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ABSTRACT salmeasurement basis in the sense that they are incoherent with any
The recently introduced theory of Compressed Sensing (CS) enablggher fixed b_as!s with high pmb"?‘b"'ty- The C.S mea_surement process
the reconstruction or approximation of sparse or compressible Sidf nonadapt_lve, the reconstruction process is nonlinear. A variety of
nals from a small set of incoherent projections; often the numbe econst.ructlon alggrlthms have been proposed [1-3]. )
of projections can be much smaller than the number of Nyquist rate  While the CS literature has focused almost exclusively on prob-
samples. In this paper, we show that the CS framewohfesma- lems in signal reconstruction, approximation, and estimation in noise
tion scalableto a wide range of statistical inference tasks. In partic-[1=7], our aim in this paper is to show that the CS framework is
ular, we demonstrate how CS principles can salignal detection information scalabldo a much_ wider range of_statlstlcal |nferer_10e
problems given incoherent measurements without ever reconstruéﬁSij Tasks such as detection do not require a reconstruction of
ing the signals involved. We specifically study the case of signal det'® Signal, but only require estimates of the relewarificient statis-
tection in strong inference and noise and propose an Incoherent DHES for the problem at hand. Our key finding is that it is possible
tection and Estimation Algorithm (IDEA) based on Matching pur- o directly extract these statistics from a small number of random

suit. The number of measurements and computations necessary fjPiections without ever reconstructing the signal. The two upshots

successful detection using IDEA is significantly lower than that nec'€ that ) significantly fewer measurements are required for signal

essary for successful reconstruction. Simulations show that IDEA idetection than for signal reconstructios( fewer in the example
very resilient to strong interference, additive noise, and measutemeff! Figure 1), andi() the computational complexity of detection is

quantization. When combined with random measurements, IDEA i§1uch reduced compared to reconstructién (ower in the exam-
applicable to a wide range of different signal classes. ple in Figure 1). Both of these bode well for many applications. As
in reconstruction, random measurementsuwar@ersal in the sense

1. INTRODUCTION that with high probability the_sufficient statistics can be extracted
from them regardless of the signal structure.

Over the past decades the amount of data generated by sensing sys- Thjs paper is organized as follows. Section 2 provides back-

tems has grown from a trickle to a torrent. This has stimulated muclyround on CS. Section 3 states our detection problem and proposes

research in the fields of compression and coding, which enable com: greedy algorithm for CS detection. Section 4 presents a case

pact storage and rapid transmission of large amounts of informatiory, gy involving wideband signal detection in narrowband interfer-

Compression is possible because often we have considerable a prigfice. Section 5 gives ideas for extensions to classification, and Sec-
information about the signals of interest. For example, many signalgon 6 concludes with directions for future work.

are known to have aparserepresentation in some transform basis

(Fourier, DCT, wavelets, etc.) and can be expressed or approximate 2. COMPRESSED SENSING BACKGROUND
using a linear combination of only a small set of basis vectors. N ) )
The traditional approach to compressing a sparse signal is teet= € R™ be a signal and let the matri := [¢1, 2, ..., 9]

compute its transform coefficients and then store or transmit the fefjave columns that formdictionary of vectors inR™. (This dictio-
large coefficients and their locations. This is an inherently wastePary could be a basis or a redundant frame.) When we say:tisat
ful process (in terms of both sampling rate and computational comf -sparsewe mean thatit is well appro>gmated by a linear combina-
plexity), since it forces the sensor to acquire and process the entifon of K vectors from®; thatis,z ~ 37, On, ¢n, With K < N.
signal even though an exact representation is not ultimately require 1
For instance, in many signal processing applications (including most,
communications and many radar systems), signals are acquired on
for the purpose of making a detection or classification decision.

