
As we saw in the first two parts of this series,
we can apply computer vision and image

analysis algorithms to art, notably realist paint-
ings, to shed light on a number of problems in
art history. We saw first how new uncalibrated
methods for estimating perspective transforma-
tions lets us transform and view rendered
objects from different positions and thus com-
pare perspective-aligned passages within a sin-
gle painting.1 In the second part of the series,2

we saw how algorithms for inferring the direc-
tion of illumination based on shading along an
occluding contour can also be applied to paint-
ings, revealing much about the working meth-
ods of artists, including the Baroque masters
Georges de la Tour and Michelangelo Merisi da
Caravaggio. 

In this final part, we consider the problem of
quantifying shape and form—or more specifical-
ly, quantifying the differences between the
shapes of different contours. We shall see that we
can use such quantitative methods to address a
claim about the working methods of the early
Renaissance master Jan van Eyck. 

Representing shape
Everyone has an informal understanding of

the meaning of shape, but even if we restrict our
consideration to 2D plane figures, it’s difficult to
describe, represent, and quantify shape. We

might use colloquial terms such as elongated,
squashed, and so forth, but these are imprecise. 

Art historians might describe a brushstroke or
pencil line with terms such as fluid, jagged, or
cramped. Moreover, the shape of a form or con-
tour might depend on the scale: at a large scale, a
contour might appear smooth and rounded, while
at a smaller, finer scale, angular and jagged. In
applying computers to the understanding of art,
we’ll need powerful representations and methods
that not only describe the wealth of shapes we find
in art, but also remain useful to art historians.

Let’s restrict our attention to 2D binary
shapes, as in Henri Matisse’s elegant Nu bleu IV
in Figure 1. In visual pattern recognition, shape
representations fall into two general categories:
region-based and contour-based. Some of the
simple geometric region-based descriptions of a
region R that have proven useful in image analy-
sis include an exhaustive list of the pixels that
comprise R, area (or, equivalently, the number of
pixels in R), height and width, and a histogram
of the region’s projections onto principal or coor-
dinate axes.3 For further discussion of these
descriptions, see the “Region-Based Descriptions”
and “Contour-Based Descriptions” sidebars.

Shape descriptions and the analysis 
of art

The more closely a shape representation is
matched to problems in art, the more useful it
will be to art historians. Some of the terms noted
in this article and the sidebars are easily under-
stood and already used by art historians (direc-
tion, height, width, and elongatedness), but
others seem quite removed from the concepts of
art and thus of little value to such scholars (such
as signature, higher moments, and chain codes).
For instance, elongation might be a useful feature
for expressing just one of the many differences
between the elongated, stretched portraits by the
Italian painter and sculptor Amedeo Modigliani
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(1884–1920) and Domenikos Theotocopolous—
better known as “El Greco” (d. 1614)—and the
squashed, bulbous portraits of the Colombian
painter Fernando Botero (b. 1932).

Complex or highly mathematical shape
descriptions are occasionally useful in studying
art. Consider the abstract expressionist Jackson
Pollock’s Lavender Mist (see http://www.ibiblio.
org/wm/paint/auth/pollock/lavender-mist/
pollock.lavender-mist.jpg), a classic example of
this artist’s later works, which he executed by
pouring and dripping paint onto a canvas on the
floor. It’s not obvious how we might describe in
any detailed way this work’s complex, chaotic
form, and any inherent structure. Nevertheless,
recent research has done just that, through frac-
tal analysis.

The fractal dimension describes how certain
properties of a shape—such as the area and
length of a boundary—change as a function of
scale. Consider the total length of the coastline
of England, as judged on maps of difference
scales. On a map with a large scale, the coastline
looks somewhat smooth. Suppose you count the
number of 50-mile-long “steps” along the coast-
line needed to surround the island on the map.
Denote that total distance as L50. 

Next, imagine a larger, more detailed map of
England. Repeat the aforementioned procedure,

15

Figure 1. Henri Matisse,

Nu bleu IV, Nice, 1952,

gouache on cut and

pasted paper, 

103 � 74 cm. (Photo

credit: François

Fernandez. Direction

des Musées de France,

gift of Jean Matisse,

1978, on deposit at the

Musée Matisse, Nice.)

© 2006 Succession H. Matisse, Paris/Artists Rights

Society, New York.

