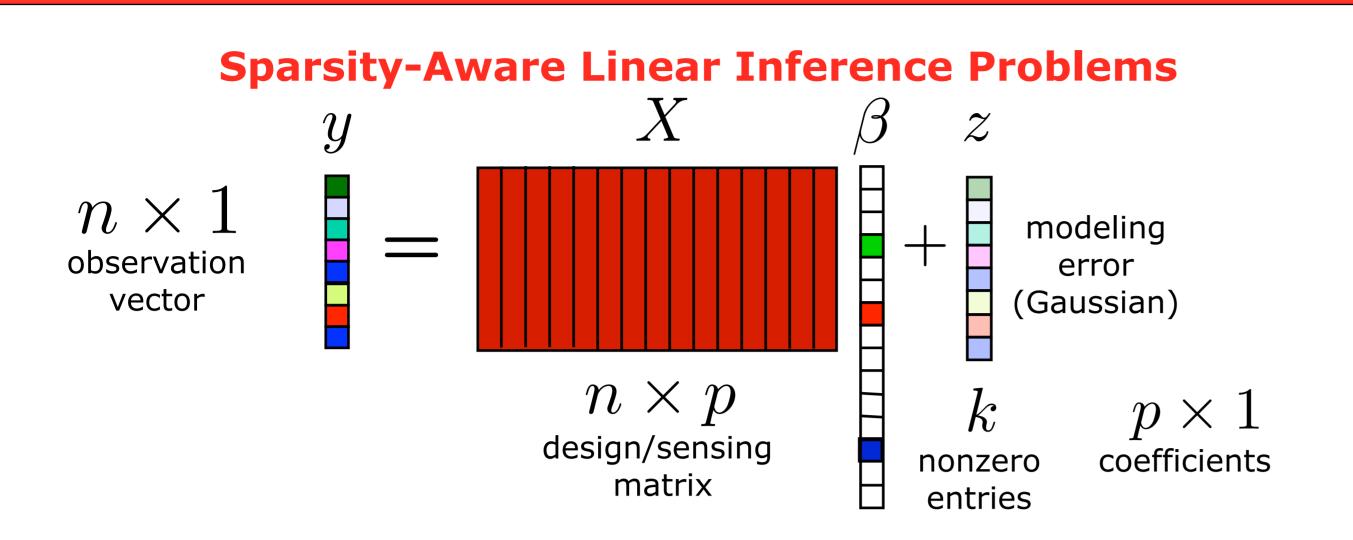
Average-Case Analysis of High-Dimensional Block-Sparse Recovery and Regression for Arbitrary Designs

Waheed U. Bajwa **Rutgers University**

Marco F. Duarte Robert Calderbank **UMass Amherst Duke University**

From Sparsity to Group Sparsity



Random Group Subdictionaries

Average-Case Subdictionary Conditioning Metrics

•Intra-Block Coherence: $\mu_I := \max_{1 \le i \le r} \|X_i^T X_i - I_m\|_2$ •Inter-Block Coherence: $\mu_B := \max_{1 \le i,j \le r} \|X_i^T X_j\|_2$ •Spectral Norm: $||X||_2 = \max_{\alpha \in \mathbb{R}^p} ||X\alpha||_2 / ||\alpha||_2$

Block Incoherence Condition (BIC): $\mu_I \leq c_1, \ \mu_B \leq c_2/\log p$

Blocks are each close to orthogonal and are sufficiently incoherent with one another

• Linear Regression: Estimate $X\beta$ from $y = X\beta + noise$ •Lasso: $\beta = \arg \min_{\beta \in \mathbb{R}^p} \|y - X\beta\|_2 + 2\lambda\sigma\|\beta\|_1$

•**Sparse Recovery** (Compressive Sensing): Recover β from $y = X\beta$ •Basis Pursuit: $\widehat{\beta} = \arg \min_{\beta \in \mathbb{R}^p} \|\beta\|_1$ subject to $y = X\beta$

Modeling Correlated Coefficients via Group Sparsity

Vector β partitioned into r groups of size m: $\beta = [\beta_1^T \ \beta_2^T \ \dots \ \beta_r^T]^T$ Matrix X partitioned into r submatrices: $X = [X_1 \ X_2 \ \dots \ X_r]$ •Group Lasso: $\hat{\beta} = \arg\min_{\beta \in \mathbb{R}^p} \|y - X\beta\|_2 + 2\lambda\sigma\sqrt{m}\sum_{i=1}^n \|\beta_i\|_2$ •Block Basis Pursuit: $\hat{\beta} = \arg \min_{\beta \in \mathbb{R}^p} \sum \|\beta_i\|_2$ subject to $y = X\beta$

Existing theoretical guarantees rely on *subdictionaries* (column submatrices of sensing/design matrix) being well conditioned and either: • directly check conditioning with *combinatorial computation*, or • indirectly check conditioning and provide *pessimistic bounds*.

It is possible to avoid these issues by switching to a *statistical performance* measurement setting:

• endowing β with a "*uniform*" distribution over all sparse vectors, • considering the *average-case subdictionary conditioning*.