A new framework for simultaneous sensing and compression h
developed recently under the rubric@dmpressed Sensif@S). CS
enables a potentially large reduction in the sampling and comput
tion costs at a sensor. CS builds on the work of GmpdRomberg,
and Tao [1] and Donoho [2], who showed that a signal having
sparse representation in one basis can be reconstructed froma s
set of projections onto a second, measurement basis timabiser-
entwith the first! Interestingly,random projectionsare auniver-

. Incoherent measurements
nsider a signat that is K-sparse in. Consider also an/ x N
easurementatrix ®, M <« N, where the rows ofp are inco-
erent with the columns o¥. For example, le® contain i.i.d.
aussian entries; such a matrix is incoherent with any fikedith
t,jp_igh probability (universality). Compute tleeasurementg = &z
and note thay € R™ with M <« N. The CS theory states that
EIhere exists an overmeasuring factas 1 such that onlyM := cK
n%gﬁoherent measuremenjsare required to reconstrugtwith high
probability [1,2]. That is, justK incoherent measurements encode
all of the salient information in th& -sparse signat.

This work was supported by NSF-CCF, NSF-NeTS, ONR, and AFOSR 22 Reconstruction from incoherent projections

Email: {duarte, md, wakin, richp@rice.edu. Web: dsp.rice.edu/cs The amount of overmeasuring required erenQS on the (nonlinear)
1Roughly speakingincoherenceaneans that no element of one basis has reconstruction algorithm. Most of the existing literature on CS [1,
a sparse representation in terms of the other basis. 2,4,6,8] has concentrated on optimization-based methods for signal
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Fig. 1. (Top) Sample widebanchirp signal and same chirp embed-

ded in strong narrowband interference. (Bottom) Probability of erro

to reconstruct and detect chirp signals embedded in strong sinuso

interference$IR. = —6 dB) using greedy algorithms. In this case,

detection require3x fewer measurements anc fewer computa-
tions than reconstruction for an equivalent probability of success.

recovery, in particulaf, minimization. Thel; approach seeks a set
of sparse coefficient® by solving the linear program [9]

0 = arg mein I]l. subjectto VO =y,

encryption of many different kinds of signals [6, 7]. However, sev-
eral significant challenges to CS-based signal reconstruction remain.
In particular, {) the overmeasuring facterrequired for perfect re-
construction can be quite large, typically~ log,(1 + N/K) for
linear programming based reconstruction [Ty the computational
complexity of a linear program or greedy algorithm for signal recon-
struction is high, at least cubic in the signal lendthfor a linear
program. Greedy algorithms use fewer computations, but require an
even larger factoe.

3. GREEDY DETECTION FOR SPARSE SIGNALS

While the CS literature has focused almost exclusively on signal re-
construction, we now show that incoherent measurements can also
be used to solve signal detection problems without ever reconstruct-
ing the signal. In the process, we will be able to save significantly

'on both the number of measurements and computational complexity

"C@Ee Figure 1).

3.1. Detection problem setup

Suppose that the dictionad contains particular elements of inter-
est that we wish to detect as componentscofFor example, we
might want to detect smooth signals, afrdnight contain a basis of
sinusoids or orthogonal polynomials. Letc {1,2,...,Z} denote

the set oftarget indicesthat represent these components of inter-
est, and letr, andfg, denote the corresponding restrictions of the
dictionary and coefficients, respectively. Given a set of incoherent
measurementg = Pz, we aim to determine whether or netwas

whereV = ®W is the holographicbasis. Greedy reconstruction generated using any of the target component®in That is, we
algorithms build up a signal approximation iteratively by making lo- must decide between two composite hypotheses:
cally optimal decisions [3,7,10]. In this paper, we focus on Matching ” b0 £ 0

0 - Q .

Pursuit (MP) [11], an efficient greedy algorithm that selects basis 0o =0 vs. Hi:

(4)

vectors one-by-one from a dictionary to optimize the signal approx
imation at each step. In its application to CS, MP seeks a spar:

representation of the measurement vegtan the dictionary{v;}
consisting of column vectors from the holographic basis

MP ALGORITHM FOR CSRECONSTRUCTION
Initialize the residuaty = y and the approximatiofi = 0,
6 € RZ. Initialize the iteration counter= 1.
2. Select the dictionary vector that maximizes the value of th
projection of the residual onf¥’

1.

