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ABSTRACT

The recently introduced theory of Compressed Sensing (CS) enables
the reconstruction or approximation of sparse or compressible sig-
nals from a small set of incoherent projections; often the number
of projections can be much smaller than the number of Nyquist rate
samples. In this paper, we show that the CS framework isinforma-
tion scalableto a wide range of statistical inference tasks. In partic-
ular, we demonstrate how CS principles can solvesignal detection
problems given incoherent measurements without ever reconstruct-
ing the signals involved. We specifically study the case of signal de-
tection in strong inference and noise and propose an Incoherent De-
tection and Estimation Algorithm (IDEA) based on Matching Pur-
suit. The number of measurements and computations necessary for
successful detection using IDEA is significantly lower than that nec-
essary for successful reconstruction. Simulations show that IDEA is
very resilient to strong interference, additive noise, and measurement
quantization. When combined with random measurements, IDEA is
applicable to a wide range of different signal classes.

1. INTRODUCTION

Over the past decades the amount of data generated by sensing sys-
tems has grown from a trickle to a torrent. This has stimulated much
research in the fields of compression and coding, which enable com-
pact storage and rapid transmission of large amounts of information.
Compression is possible because often we have considerable a priori
information about the signals of interest. For example, many signals
are known to have asparserepresentation in some transform basis
(Fourier, DCT, wavelets, etc.) and can be expressed or approximated
using a linear combination of only a small set of basis vectors.

The traditional approach to compressing a sparse signal is to
compute its transform coefficients and then store or transmit the few
large coefficients and their locations. This is an inherently waste-
ful process (in terms of both sampling rate and computational com-
plexity), since it forces the sensor to acquire and process the entire
signal even though an exact representation is not ultimately required.
For instance, in many signal processing applications (including most
communications and many radar systems), signals are acquired only
for the purpose of making a detection or classification decision.

A new framework for simultaneous sensing and compression has
developed recently under the rubric ofCompressed Sensing(CS). CS
enables a potentially large reduction in the sampling and computa-
tion costs at a sensor. CS builds on the work of Candès, Romberg,
and Tao [1] and Donoho [2], who showed that a signal having a
sparse representation in one basis can be reconstructed from a small
set of projections onto a second, measurement basis that isincoher-
ent with the first.1 Interestingly,random projectionsare auniver-
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1Roughly speaking,incoherencemeans that no element of one basis has
a sparse representation in terms of the other basis.

salmeasurement basis in the sense that they are incoherent with any
other fixed basis with high probability. The CS measurement process
is nonadaptive; the reconstruction process is nonlinear. A variety of
reconstruction algorithms have been proposed [1–3].

While the CS literature has focused almost exclusively on prob-
lems in signal reconstruction, approximation, and estimation in noise
[1–7], our aim in this paper is to show that the CS framework is
information scalableto a much wider range of statistical inference
tasks. Tasks such as detection do not require a reconstruction of
the signal, but only require estimates of the relevantsufficient statis-
tics for the problem at hand. Our key finding is that it is possible
to directly extract these statistics from a small number of random
projections without ever reconstructing the signal. The two upshots
are that (i) significantly fewer measurements are required for signal
detection than for signal reconstruction (3× fewer in the example
in Figure 1), and (ii ) the computational complexity of detection is
much reduced compared to reconstruction (4× lower in the exam-
ple in Figure 1). Both of these bode well for many applications. As
in reconstruction, random measurements areuniversal, in the sense
that with high probability the sufficient statistics can be extracted
from them regardless of the signal structure.

This paper is organized as follows. Section 2 provides back-
ground on CS. Section 3 states our detection problem and proposes
a greedy algorithm for CS detection. Section 4 presents a case
study involving wideband signal detection in narrowband interfer-
ence. Section 5 gives ideas for extensions to classification, and Sec-
tion 6 concludes with directions for future work.

2. COMPRESSED SENSING BACKGROUND

Let x ∈ R
N be a signal and let the matrixΨ := [ψ1, ψ2, . . . , ψZ ]

have columns that form adictionaryof vectors inR
N . (This dictio-

nary could be a basis or a redundant frame.) When we say thatx is
K-sparse, we mean that it is well approximated by a linear combina-
tion of K vectors fromΨ; that is,x ≈

PK

i=1
θni

ψni
with K ¿ N .

