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Abstract— Decision fusion is a decentralized decision making
process where local decisions are combined to reach a global
decision. In this work, we propese a complementary optimal
decision fusion {(CODF} method to the target detection task that
arises in wireless ad hoc sensor network signal processing. We
conduct extensive comparative study using real world sensor
signal data, and observe superior performance of CODF when
compared with state-of-the-art decision fusion methods. In ad-
dition to distributed sensor network applications, the proposed
CODF algorithm can be applied to numercus multi-modality,
multi-agent, multi-media signal processing problems.

1. INTRODUCTION

Decision fusion data fusion method that has found applica-
tions in multi-modal multimedia signal processing [13], [3],
[6], decentralized detection [1], collaborative sensor network
signal processing [5], and the like. With decision fusion, indi-
vidual component decision makers (pattern classifiers) report
their own local decisions (classification results) to a comman
fusion center where a final consensus decision will be made.
In doing so, only the local decisions, rather than the raw data,
need to be transmitted to the fusion center. If a local decision
can be represented by an integer {n;1 < n < N}, then it can
be encoded using log, N bits. Thus, transmitting a decision
to the fusion center, rather than the raw data sample, often
represents a significant saving in communication bandwidth.
For applications where communication cost is high, such as a
wireless sensor network, decision fusion is advantageous.

Previously, in [1], optimal data fusion is presented under
the constraint of a fixed k& out of n weighted threshold fusion
architecture, In [2], a hierarchical model is used and Bayesian
Gibbs sampling method is used to design the fusion rule.
Data fusion has also been studied in the context of combining
multiple classifiers. In [14], three types of classifier combi-
nation methods, namely, averaged Bayes classifiers, voting
principals, and Dempster-Shafer fuzzy combinations have been
reviewed. Some experiments have been conducted but no
conclusive comparison results are available. In [12], the accu-
racy of individual classifiers are estimated, and classifiers are
selected dynamically based on which classifier wiil yield best
performance in specific local regicn. Ji and Ma [9] proposed
to use a structure consisting of randomly generated linear
local classifiers with a voting fusion mechanism to perform
pattern classification tasks. Petrakos et al. [11] discussed the
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etfect of correlations between classifiers and their impacts on
fusion performance. In [8], an optimal behavior knowledge
space (BKS) method has been proposed that directly combined
classifier output vectors into different classes. It has been
argued that this BKS method produces optimal decision fusion
results but no further development has been found in the
literature.

Recently [4], we developed an optimal decision fusion
(ODF) method. Assuming that the set of local decision makers
are fixed, and that the number of training samples are suffi-
ciently large, we show that a look-up-table based ODF method
is capable of producing decision fusion results that are no
worse than any other decision fusion algorithms. In effect, we
derived a tight theoretical performance upper bound of any
decision fusion algorithm. The ODF method is basically the
same as the BKS method proposed in [8]. However, when
there are only finite number of training data samples, either
LUT or BKS method may exhibit inferior performance.

In this paper, we focus on the analysis and enhancement
of the ODF method with an application to target detection in
a wireless ad hoc sensor network environment. Specifically,
we developed a complementary ODF (CODF) method that
uses ODF in conjunction with a non-ODF decision fusion
method {o improve the overall performance while conserving
storage space. For most of feature vectors that the non-ODF
method yields correct resulis, the ODF method will stay silent.
When the ODF method issues a opinion, it will then overwrite
the opinion given by the non-ODF decision maker. These
two decision fuston methods collaborate to complement each
other, and hence the name complementary ODF. We further
analyze the performance of the CODF method and discussed
the potential impacts on its performance when the component
decision making units give correlated local decisions.

This paper is organized as follows: Section I presents the
theoretical framework for this problem. Section III specifies
our approach for Complementary Optimal Decision Fusion.
Section IV contains the experiments we performed with our
method and their results. Finally, Section V presents some
conclusions 1o the paper.

I1. PROBLEM FORMULATION
A. Decision Fusion Framework

We assume a decision fusion architecture that consists of a
Jusion center and K distributed sensors as local decision mak-
ers. The k% sensor observes a feature vector x;. According
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to a local decision rule, x, will be assigned to a class label
among a set of N possible labels C = {Cy,Cq,--- ,Cn}
That is,

ulxy) =dy € C

dy; is called a decision. We use the set membership notation
Xi, € C,, to denote that dg, = C,.

A global feature vector x is the concatenaticn of ali local
feature vectors. That is,

x=[xf x

xk )"

The k" sensor will evaluate x, and make a local decision
di, & C. In other applications, it is possible that all sensors
receive the same feature vector, that is, X; = X9 = -+ = Xg.
In such a case, we simply use x = x; without concatenation.
The feature space is the space spanned by the global feature
vector. For each feature vector X, a decision rule maps it into a
particular class label. Equivalently, the decision rule partitions
the feature space N into disjointed regions. Feature vectors
within each region are assigned to the same label.