(re—1,vi)

[[osl

@)

.....

3.2. Sparsesignal detection

SFO begin, suppose that the signals provided directly. If¥ is an
orthonormal basis, then the solution to (4) can be obtained easily
by matched filtering That is, we can directly comput, using
inner products ofr against the columns o¥ and then compare
the components dfq to a threshold.

However, if ¥ is not orthogonal or if® is aredundantdictio-
enary, then inner products af against the columns o¥q will not
suffice for detection. Indeed, ¥ is redundant then there likely will
be infinitely manyf, consistent withz. Difficulties also arise be-
cause the columns oF are correlated with each other, so that the
presence of onmterfereswith the detection of another.

3. Update the residual and the estimate of the coefficient for the  This is analogous tultiuser detectiopa classical problem in

selected vector

<T't—17'Unt>
Tt Tt—1 — W“nw (2)
gn é\n (re—1,Vn,) 3
f A W E ©

4. Increment. If t < T and||r¢||2 > ¢||yl||2, then go to Step 2;
otherwise, go to Step 5. N
5. Obtain the signal estimaie= ¥4.

The parametee sets the target error level for convergence, @hd
sets the maximum number of algorithm steps.

2.3. (Dis)advantages

communications that is known to be NP-hard [12]. A practical iter-
ative decoding algorithm, known asiccessive cancelatiar onion
peeling is very similar in spirit to MP. These algorithms identify
the strongest component & in x, remove it fromz, and then pro-
ceed to find the next strongest component. Essentially, this invokes
a model forz, namely that it has a sparse expansion¥in This
suggests that for our detection problem we should employ a greedy
algorithm such as MP from Section 2.2. We can then look for sig-
nificant energy among the coefficiems.

Thus, we now assume that insteadroive observe; = ®z. In
this casey will have the same linear expansion among the columns
of V thatz has among the columns &. This strongly motivates
an MP approach to solving the sparse detection problem with inco-

The implications of CS are very promising. Instead of sampling éherent measurements. In particular, we can seek to extrasuthe
sparse signaN times and then compressing it, orlk < N in- ficient statisticof interest from a small number of incoherent pro-
coherent measurements suffice. CS with random measurementsjéstions. As in CS reconstruction, random measurements provide in
advantageous for low-power and low-complexity sensors (such as ome sense a universal representation of the sufficient statistics for a
sensor networks) because it integrates sampling, compression awitle range of signal classes.
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It is important to note that, just as in any detection problem, itby strong interfering narrowband sources and additive noiBkis
is not necessary to reconstruct preoisduesfor the expansion co- is a potentially difficult problem: The weakness of the wideband sig-
efficientsfq. Rather, we generally only need to know whether therenal precludes an energy detection approach, and if the wideband and
is a significantontributionfrom these elements. Moreover, there is harrowband signals overlap in the frequency domain, then bandpass
no requirement to accurately reconstruct the coeffici@pts This  interference suppression may damage the signal beyond detectabil-
allows us to reduce considerably the number of measurements aitgl. We seek to detect wideband signals that are frequency modulated
computations required when detecting compared to reconstructingchirps Chirps are sparsely represented ichirplet dictionary [13]
3.3. Incoherent detection and estimation algorithm (IDEA) that is incoherent with the Fourier basis that sparsifies narrowband

Based on the above motivation, we propose the Incoherent Detecticf‘{llx?:tri‘g:]séng:(\:I?' \;\'s dctig i‘;ﬂ?{;ﬁi@ig'{gtly‘ We choose a chirplet
and Estimation Algorithm (IDEA) for signals hidden in incoherent y N n
measurements. IDEA is based on the MP reconstruction algorithm.3, Simulations

from Section 2.2 with two important modifications. First, we set\ye set the signal length v = 1024 and construct a 432-element

the number of iterations™ to be much smaller than necessary for normalized chirplet dictionary consisting of 64-sample chirplets

reconstruction. Second, we replace Step 5 with the following: having 16 start times, 9 starting frequencies, and 3 chirp rates. When
5. If ||6al|- exceeds a threshold detectH; ; else choosé{,. present, we generate the chirp sigpak ¥.0, with K; = 5, and