2.1. Incoherent measurements
Consider a signalx that isK-sparse inΨ. Consider also anM ×N
measurementmatrix Φ, M ¿ N , where the rows ofΦ are inco-
herent with the columns ofΨ. For example, letΦ contain i.i.d.
Gaussian entries; such a matrix is incoherent with any fixedΨ with
high probability (universality). Compute themeasurementsy = Φx
and note thaty ∈ R

M with M ¿ N . The CS theory states that
there exists an overmeasuring factorc > 1 such that onlyM := cK
incoherent measurementsy are required to reconstructx with high
probability [1,2]. That is, justcK incoherent measurements encode
all of the salient information in theK-sparse signalx.

2.2. Reconstruction from incoherent projections
The amount of overmeasuring required depends on the (nonlinear)
reconstruction algorithm. Most of the existing literature on CS [1,
2,4,6,8] has concentrated on optimization-based methods for signal
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Fig. 1. (Top) Sample widebandchirp signal and same chirp embed-
ded in strong narrowband interference. (Bottom) Probability of error
to reconstruct and detect chirp signals embedded in strong sinusoidal
interference (SIR = −6 dB) using greedy algorithms. In this case,
detection requires3× fewer measurements and4× fewer computa-
tions than reconstruction for an equivalent probability of success.

recovery, in particular̀1 minimization. Thè 1 approach seeks a set
of sparse coefficientsbθ by solving the linear program [9]

bθ = arg min
θ

‖θ‖1 subject to Vθ = y,

whereV = ΦΨ is theholographicbasis. Greedy reconstruction
algorithms build up a signal approximation iteratively by making lo-
cally optimal decisions [3,7,10]. In this paper, we focus on Matching
Pursuit (MP) [11], an efficient greedy algorithm that selects basis
vectors one-by-one from a dictionary to optimize the signal approx-
imation at each step. In its application to CS, MP seeks a sparse
representation of the measurement vectory in the dictionary{vi}
consisting of column vectors from the holographic basisV.

MP ALGORITHM FOR CS RECONSTRUCTION

1. Initialize the residualr0 = y and the approximationbθ = 0,
bθ ∈ R

Z . Initialize the iteration countert = 1.
2. Select the dictionary vector that maximizes the value of the

projection of the residual ontoV

nt = arg max
i=1,...,Z

〈rt−1, vi〉

‖vi‖
. (1)

3. Update the residual and the estimate of the coefficient for the
selected vector

rt = rt−1 −
〈rt−1, vnt

〉

‖vnt
‖2

vnt
, (2)

bθnt
= bθnt

+
〈rt−1, vnt

〉

‖vnt
‖2

. (3)

4. Incrementt. If t < T and‖rt‖2 > ε‖y‖2, then go to Step 2;
otherwise, go to Step 5.

5. Obtain the signal estimatebx = Ψbθ.

The parameterε sets the target error level for convergence, andT
sets the maximum number of algorithm steps.

2.3. (Dis)advantages
The implications of CS are very promising. Instead of sampling a
sparse signalN times and then compressing it, onlycK ¿ N in-
coherent measurements suffice. CS with random measurements is
advantageous for low-power and low-complexity sensors (such as in
sensor networks) because it integrates sampling, compression and

encryption of many different kinds of signals [6, 7]. However, sev-
eral significant challenges to CS-based signal reconstruction remain.
In particular, (i) the overmeasuring factorc required for perfect re-
construction can be quite large, typicallyc ≈ log

2
(1 + N/K) for

linear programming based reconstruction [7]; (ii ) the computational
complexity of a linear program or greedy algorithm for signal recon-
struction is high, at least cubic in the signal lengthN for a linear
program. Greedy algorithms use fewer computations, but require an
even larger factorc.

3. GREEDY DETECTION FOR SPARSE SIGNALS

While the CS literature has focused almost exclusively on signal re-
construction, we now show that incoherent measurements can also
be used to solve signal detection problems without ever reconstruct-
ing the signal. In the process, we will be able to save significantly
on both the number of measurements and computational complexity
(see Figure 1).

