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Sparsity-Aware Linear Inference Problems 
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•Linear Regression: Estimate       from y =      + noise 
•Lasso:                                    dddd             

•Sparse Recovery (Compressive Sensing): Recover    from y = 
•Basis Pursuit: 

!
Modeling Correlated Coefficients via Group Sparsity 
!

Vector    partitioned into r groups of size m:  
Matrix X partitioned into r submatrices: 
!

•Group Lasso:  
!

•Block Basis Pursuit: 
!

Existing theoretical guarantees rely on subdictionaries (column sub-
matrices of sensing/design matrix) being well conditioned and either: 
•directly check conditioning with combinatorial computation, or 
•indirectly check conditioning and provide pessimistic bounds. 

It is possible to avoid these issues by switching to a statistical  
performance measurement setting:  
• endowing    with a “uniform” distribution over all sparse vectors, 
• considering the average-case subdictionary conditioning. 

Recent theoretical guarantees for problems with standard sparsity that 
are valid with high probability and require only simple matrix metrics 
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Block-Sparse Recovery 

!
Theorem: Assume that    is drawn “uniformly” over the set of k-block 
sparse signals and X satisfies the BIC. As long as                              , 
basis pursuit will return          with probability of at least 1—4p—4 log 2. 

Comparison to basis pursuit/standard sparsity:  
if coherence (max. column inner product)                           [Tropp 2008]  
Matched performance for m = 1 

Block-Sparse Linear Regression 
!
Theorem: Assume that    is drawn “uniformly” over the set of k-block 
sparse signals and X satisfies the BIC. As long as                              , 
the estimate returned by the group lasso with                    obeys                                           
                                         with probability of at least                                            
                                              . 

Comparison to standard lasso: same performance only if coefficients  
are independent (even within each group) [Candès and Plan 2009]  
Without independence, we require 
!

Discussion 
!

• As long as dictionary coherences are sufficiently small,          is the 
only matrix metric affecting size of well-conditioned subdictionaries 

• Tight frames provide smallest spectral norm                   ; therefore, 
largest well-conditioned subdictionaries obey  

• Results translate to Multiple Measurement Vector (MMV) setting: 
Kronecker-structured matrices with translatable norm/coherence 
metrics [Candès and Plan 2009] 

!

Full version of this paper: http://arxiv.org/pdf/1309.5310/  

!
Average-Case Subdictionary Conditioning Metrics 

!

•Intra-Block Coherence: 

•Inter-Block Coherence: 

•Spectral Norm: 
!

Block Incoherence Condition (BIC): 
Blocks are each close to orthogonal and are sufficiently incoherent  
with one another  
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•The size of the largest well-conditioned subdictionaries scales  
inversely with the sensing/design matrix spectral norm 

•The coherence measures do not affect the size of the  
well-conditioned subdictionaries (other than through the BIC) 

!
“Uniform” Distribution over Block Sparse Signals 

!

• Block support of    distributed uniformly among k-subsets of {1,…,r} 
• Entries of    have zero median (i.e., its entries have positive and neg-

ative signs with equal probabilities):  
• Nonzero blocks of    have statistically independent “directions”:  
 
 
 
 
where                 , the m-dimensional sphere, and  
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Sparsity-Aware Linear Inference Simulations 

!

• Generated 2000 random matrices with normalized columns,  
p = 5000, m = 10, r = 500, n = 858 [Rao, Recht, Nowak 2012] 

• Scaled matrix spectral norm (via SVD) with multiplier set 
• Resulting              design/sensing matrices had columns  

renormalized, block coherence metrics computed 
• Average performance over 1000 uniformly-drawn block-sparse signals 
!
Experiment 1: Measure sparse  
recovery performance for matrices  
selected to have matching coherence  
values among several spectral norm  
multipliers 
!
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!
Experiment 2: Measure performance for matrices with extremal 
(maximum/minimum) coherences for each spectral norm multiplier 
!
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Theorem (Average-Case Subdictionary Conditioning): 
Assume that X satisfies the BIC and S is a k-subset drawn from  
{1,…,r} uniformly at random. Then, as long as                          
the singular values of the block subdictionary                         
satisfy                              , i   = 1,…,km, with probability over the 
choice of set S of at least 1—2p—4 log 2.

Average-Case Analysis of High-Dimensional Block-Sparse  
Recovery and Regression for Arbitrary Designs 

 Waheed U. Bajwa       Marco F. Duarte   Robert Calderbank 
Rutgers University       UMass Amherst      Duke University.

From Sparsity to Group Sparsity Random Group Subdictionaries
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Average-Case Performance Guarantees Numerical Results
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