Due to the smallef’, the vectord might not accurately recon- We assignV'(0, o) coefficients to the nonzero elementsfof For
struct the signal. However, it may still contain sufficient information the interference we séf,, = 6 and assigaV'(0, o7,) coefficients to
for detection. Our detection decision is made simply by examiningtS honzero elements. The x N measurement matrig contains
the component§Q and comparing the maximum coefficient to the |.|.d._./\/((), 1) entries. _Sln_ce the nu_mber of measurements requwed
thresholdy. We will see in the next section that, despite potential©F Signal reconstruction is proportional 6, + K, the detection
imprecision in§, the detection decision can be remarkably accurateresuns will extend _dlrectly to other sparsny levels when the number
Indeed, the detection process can succeed even Whésfar too of msasurfements Increases ?‘F’F?mg |aterH _
small to recover:. Thus, the number of measurements can be scale%x etection vs. reconstruction: Given the measurements =

back significantly if detection, rather than reconstruction, is the ulti-~ " we a_ttempt to reconstru_mt using MP; the probability of a re-
mate goal. construction error as a function of the number of measureménts

(averaged over 10,000 trials) is given in Figure 1. We define an error
4. CASE STUDY as failing to achieve a sufficiently small reconstruction error in the
- . wideband signak; henceP, = Pr(||s — ]|z > 107%||s||2). Given
4.1. Dictionary-based detection the same measurements, we also attempt to detect the presence of

IDEA is very well suited to detecting signals in the presence of inter-a wideband component the probability of a detection error as a

ference and noise when the signals and interference can be sparsgly.tion of A1 (averaged over 10,000 trials) is also given in Figure 1.
represented in distinct, incoherent dictionaries. We formalize thgye \se IDEA withT = 15 ande = 0 (we do not check for conver-

problem as follows. We aim to distinguish between two hypothesesgence) and s@tr(Ho) = Pr(H1) = 1/2. We choosey to minimize

Ho: z=n+w VS. Hi: z=s+n+w, P. based on Monte Carlo simulations. The chirps are embedded in
. . . strong interference; Figure 1 features Signal-to-Interference Ratio
wheres denotes the signal of interest (from some class of signals)eip .— 10log,,(0%/02) = —6 dB ando, = 0. We see that

n denotes the interference, anddenotes additive white Gaussian low-

noise withw ~ N(0,031). Each component Is sparse In SOme oy p, reconstructiorrequires about 150 measurements. Moreover,
dictionary, that is,s = .0, .HQS.HO = K., ar_1dn_ - ‘I'"G” each MP detection requires approximatély fewer iterations than
10]lo = Kn; however, the noise is not sparse in either dictionary.\p reconstruction. We note that a target can be achieved with
We can restate the detection problem in terms ofdbecatenated  tgyer jterations by obtaining more measurements, thus providing a
dictionariesand coefficients, writing valuable tradeoft.
05 Effect of interference: We now focus exclusively on detection
z=[¥s ¥, { 0, } tw=P0+w performance. Figure 2(a) illustraté® as a function of\/ for sev-
. ) . eral SIRs. ForM < 50, detection performance degrades with the
Now, from the measuremengs= ®a (with ® incoherentwith g However > 50, detection performance remains largely un-
both W' and¥,,), we must distinguish between the two hypotheses atected. We believe that this is due to the general robustness of
Ho: 0s=0 vs. Hi: 60, #0. CS recovery — fotM > 50 there seems to be enough information
. ) ) n in the measurements to accurately estimate the interference compo-
We set2 in IDEA such that, = 6, to obtain detection decisions. oo (those with the most energy). However, with few measure-