3.1. Detection problem setup
Suppose that the dictionaryΨ contains particular elements of inter-
est that we wish to detect as components ofx. For example, we
might want to detect smooth signals, andΨ might contain a basis of
sinusoids or orthogonal polynomials. LetΩ ⊂ {1, 2, . . . , Z} denote
the set oftarget indicesthat represent these components of inter-
est, and letΨΩ andθΩ denote the corresponding restrictions of the
dictionary and coefficients, respectively. Given a set of incoherent
measurementsy = Φx, we aim to determine whether or notx was
generated using any of the target components inΨΩ. That is, we
must decide between two composite hypotheses:

H0 : θΩ = 0 vs. H1 : θΩ 6= 0. (4)

3.2. Sparse signal detection
To begin, suppose that the signalx is provided directly. IfΨ is an
orthonormal basis, then the solution to (4) can be obtained easily
by matched filtering. That is, we can directly computeθΩ using
inner products ofx against the columns ofΨΩ and then compare
the components ofθΩ to a threshold.

However, ifΨ is not orthogonal or ifΨ is a redundantdictio-
nary, then inner products ofx against the columns ofΨΩ will not
suffice for detection. Indeed, ifΨ is redundant then there likely will
be infinitely manyθΩ consistent withx. Difficulties also arise be-
cause the columns ofΨ are correlated with each other, so that the
presence of oneinterfereswith the detection of another.

This is analogous tomultiuser detection, a classical problem in
communications that is known to be NP-hard [12]. A practical iter-
ative decoding algorithm, known assuccessive cancelationor onion
peeling, is very similar in spirit to MP. These algorithms identify
the strongest component ofΨ in x, remove it fromx, and then pro-
ceed to find the next strongest component. Essentially, this invokes
a model forx, namely that it has a sparse expansion inΨ. This
suggests that for our detection problem we should employ a greedy
algorithm such as MP from Section 2.2. We can then look for sig-
nificant energy among the coefficientsθΩ.

Thus, we now assume that instead ofx we observey = Φx. In
this case,y will have the same linear expansion among the columns
of V thatx has among the columns ofΨ. This strongly motivates
an MP approach to solving the sparse detection problem with inco-
herent measurements. In particular, we can seek to extract thesuf-
ficient statisticsof interest from a small number of incoherent pro-
jections. As in CS reconstruction, random measurements provide in
some sense a universal representation of the sufficient statistics for a
wide range of signal classes.
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It is important to note that, just as in any detection problem, it
is not necessary to reconstruct precisevaluesfor the expansion co-
efficientsθΩ. Rather, we generally only need to know whether there
is a significantcontributionfrom these elements. Moreover, there is
no requirement to accurately reconstruct the coefficientsθΩc . This
allows us to reduce considerably the number of measurements and
computations required when detecting compared to reconstructing.

3.3. Incoherent detection and estimation algorithm (IDEA)
Based on the above motivation, we propose the Incoherent Detection
and Estimation Algorithm (IDEA) for signals hidden in incoherent
measurements. IDEA is based on the MP reconstruction algorithm
from Section 2.2 with two important modifications. First, we set
the number of iterationsT to be much smaller than necessary for
reconstruction. Second, we replace Step 5 with the following:

5. If ‖bθΩ‖∞ exceeds a thresholdγ, detectH1; else chooseH0.

Due to the smallerT , the vectorbθ might not accurately recon-
struct the signal. However, it may still contain sufficient information
for detection. Our detection decision is made simply by examining
the componentsbθΩ and comparing the maximum coefficient to the
thresholdγ. We will see in the next section that, despite potential
imprecision inbθ, the detection decision can be remarkably accurate.
Indeed, the detection process can succeed even whenM is far too
small to recoverx. Thus, the number of measurements can be scaled
back significantly if detection, rather than reconstruction, is the ulti-
mate goal.

