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Sparsity-Aware Linear Inference Problems
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eLinear Regression: Estimate X 3 from y = X 3 + noise
elLasso: § = arg min ||y — XB|[2 + 2Ac||B])1
BERP

eSparse Recovery (Compressive Sensing): Recover 5 from y = X3

«Basis Pursuit: 3 = arg én%Rrjlo |G||1 subject to y = X[
c

Modeling Correlated Coefficients via Group Sparsity

Vector /3 partitioned into r groups of size m: g3 =[5 3, ... BX]*
Matrix X partitioned into r submatrices: X = [X; X, ... X,]

*Group Lasso: = arg min ||y — X 8|2 + 2Aav/m Y _ [|Bil
BERP ; .

S

1=1

Block Basis Pursuit: 5 = ] - biect t = X

. B argggﬁg;m\lz subject to y = X3
1=

Existing theoretical guarantees rely on subdictionaries (column sub-
matrices of sensing/design matrix) being well conditioned and either:
e directly check conditioning with combinatorial computation, or
e indirectly check conditioning and provide pessimistic bounds.

It is possible to avoid these issues by switching to a statistical
performance measurement setting:

e endowing [ with a “uniform” distribution over all sparse vectors,
e considering the average-case subdictionary conditioning.

Recent theoretical guarantees for problems with standard sparsity that
are valid with high probability and require only simple matrix metrics

| Random GrouE Subdictionaries |

Average-Case Subdictionary Conditioning Metrics

eIntra-Block Coherence: (7 := max || X X; — L2

1< <r
eInter-Block Coherence: up := max ||X¢TX3‘H2

1<z,5<r
eSpectral Norm: || X ||z = max | X |2/ ||ex]|2

Block Incoherence Condition (BIC): ur < ci, up < co/logp

Blocks are each close to orthogonal and are sufficiently incoherent
with one another

/ Theorem (Average-Case Subdictionary Conditioning): \

Assume that X satisfies the BIC and S is a k-subset drawn from

{1,...,r} uniformly at random. Then, as long as k < cyr/(|| X2 log p)
the singular values of the block subdictionary Xg = [X; : i € S]
satisfy o;(Xs) € [\/1/2,4/3/2], i = 1,...,km, with probability over the
choice of set S of at least 1-2p4log2,

e The size of the largest well-conditioned subdictionaries scales
inversely with the sensing/design matrix spectral norm

e The coherence measures do not affect the size of the
well-conditioned subdictionaries (other than through the BIC)

“Uniform” Distribution over Block Sparse Signals

e Block support of 3 distributed uniformly among k-subsets of {1,...,r}

e Entries of 3 have zero median (i.e., its entries have positive and neg-
ative signs with equal probabilities): E[sign(5)] = 0

e Nonzero blocks of 5 have statistically independent “directions”:

P (ﬂ (@(&-) C Az)) — HIP’ (@(ﬁi) = Ai)

1E€S 1€S

where 4, C S™~1, the m-dimensional sphere, and sign(3;) = AR

| Average-Case Performance Guarantees |

Block-Sparse Recovery

Theorem: Assume that 5 is drawn “uniformly” over the set of k-block
sparse signals and X satisfies the BIC. As long as k < cor/(|| X |4 log p),
basis pursuit will return 3 = § with probability of at least 1-4p+log2,

Comparison to basis pursuit/standard sparsity: k < con/(||X||3 log p)

if coherence (max. column inner product) (X)) < ¢/ log p [Tropp 2008]
Matched performance form =1

Block-Sparse Linear Regression

Theorem: Assume that 5 is drawn “uniformly” over the set of k-block
sparse signals and X satisfies the BIC. As long as k < cor /(|| X |3 log p),
the estimate returned by the group lasso with A\ = /2logp obeys

|X8 — XB||2 < Cmko?log p with probability of at least

1 — p_1(277 lng)_1/2 o 8p—4log2 .

Comparison to standard lasso: same performance only if coefficients

are independent (even within each group) [Candés and Plan 2009]
Without independence, we require k < cor/(|| X ||5m log p)

Discussion

e As long as dictionary coherences are sufficiently small, || X ||2 is the
only matrix metric affecting size of well-conditioned subdictionaries

e Tight frames provide smallest spectral norm || X||5 ~ p/n; therefore,
largest well-conditioned subdictionaries obey k = O(n/logp)

e Results translate to Multiple Measurement Vector (MMV) setting:
Kronecker-structured matrices with translatable norm/coherence
metrics [Candés and Plan 2009]

Full version of this paper: http://arxiv.org/pdf/1309.5310/

| Numerical Results |

Sparsity-Aware Linear Inference Simulations

e Generated 2000 random matrices with normalized columns,
p = 5000, m = 10, r = 500, n = 858 [Rao, Recht, Nowak 2012]

e Scaled matrix spectral norm (via SVD) with multiplier set € 7T

e Resulting 2000|7 | design/sensing matrices had columns
renormalized, block coherence metrics computed

e Average performance over 1000 uniformly-drawn block-sparse signals

Experiment 1: Measure sparse 0.9f
recovery performance for matrices
selected to have matching coherence
values among several spectral norm
multipliers

T 1 2 3 4
X2 | 3.3963 6.7503 10.0547 13.2034
n(X;) 101992 0.2026 0.2000  0.2207

up(X,) | 02973 0.3431 0.5573  0.8490
ur(X,) | 01992 0.2026 0.2177  0.3787
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Experiment 2: Measure performance for matrices with extremal
(maximum/minimum) coherences for each spectral norm multiplier
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