For decision fusion, each of the K sensors will forward its
local decision dj, te a common fusion center, where a decision
fusion algorithm will compute a final decision £(d) based only
on a decision vector that consists of the set of local decisions:

d= [ dl d2 dK ]
The assumption that the fusion center does not have the
global feature vector x to make a decision is important, and
appropriate for wireless communication channels where the
communication cost is very high.

I11. COMPLEMENTARY QPTIMAL DECISION FUSION
(CODF)

A. Optimal Decision Fusion

The decision fusion is based on the K x 1 feature vector d.
There will be at most N¥ different decision vectors. Feature
vectors x mapped to the same decision vector will be assigned
to the same class label, As such the N¥ different decision
vectors will partition the feature space into N disjoint
regions, Moreover, each of these regions wiil be assigned to a
specific class label by a decision fusion algorithm. As such, if
the probability of correct decisicn assignment is maximized
for each individval decision vector, the resulting decision
fusion method will be optimal in the sense that it maximize
the probability of making correct decisions given only the
decision vectors. Therefore, the optimal decision fusion (ODF)
amounts to a look-up table (LUT): In each entry of this table
is a different decision vector and its corresponding decisicn
assignment. In [4], we have shown that such an ODF decision
fusion scheme does not necessarily reach the performance of
a Bayesian decision. ODF is optimal in that it maximizes the
probability of correct decision under the constraint that oanly
the decision vector d is used for the purpose of decision fusion.

B. Complementary ODF (CODF)

This LUT-based ODF method has the same formulation
as the BKS method proposed by Huang and Suen [8] in
1993, The difference is that the ODF method uses a training
set that has finite number of feature vectors, The impact of
finite number training data is two-fold: First, there may be
fewer training samples than the number of different decision
vectors d, N5 Second, there may be too few training samples
falling within each of the r,, regions. In either of these two
cases, there is no sufficient information to infer the proper
class label assignment to that corresponding decision vector d.
Furthermore, depending on the specific structure of individual
component decision makers, it is possible that certain decision
vectors will not occur regardless how many training samples
are available. Another potential drawback of the QDF method
is that even when there is a sufficient amount of training data,
it is possible that there are too many different entries in the
ODF table. As such, the storage cost of such a decision fusion
classifier will be very high.

To alleviate this problem, we propose a hybrid approach.
We will use a simple and effective non-ODF decision fusion
method to team up with the ODF method. For decision vectors
that the ODF method fail to yield reliable decisions due to
lack of sufficient training samples, we resort to these com-
plementary decision fusion methods. For decision vectors that
both ODF and these methods yield identically correct results,
we choose either ODF or these methods based oa trade-offs
between storage cost versus computation cost. For decision
vectors that ODF yield correct results while these non-ODF
decision fusion classifiers yield incorrect result, we use ODF.
As such, the ODF table can be significantly reduced and the
overall performance can be improved. This non-ODF decision
fusion method is used to complement the ODF performance,
and hence this hybrid method will be called complementary
ODF {CODF) method.

C. Complementary Decision Fusion Methods

We list several choices of decision fusion methods that fit
into the description of being simple and effective:

Non-Weighted Threshold voting: For our two-class problem,
the simples method is to perform non-weighted voting:

K er—’Cl
Y widi(x) 2t (1
i=1 £=tz

where d;(x) = 1if x € C; and d;(x) = 0 if x € Cs. For
such a voting scheme fusing K nodes, there will be K — 1
distinct threshold possibilities, since the result of such voting
scheme will yield an integer number result for each available
class. Therefore, an optimal threshold can be calculated that
will minimize the error:

t=arg0$]r€!£{x}_le(k+l/2) (2)

This method is the easiest to implement, but will yield low
performance, since all nodes are being weighted equally.



Weighted Least Square Thresholding: The weighted least
square thresholding assumes that the two classes observed
will be assigned labels as follows: di(x) = 1 if x €
and d;(x) = —1 if x € Cy. It is based on a linear least-
squares filter [7], where each decision d;{x) will be weighted
by a value w;, and our observation o for the training set will
be 0 = Dw, where D = [d(x;),d(x3),...d(x,)]T is the
matrix of the decision vectors for the m training samples,
d(x) = [di)(x),dz{x},...dg(x)] is the decision vector for
sample z, and w = [wy, wa, ...wK]T is the weight vector. The
solution to this filter is expressed as

w = D+l 3)

where 1 is the label vector for the training samples, D7 is
the pseudoinverse of D, defined as X+ = (X7 X)~!X7, and
the error is defined as

e=1-DW C))

Optimal Linear Threshold: The optimal linear threshold
method uses the method of steepest descent [7] to obtain
a progressively accurate estimate of an optimal weighting
vector:

wia + 1} = w(a) - ng(a} (5

where ¢ is the order of the iteration, 7 is the learning-rate
parameter, w{a) is the weight vector for the current iteration,
and g(a) is the gradient vector of the error e(a), as defined
previously, with respect to w{a):

[ Pe(a)  Be(a) de(a) 1"
gle) = [Bwl(a)’ Bwa(a)’ " Bwk(a)

For this method, we need to set an initial set of weights
and a convergence criterion. For our case, we have chosen
a random initial set of weights and used both minimum
convergence error and maximum number of iteration criterions
for convergence.