4. CASE STUDY

4.1. Dictionary-based detection
IDEA is very well suited to detecting signals in the presence of inter-
ference and noise when the signals and interference can be sparsely
represented in distinct, incoherent dictionaries. We formalize the
problem as follows. We aim to distinguish between two hypotheses

H0 : x = n + ω vs. H1 : x = s + n + ω,

wheres denotes the signal of interest (from some class of signals),
n denotes the interference, andω denotes additive white Gaussian
noise withω ∼ N (0, σ2

ωI). Each component is sparse in some
dictionary; that is,s = Ψsθs, ‖θs‖0 = Ks,2 and n = Ψnθn,
‖θn‖0 = Kn; however, the noise is not sparse in either dictionary.
We can restate the detection problem in terms of theconcatenated
dictionariesand coefficients, writing

x = [Ψs Ψn]

»
θs

θn

–
+ ω =: Ψθ + ω.

Now, from the measurementsy = Φx (with Φ incoherent with
bothΨs andΨn), we must distinguish between the two hypotheses

H0 : θs = 0 vs. H1 : θs 6= 0.

We setΩ in IDEA such thatθΩ = θs to obtain detection decisions.
IDEA offers several advantages in this detection scenario. First,

the sparsest approximation ofy will tend to correctly separate the
contributions from the signal and interference components thanks to
the incoherency of the two dictionaries. Second, the additive noise
is attenuated during sparse approximation since its energy is dis-
tributed over all of the expansion coefficients [11].

4.2. Wideband signals in strong narrowband interference
As a concrete example, we study the problem of detecting from ran-
dom measurements the presence of weak wideband signals corrupted

2The`0 “norm” ‖θ‖0 merely counts the number of nonzero components
in the vectorθ.

by strong interfering narrowband sources and additive noise.3 This
is a potentially difficult problem: The weakness of the wideband sig-
nal precludes an energy detection approach, and if the wideband and
narrowband signals overlap in the frequency domain, then bandpass
interference suppression may damage the signal beyond detectabil-
ity. We seek to detect wideband signals that are frequency modulated
chirps. Chirps are sparsely represented in achirplet dictionary [13]
that is incoherent with the Fourier basis that sparsifies narrowband
signals. Hence, we can apply IDEA directly. We choose a chirplet
dictionary forΨs and the Fourier basis forΨn.

4.3. Simulations
We set the signal length toN = 1024 and construct a 432-element
normalized chirplet dictionary consisting of 64-sample chirplets
having 16 start times, 9 starting frequencies, and 3 chirp rates. When
present, we generate the chirp signals = Ψsθs with Ks = 5, and
we assignN (0, σ2

s) coefficients to the nonzero elements ofθs. For
the interference we setKn = 6 and assignN (0, σ2

n) coefficients to
its nonzero elements. TheM × N measurement matrixΦ contains
i.i.d. N (0, 1) entries. Since the number of measurements required
for signal reconstruction is proportional toKs + Kn, the detection
results will extend directly to other sparsity levels when the number
of measurements increases appropriately.

Detection vs. reconstruction: Given the measurementsy =
Φx, we attempt to reconstructx using MP; the probability of a re-
construction error as a function of the number of measurementsM
(averaged over 10,000 trials) is given in Figure 1. We define an error
as failing to achieve a sufficiently small reconstruction error in the
wideband signals; hencePe = Pr(‖s − bs‖2 > 10−3‖s‖2). Given
the same measurements, we also attempt to detect the presence of
a wideband components; the probability of a detection error as a
function ofM (averaged over 10,000 trials) is also given in Figure 1.
We use IDEA withT = 15 andε = 0 (we do not check for conver-
gence) and setPr(H0) = Pr(H1) = 1/2. We chooseγ to minimize
Pe based on Monte Carlo simulations. The chirps are embedded in
strong interference; Figure 1 features Signal-to-Interference Ratio
SIR := 10 log

10
(σ2

s/σ2
n) = −6 dB andσω = 0. We see that

low-Pe signaldetectionrequires only about 50 measurements, while
low-Pe reconstructionrequires about 150 measurements. Moreover,
each MP detection requires approximately4× fewer iterations than
MP reconstruction. We note that a targetPe can be achieved with
fewer iterations by obtaining more measurements, thus providing a
valuable tradeoff.