Theorem (Average-Case Subdictionary Conditioning):

Assume that X satisfies the BIC and S is a k-subset drawn from $\{1,\ldots,r\}$ uniformly at random. Then, as long as $k \leq c_0 r / (||X||_2^2 \log p)$ the singular values of the block subdictionary $X_S = [X_i : i \in S]$ satisfy $\sigma_i(X_S) \in [\sqrt{1/2}, \sqrt{3/2}], i = 1, \dots, km$, with probability over the choice of set *S* of at least $1-2p^{-4 \log 2}$.

- The size of the largest well-conditioned subdictionaries scales inversely with the sensing/design matrix spectral norm
- The coherence measures do not affect the size of the well-conditioned subdictionaries (other than through the BIC)

"Uniform" Distribution over Block Sparse Signals

• Block support of β distributed uniformly among k-subsets of $\{1, ..., r\}$ • Entries of β have zero median (i.e., its entries have positive and negative signs with equal probabilities): $\mathbb{E}[\operatorname{sign}(\beta)] = 0$

• Nonzero blocks of β have statistically independent "directions":

 $= \prod \mathbb{P}\left(\overline{\operatorname{sign}}(\beta_i) \in \mathcal{A}_i\right)$ $(\operatorname{sign}(\beta_i) \in \mathcal{A}_i)$ $i{\in}\mathcal{S}$

Recent theoretical guarantees for problems with standard sparsity that are valid with high probability and require only simple matrix metrics

where $\mathcal{A}_i \subset \mathbb{S}^{m-1}$, the *m*-dimensional sphere, and $\overline{\text{sign}}(\beta_i) = \frac{\beta_i}{\|\beta_i\|_2}$

Average-Case Performance Guarantees

Block-Sparse Recovery

Theorem: Assume that β is drawn "uniformly" over the set of k-block sparse signals and X satisfies the BIC. As long as $k \leq c_0 r / (||X||_2^2 \log p)$, basis pursuit will return $\hat{\beta} = \beta$ with probability of at least $1-4p^{-4 \log 2}$.

Comparison to basis pursuit/standard sparsity: $k \le c_0 n / (||X||_2^2 \log p)$ if coherence (max. column inner product) $\mu(X) \leq c/\log p$ [Tropp 2008] Matched performance for m = 1

Block-Sparse Linear Regression

Theorem: Assume that β is drawn "uniformly" over the set of k-block sparse signals and X satisfies the BIC. As long as $k \leq c_0 r / (\|X\|_2^2 \log p)$, the estimate returned by the group lasso with $\lambda = \sqrt{2 \log p}$ obeys $||X\beta - X\hat{\beta}||_2^2 \leq Cmk\sigma^2\log p$ with probability of at least $-p^{-1}(2\pi \log p)^{-1/2} - 8p^{-4\log 2}$

Numerical Results

Sparsity-Aware Linear Inference Simulations

- Generated 2000 random matrices with normalized columns, p = 5000, m = 10, r = 500, n = 858 [Rao, Recht, Nowak 2012]
- Scaled matrix spectral norm (via SVD) with multiplier set $\tau \in \mathcal{T}$
- Resulting $2000|\mathcal{T}|$ design/sensing matrices had columns renormalized, block coherence metrics computed

• Average performance over 1000 uniformly-drawn block-sparse signals

Experiment 1: Measure sparse recovery performance for matrices selected to have matching coherence $\frac{3}{2}$ 0.7 values among several spectral norm multipliers

au	1	2	3	4	ability
$\ X_{\tau}\ _2$	3.3963	6.7503	10.0547	13.2034	Probal
$\mu(X_{\tau})$	0.1992	0.2026	0.2000	0.2207	1 0

$ \begin{aligned} &\tau = 1 \\ &\tau = 2 \\ &\tau = 3 \\ &\tau = 4 \end{aligned} $
$\tau = 0$
-
-
_

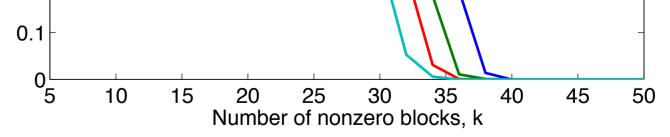
Comparison to standard lasso: same performance only if coefficients are *independent* (even within each group) [Candès and Plan 2009] Without independence, we require $k \leq c_0 r / (\|X\|_2^2 m \log p)$

Discussion

- As long as dictionary coherences are sufficiently small, $||X||_2$ is the only matrix metric affecting size of well-conditioned subdictionaries
- Tight frames provide smallest spectral norm $||X||_2^2 \approx p/n$; therefore, largest well-conditioned subdictionaries obey $k = O(n/\log p)$
- Results translate to Multiple Measurement Vector (MMV) setting: Kronecker-structured matrices with translatable norm/coherence metrics [Candès and Plan 2009]

Full version of this paper: <u>http://arxiv.org/pdf/1309.5310/</u>

$\mu_B(X_{ au})$					
$\mu_I(X_{ au})$	0.1992	0.2026	0.2177	0.3787	



Experiment 2: Measure performance for matrices with extremal (maximum/minimum) coherences for each spectral norm multiplier