The following terms are used in image analysis for geomet-
ric region-based descriptions:

❚ Eccentricity: the dimensionless ratio of the length of the max-
imum chord, K, to the maximum chord perpendicular to K.

❚ Elongatedness: the ratio of the length to width of the mini-
mal-area bounding rectangle.

❚ Rectangularity: the maximum ratio of the area’s region to
that of a bounding rectangle over all possible rectangle 
orientations.

❚ Direction: the orientation of the minimum bounding rectan-
gle, expressed as an angle with respect to the vertical.

❚ Moments: the sums over the region R of polynomials of the
positions of pixels (assuming that regions have uniform areal
density).

❚ Euler-Poincaré characteristic or genus, �: the genus of a region
R describes its topology or its connectedness and its num-
ber of holes.

❚ Convex hull: the shape of the minimal convex region con-
taining R.

❚ Signature: for each point p on the region’s boundary, the normal
chord is the line segment entirely within R that’s perpendicular
to R’s boundary at p. The signature of R is the scalar length of this
normal chord as a function of arc length around the contour.

❚ Fractal dimension: the fractal dimension of a complex region
describes how its area or its length varies as a function of
the scale.1

Some of these measures are invariant to transformations such
as rotations and scale (for example, genus and eccentricity),
while others are not (such as area and projections). Mereology
is the study of the relationships between parts and wholes, and
in pattern classification we often use hierarchical representa-
tions (trees or graphs) to describe how the full region might be
broken down into subregions, sub-subregions, and so on.

Reference
1. B.H. Kaye, A Random Walk through Fractal Dimensions, 2nd ed.,

VCH Publishers, 1994.

Region-Based Descriptions
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but now count the number of 10-mile-long steps.
The total length of the coastline you measure
now, L10, will surely be longer than L50 because
you must step along the more complex, convo-
luted coastline visible in the second map. 

Likewise, for ever-more detailed maps and
shorter steps, the total length of the coastline you
measure will be greater and greater. In fact, there
is no simple, single answer to the question, What
is the length of the coastline of England?

For many complex shapes, we can describe
the increase of the measured boundary length as
the step size’s power-law function. For a simple
square, this length doesn’t increase with decreas-
ing scale, but for the coast of England, it does.
The fractal dimension of a boundary relates to
the exponent in such a power law. A square’s
fractal dimension is low while the coast of
England’s is fairly high. 

Another method for determining a region’s
fractal dimension is based on area. Here, rather
than estimating a boundary’s length by stepping
along the boundary with ever-smaller step sizes,
we can estimate the region’s area. 

Specifically, place a square grid of a given res-
olution over the region and count the number of

component squares that contain any part of the
region. Then, multiply that number by the area of
each square. For a coarse square grid (for instance,
consisting of a single square), the region’s esti-
mated area is large. For ever-finer and finer square
grids, however, it becomes more likely that a small
component square doesn’t contain any part of
the region. Thus, the region’s total estimated area
will be smaller. As with length, there’s often a
power-law dependency of the total area as a func-
tion of scale (component square size) for com-
plex regions.

Richard Taylor and his colleagues have used
this latter approach to estimate the fractal dimen-
sion of Pollock’s drip paintings. (More specifical-
ly, they determined how the estimated fractal
dimension depended on the scale.) They found
that genuine Pollock paintings had a fairly dis-
tinctive signature or dependency in the fractal
dimension as a function of scale—one that dif-
fered somewhat from those measured in coun-
terfeit Pollock paintings.4

Jan van Eyck’s Portrait of Cardinal Niccolò
Albergati

If a digital image of the oil work is reduced
and overlapped with a digital image of the sil-
verpoint, we find excellent correspondence—that
is, excellent fidelity. The central question is thus:
How was that copy made? If the scale or magni-
fication had been 1.0, then a number of methods
might have been used—for instance, tracing onto
thin paper then retracing onto the oak panel sup-
port. Another method is pouncing, where the
artist pierces the original with small holes along
the contours, places the original over the copy
support, and forces charcoal dust through the
holes to thereby mark the copy.

