: for j ∈ ΩC do
8: β ← θ +B(:, j, :)

9: λ(j)←
∑
t∈[n]

〈α(:,t),β(:,t)〉
||α(:,t)||2||β(:,t)||2

10: end for
11: ω ← arg maxj∈ΩC λ(j)
12: Ω← Ω ∪ {ω}
13: end for

porate the cosine similarity measure for all data points, we
maximize the sum of the aforementioned similarities for all
data points as follows:

ẑ = arg max
z

n∑
i=1

sim(Biz,Bi1d) (3)

subject to 1Td z = m, z ∈ {0, 1}d.

The constraints above allow for z to yield an indicator
function for the selection of m pixels from the image. Find-
ing an optimal solution for z from the integer program (3) has
a combinatorial (exponential) time complexity. An approx-
imation can be obtained by greedily selecting the masking
elements that maximize the value of the objective function
of (3), one at a time. Thus, we propose the Manifold-Aware
Pixel Selection for LLE (MAPS-LLE) algorithm, as shown in
Algorithm 1. Note that lines 7 − 9 of MAPS-LLE evaluate
the integer program objective function (3) for each candidate
pixel j ∈ ΩC to be added to the mask Ω.

The MAPS-Isomap algorithm attempts to preserve the
norms of the secants in the neighborhood graph up to a com-
paction factor of m

d . This in turn preserves the geodesic
distances between all point pairs – as considered in Isomap
– up to the same compaction factor. However, the aforemen-
tioned preservation is not suitable for LLE manifold learning,
since the angles between neighboring secants may vary arbi-
trarily. The addition of clique secants in MAPS-LLE ensures
that such angles cannot change arbitrarily. However, apply-
ing the same compaction factor as MAPS-Isomap imposes
an unnecessay constraint on the masking algorithm. This
can be easily seen by noting that LLE weights from (1) are
invariant to a constant scaling factor, which could be different
for each neighborhood. As such, the proposed MAPS-LLE
algorithm relaxes the constraint of a global compaction factor
and instead picks the best factor for each neighborhood, in an
adaptive fashion. Hence, the compaction factor chosen by the
MAPS-LLE algorithm could vary along the manifold. This
intuitively agrees with local manifold learning algorithms,
where only the local structure of the manifold is relevant.
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Fig. 1. Left: Example images from Eyeglasses dataset. Right: Performance comparison for linear embeddings (dashed lines) and masking
algorithms (solid lines) with respect to original full-length data. Columns from left to right: residual variance as a function of m; percentage
of preserved nearest neighbors for 20 neighbors.

4. NUMERICAL EXPERIMENTS

In this section, we present a set of experiments that compare
the performance of the proposed algorithms to those in the
existing linear embedding literature, in terms of preservation
of the low-dimensional structure of a nonlinear manifold. For
our experiments, we use a custom eye-tracking dataset from
a computational eyeglass prototype. The Eyeglasses dataset
corresponds to 40 × 40-pixel captures from a prototype im-
plementation of computational eyeglasses that use the imag-
ing sensor array of [3]. The dataset contains n = 929 images
and the dimensionality of the learned manifold is ` = 2.

We evaluate the methods described in Section 3, together
with three baseline methods: random masking, where we pick
an m-subset of the d data dimensions uniformly at random;
principal coordinate analysis (PCoA), where we select the
indices of the m dimensions with the highest variance across
the dataset [11]; and Sparse PCA (SPCA) [12, 13]. SPCA is
a variation of PCA in which sparsity is enforced in the prin-
cipal components. Since the support of the SPCA principal
components need not be the same, we define the SPCA mask
from support of the top SPCA principal component.

The algorithms are tested for linear embeddings of di-
mensions m = 50, 100, 150, 200, 250, 300; for the masking
algorithms, m provides the size of the mask (number of pix-
els preserved), while for the linear embedding algorithms of
Section 2, m provides the embedding dimensionality. Note
that since the linear embeddings employ all d dimensions of
the original data, the latter algorithms have an intrinsic per-
formance advantage against the former. The performance of
random masking is averaged over 100 independent draws in
each case.

In order to match the practical application of masking
schemes, we employ the following experimental setup. We
divide the dataset into training and testing subsets of (al-
most) equal size in a random fashion. For each tested mask-
ing/linear embedding algorithm, we learn the mask/embedding
using the training subset. We then apply LLE directly on the

masked/ embedded and the original (full) testing images. In
order to remove the dependence of the experiments on the
random division of training/testing data, we repeat this exper-
iment for T = 10 such training/testing random subsets of the
dataset and average the results of the experiments.

We measure the performance of the manifold embedding
obtained from the masked dataset using two different perfor-
mance metrics. First, we consider the following embedding
error. Suppose the pairs (X ,Y) and (X ′,Y ′) designate the
ambient and embedded set of vectors for full and masked data,
respectively. Having found the weights wi,j from the full data
via (1), we define the embedding error for the masked data as

e =

n∑
i=1

∥∥∥∥∥y′i − ∑
j:xj∈Nk(xi)

wijy
′
j

∥∥∥∥∥
2

2

. (4)

The rationale behind this definition of the embedding error is
that, ideally, the embedded vectors y′i obtained from masked
images should provide a good linear fitting using the neigh-
borhood approximation weights obtained from the original
(full) images. In other words, (4) finds the amount of devi-
ation of Y ′ from Y , which minimizes the value of this score,
cf. (2). Second, we use the percentage of preserved nearest
neighbors, similar to [14]. More precisely, for a given neigh-
borhood of size k, we obtain the fraction of the k-nearest
neighbors in the full d-dimensional data that are among the
k-nearest neighbors when the masked images are considered.

We display the results of manifold learning in Figure 1.
We observe that MAPS-LLE significantly outperforms ran-
dom sampling, SPCA, and PCoA. Furthermore, MAPS-LLE
outperforms MAPS-Isomap for small and moderate mask
sizes of up to m = 200. Surprisingly, we see that for suf-
ficiently large values of m the performance of MAPS ap-
proaches or matches that of the linear embedding algorithms,
even though the embedding feasible set for masking methods
is significantly reduced.

Additional simulations and datasets are presented in [11].
A Matlab toolbox implementing these simulations is available
online [15].
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