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1 Introduction

The lasso [19] and group lasso [23] are popular algorithms in the signal process-
ing and statistics communities. In signal processing, these algorithms allow for
efficient sparse approximations of arbitrary signals in overcomplete dictionaries.
In statistics, they facilitate efficient variable selection and reliable regression
under the linear model assumption. In both cases, there is now ample em-
pirical evidence to suggest that an appropriately regularized group lasso can
outperform the lasso whenever there is a natural grouping of the dictionary
elements/regression variables in terms of their contributions to the observa-
tions [1, 23].

Our goal in this technical report is to analytically characterize the regression
performance of the group lasso algorithm using `1/`2 regularization for the case
in which one can have far more regression variables than observations. Ana-
lytical characterization of group lasso in this “underdetermined” setting has re-
ceived some attention lately in the statistics literature [1, 14–17]. However, prior
analytical work on the performance of group lasso either studies an asymptotic
regime [1, 15–17], focuses on random design matrices [1, 16], and/or relies on
metrics that are computationally expensive to evaluate [14, 15, 17]. Recently,
Candés and Plan [4] successfully circumvented somewhat similar shortcomings
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of the performance analysis for the lasso by imposing a probabilistic model on
the vector of regression coefficients. Specifically, [4] showed that under mild,
computable conditions on arbitrary (random or deterministic) design matrices,
the lasso can perform near-optimally in terms of the regression error with very
high probability for the following model: (i) locations of the nonzero regression
coefficients are chosen uniformly at random; (ii) “signs” of nonzero regression
coefficients are statistically independent; and (iii) nonzero regression coefficients
have zero median.

In this technical report, we study the regression performance of the group
lasso algorithm using `1/`2 regularization in the underdetermined case under a
generalization of the probabilistic framework of [4] to the group case. Specifi-
cally, our framework assumes that: (i) locations of the groups of nonzero regres-
sion coefficients are chosen uniformly at random; (ii) “directions” of the groups
of nonzero regression coefficients are statistically independent; and (iii) nonzero
regression coefficients have zero median. Our main contribution here is proving
under this model that the group lasso1 can also perform near-optimally in terms
of the regression error with very high probability under mild, computable con-
ditions on arbitrary design matrices. To the best of our knowledge, these are
the first results for group lasso that are non-asymptotic in nature, applicable to
arbitrary design matrices through easily computable metrics, and still allow for
near-optimal scaling of the number of observations with the number of groups
of nonzero regression coefficients. Our proof techniques are natural extensions
of the ones used in [4] for the lasso and rely on our recent result concerning the
conditioning of random block-subdictionaries of matrices [2], an extension of a
result by Tropp [21] that facilitated the analysis in [4].

This technical report is organized as follows. Section 2 provides background
and notation. Section 3 provides our result, with the proof provided in the
appendix, and Section 4 contrasts our result with related prior work.

2 Background and Notation

We consider a vector of observations y ∈ Rn corresponding to the classical
linear model y = Xβ + z, where X denotes the design matrix containing one
regression variable per column, β denotes the vector of regression coefficients for
these variables, and z denotes the modeling error. Here, we assume (without loss
of generality) that X has unit-norm columns and we treat z as an independent
and identically distributed (i.i.d.) Gaussian vector with variance σ2.

The key distinguishing feature of our model is that we assume there is a
natural grouping of the regression variables. For the sake of this exposition,
we consider p equal-sized groups of the regressors, which leads to the following
block representation of β:

β = [βT
1 βT

2 . . . βT
p ]T ,

1We refer to the group lasso algorithm using `1/`2 regularization as “group lasso” through-
out the rest of the technical report for brevity.
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where βi ∈ Rm, 1 ≤ i ≤ p, denote different groups of size m in β. We can now
define the `q,r norm of a vector β ∈ Rpm containing p blocks of size m entries
each as

‖β‖q,r =

(
p∑

i=1

‖βi‖r
q

)1/r

,

with the standard modification for q, r = ∞. The group lasso solution for
estimating β from y under this setup can then be written as [23]

β̂ = arg min
β∈Rpm

1
2
‖y −Xβ‖2

2 + 2λσ
√

m‖β‖2,1. (1)

3 Regression Performance of Group Lasso

In this section, we provide performance guarantees for group lasso for the under-
determined case, n < pm, using the metric of regression error: ‖Xβ−Xβ̂‖2. In
order to make this problem well-posed and tractable, we assume that the vector
of regression coefficients β ∈ Rpm is k-block sparse with #{i : βi 6= 0} = k � p
and we impose a statistical prior on β. Specifically, we assume that: (i) block
support of β, I = {i : βi 6= 0}, has a uniform distribution over all k-subsets
of {1, . . . , p}; (ii) “directions” of the nonzero blocks of β are statistically in-
dependent: P

(⋂
i∈I sign(βi) ∈ Ai

)
=
∏

i∈I P
(
sign(βi) ∈ Ai

)
, where sign(βi) =

βi/‖βi‖2 denotes the unit-norm vector pointing in the direction of βi in Rm; and
(iii) nonzero regression coefficients have zero median: E(sign(β)) = 0, where
sign(·) denotes the entry-wise sign operator.