Effect of interference: We now focus exclusively on detection
performance. Figure 2(a) illustratesPe as a function ofM for sev-
eral SIRs. ForM < 50, detection performance degrades with the
SIR. However,M > 50, detection performance remains largely un-
affected. We believe that this is due to the general robustness of
CS recovery – forM > 50 there seems to be enough information
in the measurements to accurately estimate the interference compo-
nents (those with the most energy). However, with few measure-
ments, some of the interference energy is incorrectly assigned to the
signal components, which corrupts performance.

Effect of noise: IDEA shares the same robustness to additive
white Gaussian noise as CS reconstruction [1]. Figure 2(b) illustrates
the detection performance in noise for different levels of the Signal-
to-Noise Ratio (SNR) at the fixedSIR = −6 dB. We see a graceful
performance degradation as the SNR decreases; indeed, when the
power of the noise becomes comparable to that of the signal to be
detected, most detection methods suffer.

3Thanks to Dennis Healy for suggesting this case study and formany
interesting discussions.
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Fig. 2. Performance of wideband chirp detection. (a) Strong narrowband interference; each curve is a different SIR. (b) Narrowband and
white noise interference;SIR = −6 dB, and each curve is a different SNR. (c) Effect of measurementquantization atSIR = −20 dB; each
curve is a different number of quantization levels. In all cases, detection performance degrades gracefully as the distortions increase.

Effect of quantization: Figure 2(c) illustrates the detection per-
formance for different levels of quantization of the measurements,
with a fixedSIR = −20 dB and no noise. Note in particular that
the detection performance is remarkably robust with 4-bit (16 level)
quantization; we expect the acceptable level of quantization to be
dependent on the SIR and SNR of the received signal.

5. EXTENSIONS TO CLASSIFICATION

The properties of incoherent measurements allow us to formulate a
simple algorithm forsparse signal classification. Consider a signal
of interestx of lengthN and sparsity≤ K in one ofC bases (or
dictionaries). Each basis represents a signal class. Assume that the
different bases are incoherent with each other. Our goal in this clas-
sification problem is to determine which class best fits the signal. If
the signal were available, then we could perform sparse approxima-
tion using each basis and then choose the class giving the sparsest
representation. This would require allN signal samples to make the
decision.

However, thanks to their universality, one set ofcK random
measurements suffices to find the sparsest representation ofx from
theC classes. This problem can be solved using a greedy algorithm.
Orthogonal Matching Pursuit (OMP) [3] tracks the signal sparsity
as it proceeds; the number of OMP iterations equals the sparsity of
x in the corresponding basis. Therefore, by simultaneously running
OMPs with each of theC bases, we can assign the signal to the class
whose OMP iteration terminates first. The incoherence between the
bases guarantees that only one class will have a sparse representation
for the signal. Another option would be to run either OMP or MP for
a (small) fixed number of iterations with each basis and then assign
the signal to the class resulting in the smallest residual. As in IDEA,
we expect that we can even reduce the number of measurements be-
low thecK required for high-quality sparse approximation.

6. CONCLUSIONS

IDEA provides reliable detection performance from just a few in-
coherent measurements when the signals of interest are sparse or
compressible in some basis or dictionary. In addition to its effi-
ciency gains over CS reconstruction in terms of the number of mea-
surements and computations required, IDEA shares the many known
benefits of CS reconstruction, including theuniversalityof random
measurements, progressivity, and resilience to noise and quantiza-
tion [1–7].

There are many opportunities for future research. The exten-
sion of IDEA to other signal + interference scenarios is straightfor-

ward. When the sparse signal decomposition can be parameterized,
i.e., when each signal dictionary vectorψi = f(βi) with β a pa-
rameter vector, the CS methodology enables new algorithms for pa-
rameter estimation and other statistical signal processing tasks. An
especially promising application is in CS acquisition of streaming
signals; detection experiments with the random filtering approach
of [14] found little to no performance degradation for streaming sig-
nals. Future work includes theoretical analysis on the required num-
ber of measurements for reliable detection analogous to similar re-
sults for reconstruction (see [7] and the references therein).
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