But neither of those methods can explain
magnification (or minification) of a copy, such as
we find in the van Eyck oil, which is roughly 40
percent larger in scale than the silverpoint. Alas,
we have no documentary records of his method
related to these works, though we have records of
a number of techniques from that time and
indeed earlier. One such technique employs the
Reductionszirkel or reducing compass, a simple
hinged mechanical device. The artist adjusts the
separation between two of the legs to be the same
as some chosen points on the original (such as
the two eyes), then uses two other, mechanically
linked legs, to mark the separation on the scaled
copy. Another technique is copying or enlarging
simply “by eye,” that is, without any aids.

Some of the contour-based descriptions of shape’s boundary, B, include
the following:

❚ List of pixels: this list might be expressed in rectilinear coordinates, polar
coordinates, or other coordinates.

❚ Boundary length: the simple overall length of a boundary.

❚ Curvature (or radius of curvature): the full description of contour B con-
sists of the radius of curvature as a function of position along the contour.

❚ Bending energy: the energy required to bend a stiff rod into the contour’s
shape (this measure is closely related to the curvature).

❚ Chain code: a chain code represents the successive directions of one-
pixel steps along a boundary. Thus if U, D, R, and L represent a step up,
down, right, and left, respectively, then the code UUUURRRDDDDLLL
represents a simple 4- � 3-pixel vertically oriented rectangle.

❚ Basis expansion: we can represent a boundary as the linear combination
of spatial basis functions—for instance B-splines, Fourier descriptors, 
and so on.

❚ Connected segments: a list of the segments of a polygonal shape.

Contour-Based Descriptions



Recently, the artist David Hockney hypothe-
sized that as early as the beginning of the
Renaissance some painters executed their works
by secretly tracing over images that were optical-
ly projected by a concave mirror or lens onto their
supports (such as canvas, paper, and oak panel).5

The Albergati portraits have been adduced as evi-
dence for the theory, specifically through the
claim that van Eyck copied the silverpoint using
an epidiascope, or opaque projector.6 There has
been unanimous rejection by the independent
scholarly community of this general tracing
claim, at least for the early Renaissance,7 and for
the Albergati portraits in particular, in part based
on the dramatic discovery of tiny pinprick holes
in the silverpoint that indicated mechanical (not
optical) methods were used.8,9

Another, admittedly partial, test of the tracing
claim centers on verifying that a talented realist
artist using mechanical devices from van Eyck’s
era can indeed achieve a fidelity that we find
between the two works in Figure 2. Thus, we need
principled methods for testing whether the dis-
tances between the silverpoint and a portrait
made by mechanical methods is roughly the same
as that between the silverpoint and van Eyck’s oil.

How shall we measure such a difference
between shapes?

Comparing shapes via the Chamfer
distance

The computer vision and pattern recognition
community developed the Chamfer distance,
which is a principled method for quantifying the
difference between the shapes of two contours.10

Let’s denote these contours C1 and C2. In brief, we
take each point (pixel) on C2 and find the nearest
point on C1, sum these distances, and divide them
by the length of C2. Thus, the Chamfer distance
between C1 and C2 is roughly the average distance
between a point on C1 and its nearest point on C2.
(Of course, there may be several points on C1 that
have the same nearest point on C2.)

We can illustrate the Chamfer distance calcu-
lation using the distance transform. The distance
transform of a curve C assigns to every point in
an area the distance to the nearest point on C.
Figure 3 shows the distance transform of a skele-
tonized version of a portion of the Albergati sil-
verpoint (which we denote as C1):  low values
(blue) are close to the points on C1, and red ones
farther away. We can compute the Chamfer dis-
tance between another curve (C2) and C1 by con-
volving the pixel locations of C2 with the

distance transform of C1 and then normalizing.
As part of our investigation of David Hockney’s

tracing theory,5 we computed the Chamfer dis-
tance from the Albergati silverpoint and the fol-
lowing works:

❚ the van Eyck oil copy, and 

❚ a copy/enlargement done by a professional
artist using mechanical devices from van
Eyck’s day. 
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Figure 2. Jan van Eyck’s

Portrait of Cardinal

Niccolò Albergati, oil

on wood, 34.1 � 27.3 cm

(c. 1432). (Image credit:

Kunsthistorisches

Museum, Wien oder

KHM, Wien.)

Figure 3. The distance

transform applied to a

line-thinned version of

a portion of Jan van

Eyck’s Albergati

portrait silverpoint, C1.