The main result of this technical report relies on three easily computable
metrics of the design matrix, namely, coherence, block coherence, and spectral
norm of X. The coherence of a matrix X ∈ Rn×pm with unit norm columns is
defined as

µ = max
1≤i,i′≤p,1≤j,j′≤m,(i,j) 6=(i′,j′)

|〈Xij , Xi′j′〉|,

where Xij denotes the jth column of the ith block of X = [X1 X2 . . . Xp].
Similarly, the block coherence of X is defined as

µB = max
{

max
1≤i,i′≤p,i 6=i′

‖X∗
i Xi′‖2, max

1≤i≤p
‖X∗

i Xi − I‖2

}
,

where Xi denotes the ith block of X. Note here that X∗
i denotes the adjoint of

Xi rather than a submatrix of X∗. We now state our main theorem, which is
motivated by the analysis in [4]; its proof is given in the appendix.

Theorem 1. Suppose that the vector of regression coefficients β is drawn ac-
cording to the statistical model described earlier. If k ≤ C0p/‖X‖2

2 log(pm),
and the matrix X satisfies µ ≤ 1/m and µB ≤ C1/ log(pm) for some positive
numerical constants C0 and C1, then the group lasso estimate β̂ computed with
λ =

√
2 log(pm) obeys

‖Xβ −Xβ̂‖2
2 ≤ Cmkσ2 log(pm)
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with probability at least 1−(pm)−1(2π log(pm))−1/2−8(pm)−2 log 2. Here, C > 0
is a constant independent of the problem parameters.

4 Discussion and Related Work

Note that since β has mk nonzero regression coefficients, Theorem 1 states that
the group lasso results in near-optimal regression error (modulo the logarithmic
factor) of O(mkσ2 log(pm)) provided the coherence and block coherence of the
design matrix are not too high. Equally importantly, the theorem states that
if the design matrix is an approximately tight frame, ‖X‖2

2 ≈ pm
n , then this

regression error can be achieved as long as the number of nonzero regression
coefficients satisfies mk = O(n/ log(pm)). Summarizing, our result establishes
that the group lasso performs near-optimal regression even when the number
of nonzero regression coefficients scales almost linearly with the number of ob-
servations, provided X is an approximately tight frame and its coherence and
block coherence are not too high. Some examples of design matrices satisfying
these requirements include random Gaussian matrices and deterministic matri-
ces designed from Grassmanian packings [3].

In terms of relation with previous work, there have been other efforts in
the recent past to establish near-optimal performance of the group lasso in the
underdetermined setting [1, 14–17]. However, there are three key aspects of our
work that set it apart from these and similarly related works. First, our results
are completely non-asymptotic in nature. Second, our results are applicable to
arbitrary design matrices through the metrics of coherence, block coherence,
and spectral norm, all of which are easily computable in polynomial time. Last,
our results allow for near-optimal scaling of the number of observations with
the number of groups of nonzero regression coefficients for matrices that are
approximately tight frames. It is also worth noting here that the key enabling
factor that makes our results possible is a weak statistical prior on the vector
of regression coefficients β, which is in contrast with prior work on the group
lasso where the focus tends to be on deterministic β.

In addition to the literature on group linear regression, there is also a line
of work in compressive sensing and sparse approximation literature that can be
thought of as a special case of the problem studied here. In that work, termed
the multiple measurement vector (MMV) [6] or multivariate linear regression
[18] problem, it is assumed that a total of m correlated, sparse vectors B =
[β1 β2 . . . βm] are observed using a single design matrix X ∈ Rd×p to obtain a
set of observation vectors Y = [y1 y2 . . . ym]: Y = XB + Z, where Z ∈ Rd×m

denotes the observation noise. The key distinguishing feature of the MMV setup
is the assumption that correlation across the vectors {βi} imposes the constraint
that they share approximately the same support, so that B has only a small
number, k, of nonzero rows.

Interestingly, it is possible to express the MMV problem in terms of a group
linear regression problem studied in this technical report. In order to do so,
we use vect(A) to denote a column vector obtained by stacking the columns
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of a matrix A. Next, we define y′ = vect(Y T ), β′ = vect(BT ), and z′ =
vect(ZT ) as the vectorized versions of the observations, the sparse vectors, and
the noise, respectively. Additionally, we define the expanded design matrix
X ′ = XT ⊗ Im×m, where Im×m denotes the m × m identity matrix and ⊗
denotes the standard Kronecker product. It then follows from a simple linear
algebra identity involving the Kronecker product that the MMV problem can
be equivalently expressed as y′ = X ′β′ + z′, where β′ ∈ Rpm has a total of k
nonzero blocks.