Local Classifier Accuracy Weighting: This method intu-
itively will assign weights to the different decisions propor-
tional to their accuracy level; i.e., a classifier that is more likely
to be correct will be assigned a larger weight. The weights are
then normalized:

(6)

T
7
z:il T @
where r; is the classification rate for classifier ¢ [5]. This
method will yield acceptable results if the accuracy of the
classifiers remains constant among different sets of samples.
Following the Leader: This heuristic method will assign as
decision result the label assigned by the classifier most likely
to be correct:

w; =

_J 1 ifi=argmaxici<i T
wi = { 0 otherwise ®

Thus its performance will depend on whether the behavior
of the classifiers remains constant among different sets of
samples.

IV. EXPERIMENTS

We run experiments on data collected from a sensor network
deployed in an outdoor sensor field. Each sensor node consists
of an on-board computer, power source (battery), one or more
sensors with different modalities, and wireless transceivers.
This sensor node features acoustic sensing using a microphone,
creating a signal that is sampied at 5 kHz at 12 bit resolution.
The on-board computer is a 32-bit RISC processor running
the Linux operating system. The sensor field is an area of
approximately 900 x 300 meters in a California Marine training
ground. The sensors are laid out along side the road. The
separation of adjacent sensors ranges from 20-40 meters.
We group the sensors into a single region. Sensors within
each region will be able to communicate freely. One sensor
within each region is designated as a manager node. The
manager node will be given the authority to communicate
with manager nodes of surrounding regions. This hierarchy
of communication ensures that only local wireless traffic will
be engaged, and hence contributes to the goal of energy
congservation. Military vehicles are driving passing through the
roads. The objective is to detect the vehicles when they pass
through each region. During the experimentation in November
2001, multi-gigabyte data samples [5] have been recorded and
are used in this paper. We will call these data Sitex02 data set.

For each of the 0.75 second duration, the energy of the
acoustic signal will be computed. This single energy reading
then will be fed into a constant false alarm rate (CFAR)
energy detector [10] to determine whether the current energy
reading has a magnitude that exceeds a computed threshold. If
s0, a node-detection event will be declared for this duration.
Otherwise, the energy reading is considered as contributions
from the background noise. The optimal decision fusion can
be applied to the detection problem, since this task requires a
single decision to be derived from the data gathered by all the
nodes contained in the region. We compare the results of our
proposed method with the decision fusion rules mentioned in
Section III, and we use these rules as complementary rules for
our CODF method.

We combined the AAV and DW data and partition the
data set into a training data set by the 20 experiment runs
performed, and we select one run for testing while grouping
data from all other runs for training; this is commonly known
as Leave One Out testing. Then we use the proposed CODF
method and other methods to develop a fusion rule and then
use the rule o fuse the detection decision set. The classifica-
tion rate of both the CODF and the alternative methods are
recorded. The training and testing error rates of the different
available methods are depicted in figure | and 2. We tested
the alternate methods plus the CODF method using each of
the proposed complementary rules or ODF alone. The effect
of using a backup rule in the size of the CODF training table
is shown in Figure 3.

Frem the plot it can be seen that the Optimal Decision
Fusion gives the lowest training error among the different
methods, and that its performance varies along different runs
and backup methods. This can be explained by the fact that
for most of the runs, some of the ensemble results from the
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Fig. 1. Training detection error rates for several decision fusion rules and
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different runs

different classifiers did not appear in other runs and therefore
were not considcred during the training: in these cases the
performance of the CODF rule will be contingent on the
performance of the backup rule. As seen in figure 2, for
almost all cases the testing performance of the CODF with a
complementary rule is better than that of the rule without any
enhancement. We also show that for all methods, the size of
the CODF training table is reduced by removing those records
whose result match that of the backup rule; the number of the
records removed is proportional to the accuracy of the backup
decision rufes.

V. CONCLUSIONS AND FURTHER WORK

In this paper we have shown that using a simple algorithm,
the optimal decision fusion method can be defined even with-
out explicitly knowing the classification rates of the different
sensors, or for dependent sensors in a region. We also have
shown experimental results that holds our argument. Tt is
important, however, to have enough features available during
training so that the statistics for each one of the different
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Fig. 3. Effect of backap rule implementation on the size of the Opnmal
Decision Fusion Training Table for different runs

regions based on the decision vector results are statistically
defined. In the future, we will report results of application of
this method in other real-world problems, such as collaborative
signal processing and handwritten character recognition. We
will also report on any patierns observed for sensor network
applications,
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