The color of each pixel

represents the

perpendicular distance

to a point on C1. A

measure of the

Chamfer distance of

one contour to another

is the pixel average 

over C2 of the shortest

distance to a point on

C1. 
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The full procedure required us to use thinning
algorithms, to perform affine transformations
(rotations, displacements, and uniform scaling),
and other matters described in further detail else-
where.11 We found that a modern professional
artist, using only mechanical copying/enlarging
devices known from the time of van Eyck, could
indeed achieve a fidelity (expressed as a Chamfer
distance) roughly the same as van Eyck.

Our experimental result, historical informa-
tion, and physical evidence (pinprick holes), led
us to reject as unpersuasive the claim that van
Eyck used an optical projector when copy-
ing/enlarging this work.

Future directions
There remains much work to be done on ana-

lyzing Jackson Pollock’s drip paintings, for
instance. A single shape descriptor such as the frac-
tal dimension, taken alone, is unlikely to give the
most reliable information for discriminating gen-
uine Pollocks from forgeries. Perhaps additional
shape descriptors such as curvature and connect-
edness (so-called connected components) will help
discrimination. Moreover, any classification must
rely on a sufficiently large statistical sample of gen-
uine Pollocks and forgeries, and sophisticated pat-
tern recognition algorithms. These are directions
that might prove fruitful in the near future.

As the three articles in this series have shown,
techniques from computer vision, image analy-
sis, and pattern recognition hold promise for use
in the study of visual arts. Art historians and
computer vision experts will need to collaborate
to understand the problems in art history that

might be tackled or answered by computer meth-
ods, and to understand the power and the limi-
tations of analytical methods. MM

Acknowledgments
We thank the Matisse Museum, Nice, France,

for permission to reproduce Nu bleu IV and the
Kunsthistorische Museum, Vienna, Austria, the
home of the oil version of Jan van Eyck’s Portrait
of Cardinal Niccolò Albergati, analyzed here.

References
1. D.G. Stork, “Computer Vision, Image Analysis, and

Master Art: Part 1,” IEEE MultiMedia, vol. 13, no. 3,

2006, pp. 16-20.

2. D.G. Stork and M.K. Johnson, “Computer Vision,

Image Analysis, and Master Art, Part 2,” IEEE

MultiMedia, vol. 13, no. 4, 2006, pp. 12-17.

3. M. Sonka, V. Hlavac, and R. Boyle, Image

Processing, Analysis and Machine Vision, 2nd ed.,

PWS Publishing, 1999. 

4. R.P. Taylor, A.P. Micolich, and D. Jonas, “Fractal

Analysis of Pollock’s Drip Paintings,” Nature, vol.

399, 1999, p. 422.

5. D. Hockney, Secret Knowledge: Rediscovering the Lost

Techniques of the Old Masters, Viking Studio, 2001.

6. D. Hockney and C.M. Falco, “Quantitative Analysis

of Qualitative images,” Proc. SPIE Electronic Imaging,

SPIE Press, 2005.

7. Early Science and Medicine, special issue on optics,

instruments and painting, 1420–1720: Reflections

on the Hockney-Falco thesis, vol. 10, no. 2, 2005.

8. T. Ketelsen et al., “New Information on Jan van

Eyck’s Portrait Drawing in Dresden,” Burlington

Magazine, vol. CXLVII, no. 1224, 2005, pp. 169-

175.

9. D.G. Stork, “Did Jan van Eyck Build the First

‘Photocopier’ in 1432?” Proc. SPIE Electronic

Imaging, Color Imaging IX: Processing, Hardcopy, and

Applications, R. Eschbach and G.G. Marcu, eds.,

SPIE Press, 2004, pp. 50-56.

10. M.A. Butt and P. Maragos, “Optimum Design of

Chamfer Distance Transforms,” IEEE Trans. Image

Processing, vol. 10, no. 7, 1998, pp. 1477-1484.

11. D.G. Stork and M. Duarte, “Fidelity Analysis of

Mechanically Aided Copying/Enlarging of Jan van

Eyck’s Portrait of Niccolò Albergati,” Proc. SPIE

Electronic Imaging, SPIE Press, 2007, in press.

Readers may contact David G. Stork at artanalyst@

gmail.com.

Contact Artful Media editor Dorée Duncan Seligmann

at doree@avaya.com.

Submit your ideas and videos to

the IEEE MultiMedia video blog!

Visit
http://computer.org/multimedia 

for more details