The preceding analysis shows that the MMV problem can be viewed as a
special case of the group linear regression problem where the design matrix X ′

has a particular Kronecker structure. It is a simple exercise then to tweak the
proof of Theorem 1 in order to account for the special structure of the design
matrix and obtain even stronger results, as desired in the MMV literature.
More specifically, note that the proof of Theorem 1 relies on our recent result
concerning the conditioning of random block-subdictionaries of matrices [2], but
conditioning of random block-subdictionaries of X ′ = XT ⊗ Im×m is trivially
guaranteed by the random subdictionaries result of Tropp [21] because of the
special structure of X ′, which leads to a stronger variant of Theorem 1.

The analysis in this technical report, therefore, can also be thought of as
specifying the performance of the group lasso for the MMV problem using the
metric of regression error. On the other hand, while there exists a significant
body of literature on the MMV problem [7–12, 18, 20, 22], these works differ
from the MMV interpretation of our analysis in two key aspects. First, the
focus in most of these works is either on model selection (support detection) or
on estimation (reconstruction) error. Second, and most importantly, similar to
the case of previous work on group linear regression, most of these works also
either study an asymptotic regime, focus on random design matrices, or rely on
metrics that are either computationally expensive to evaluate or which do not
allow for near-optimal scaling of the number of observations with the number of
nonzero rows of B. The notable exception to this is a recent work by Eldar and
Rauhut [10], which studies the MMV problem in a noiseless setting (Z being
an all-zeros matrix) and provides guarantees for exact recovery of B from Y .
However, note that analyzing the regression error, which is the focus of this
technical report, is a vacuous problem in a noiseless setting.

We conclude by noting that for m = 1 in the group linear regression problem,
in which case the group lasso reduces to the standard lasso, Theorem 1 reduces
to that obtained in [4] for the lasso. Further, while it is possible to make use of [2]
together with the analysis in [4] to analyze the performance of the standard lasso
for group regression error, this would require imposing statistical independence
on the signs of nonzero regression coefficients even within the groups in β. We
plan to highlight these and other subtle, but important, differences between the
lasso and the group lasso in the future.
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A Proof of Theorem 1

We mirror the procedure of the proof of Theorem 1.2 in [4]. The proof uses the
following two lemmas.

Lemma 1. The group lasso estimate obeys

‖X∗(y −Xβ̂)‖2,∞ ≤ 2λσ
√

m.

Proof. Since β̂ minimizes the objective function over β, then 0 must be a
subgradient of the objective function at β̂. The subgradients of the group lasso
objective function are of the form [23]

X∗
i (Xβ − y) + 2λσ

√
mεi = 0, i = 1, . . . , p,

where εi ∈ Rm is of the form εi = sign(βi) if βi = 0 and ‖εi‖2 ≤ 1 otherwise.
Here we denote sign(βi) = βi/‖βi‖2, i.e., the unit-norm vector pointing in the
direction of βi in Rm. We also extend this notation to higher-dimensional vectors
in a block-wise fashion. Hence, since 0 is a subgradient at β̂, there exists ε =
[εT

1 . . . εT
p ]T such that

X∗(Xβ̂ − y) = −2λσ
√

mε.

The conclusion follows from ‖ε‖2,∞ ≤ 1.
We also borrow the following theorem from [2].

Theorem 2. Define random variables δ1, . . . , δp that are independent and iden-
tically distributed (i.i.d.) Bernoulli with parameter δ := k/p, and form a block
subdictionary XI′ = [Xi : δi = 1]. Then, for q = 2 log(pm), we have the bound

[E‖X∗
I′XI′−Id‖q

2]
1/q ≤ 20µB log(pm)+9

√
δ log(pm)(1 + (m− 1)µ)‖X‖2+δ‖X‖2

2,

where Id denotes the identity matrix of appropriate size.

We assume that σ = 1 without loss of generality and establish three condi-
tions that together imply the theorem:

• Invertibility condition. The submatrix X∗
I XI is invertible and obeys

‖(X∗
I XI)−1‖2 ≤ 2.

• Orthogonality condition. The vector z obeys ‖X∗z‖2,∞ ≤
√

2m · λ.

• Complementary size condition. The following inequality holds:

‖X∗
IC XI(X∗

I XI)−1X∗
I z‖2,∞+2λ

√
m‖X∗

IC XI(X∗
I XI)−1sign(βI)‖2,∞ ≤ (2−

√
2)λ

√
m.
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We assume that the three conditions hold. Since β̂ minimizes the group lasso
objective function, we must have

1
2
‖y −Xβ̂‖2

2 + 2λ
√

m‖β̂‖2,1 ≤
1
2
‖y −Xβ‖2

2 + 2λ
√

m‖β‖2,1.