IDEA offers several advantages in this detection scenario. Firsinants "'some of the interference energy is incorrectly assigned to the
the sparsest approximation gfwill tend to correctly separate the sighal components, which corrupts performance.

cont_ributions from the signal ?‘”.d inte_rference components _thanks_ 0" Effect of noise: IDEA shares the same robustness to additive
Fhe incoherency qf the two dlctlonar[es. _Secqnd, the add't've,no'sﬁlhite Gaussian noise as CS reconstruction [1]. Figure 2(b) illustrates
S attenuated during sparse approximation since its energy Is dithe detection performance in noise for different levels of the Signal-
tributed over all of the expansion coefficients [11]. to-Noise Ratio (SNR) at the fixefR — —6 dB. We see a graceful

4.2. Wideband signalsin strong narrowband interference performance degradation as the SNR decreases; indeed, when the
As a concrete example, we study the problem of detecting from rarpower of the noise becomes comparable to that of the signal to be
dom measurements the presence of weak wideband signals corruptégtected, most detection methods suffer.

P. signaldetectiorrequires only about 50 measurements, while

2The, “norm” ||0||o merely counts the number of nonzero components  3Thanks to Dennis Healy for suggesting this case study ananfoy
in the vector. interesting discussions.
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Fig. 2. Performance of wideband chirp detection. (a) Strong narrowbanddrgace; each curve is a different SIR. (b) Narrowband and
white noise interferenc&IR = —6 dB, and each curve is a different SNR. (c) Effect of measureupesntization afIR = —20 dB; each
curve is a different number of quantization levels. In all cases, detepéformance degrades gracefully as the distortions increase.

Effect of quantization: Figure 2(c) illustrates the detection per- ward. When the sparse signal decomposition can be parameterized,
formance for different levels of quantization of the measurements,e., when each signal dictionary vectgr = f(5;) with 5 a pa-
with a fixedSIR = —20 dB and no noise. Note in particular that rameter vector, the CS methodology enables new algorithms for pa-
the detection performance is remarkably robust with 4-bit (16 levelyameter estimation and other statistical signal processing tasks. An
quantization; we expect the acceptable level of quantization to bespecially promising application is in CS acquisition of streaming

dependent on the SIR and SNR of the received signal. signals; detection experiments with the random filtering approach
of [14] found little to no performance degradation for streaming sig-
5. EXTENSIONSTO CLASSIFICATION nals. Future work includes theoretical analysis on the required num-

) ) ber of measurements for reliable detection analogous to similar re-
The properties of incoherent measurements allow us to formulate &,jis for reconstruction (see [7] and the references therein).
simple algorithm forsparse signal classificatiorConsider a signal

of interestz of length N and sparsity< K in one of C' bases (or 7. REFERENCES

dictionaries). Each basis represents a signal class. Assume that the

different bases are incoherent with each other. Our goal in this clas{l] E. Canes, J. Romberg, and T. Tao, “Robust uncertainty principles:
sification problem is to determine which class best fits the signal. If ~ EXact signal reconstruction from highly incomplete frequemfor-
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tion using each basis and then choose the class giving the sparsel@ D. Donoho, “Compressed sensing,” 2004, Preprint.
representation. This would require &l signal samples to make the [3] J. Tropp and A. C. Gilbert, “Signal recovery from partiaformation

decision. via orthogonal matching pursuit,” 2005, Preprint.
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whose OMP iteration terminates first. The incoherence between thd niuk, “Distributed compressed sensing,” 2005, Preprint.
bases guarantees that only one class will have a sparse representati[.?gr]l

for the signal. Another option would be to run either OMP or MP for
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coherent measurements when the signals of interest are sparse or tionaries,"IEEE Trans. Signal Processingol. 41, no. 12, 1993.
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There are many opportunities for future research. The exten-  Int. Conf. on Acoustics, Speech, and Signal Proc. (ICASERE.
sion of IDEA to other signal + interference scenarios is straightfor-
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