Set h = β̂ − β, and note that

‖y −Xβ̂‖2
2 = ‖(y −Xβ)−Xh‖2

2 = ‖Xh‖2
2 + ‖y −Xβ‖2

2 − 2〈Xh, y −Xβ〉.

Plugging this identity with z = y−Xβ into the above inequality and rearranging
the terms gives

1
2
‖Xh‖2

2 ≤ 〈Xh, z〉+ 2λ
√

m(‖β‖2,1 − ‖β̂‖2,1).

Next, break up h into hI and hIC = β̂IC and rewrite the above equation as

1
2
‖Xh‖2

2 ≤ 〈h, X∗z〉+ 2λ
√

m(‖βI‖2,1 − ‖βI + hI‖2,1 − ‖hIC‖2,1). (2)

For each i ∈ I, we have

‖β̂i‖2 = ‖βi + hi‖2 ≥ ‖βi‖2 −
〈hi, βi〉
‖βi‖2

≥ ‖βi‖2 −
〈

hi,
βi

‖βi‖2

〉
,

≥ ‖βi‖2 − 〈hi, sign(βi)〉.

This is due to the projection of hi on span{βi} having magnitude 〈hi,βi〉
‖βi‖2 . Thus,

we can write ‖β̂I‖2,1 ≥ ‖βI‖2,1−〈hI , sign(βI)〉. Merging this inequality with (2)
gives us

1
2
‖Xh‖2

2 ≤ 〈Xh, z〉+ 2λ
√

m(〈hI , sign(βI)〉 − ‖hIC‖2,1),

= 〈h, X∗z〉+ 2λ
√

m(〈hI , sign(βI)〉 − ‖hIC‖2,1),

= 〈hI , X
∗
I z〉+ 〈hIC , X∗

IC z〉+ 2λ
√

m(〈hI , sign(βI)〉 − ‖hIC‖2,1). (3)

We will need a brief lemma extending Hölder’s inequality to the block norms
defined earlier. Its proof is a simple exercise.

Lemma 2. For all a, b ∈ Rpm, 〈a, b〉 ≤ ‖a‖2,1‖b‖2,∞.

The orthogonality condition and the lemma above implies

〈hIC , X∗
IC z〉 ≤ ‖hIC‖2,1‖XIcz‖2,∞ ≤

√
2m · λ‖hIC‖2,1.

Merging this result with (3) results in

1
2
‖Xh‖2

2 ≤ 〈hI , v〉 − (2−
√

2)λ
√

m‖hIC‖2,1, (4)
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where v = X∗
I z − 2λ

√
m · sign(βI). We aim to bound each of the terms on the

right hand side independently. For the first term, we have

〈hI , v〉 = 〈(X∗
I XI)−1X∗

I XIhI , v〉 = 〈X∗
I XIhI , (X∗

I XI)−1v〉
= 〈X∗

I XIh, (X∗
I XI)−1v〉 − 〈X∗

I XIhIC , (X∗
I XI)−1v〉.

Denote the two terms on the right hand side as A1 and A2, respectively. For
A1 we use Lemma 2 to obtain

A1 ≤ ‖(X∗
I XI)−1v‖2,1‖X∗

I XIh‖2,∞.

Now we bound these two terms. For the first term,we get

‖(X∗
I XI)−1v‖2,1 ≤

√
k‖(X∗

I XI)−1v‖2 ≤
√

k‖(X∗
I XI)−1‖2‖v‖2 ≤ 2k‖v‖2,∞,

due to the invertibility condition. Using the orthogonality condition, we get

‖v‖2,∞ = ‖X∗
I z − 2λ

√
m · sign(βI)‖2,∞ ≤ ‖X∗

I z‖2,∞ + 2λ
√

m ≤ (2 +
√

2)λ
√

m.

For the second term, we use Lemma 1 and the orthogonality condition to get

‖X∗
I XIh‖2,∞ ≤ ‖X∗

I (Xβ − y)‖2,∞ + ‖X∗
I (y −Xβ̂)‖2,∞

≤ ‖X∗
I z‖2,∞ + ‖X∗

I (y −Xβ̂)‖2,∞ ≤ (2 +
√

2)λ
√

m.

So we get A1 ≤ 2(2 +
√

2)2λ2mk. For A2, we have from Lemma 2 that

|A2| ≤ ‖hIC‖2,1‖X∗
IC XI(X∗

I XI)−1v‖2,∞ ≤ (2−
√

2)λ
√

m‖hIC‖2,1,

because of the complementary size condition. Using now these bounds on
A1, A2, we have

〈hI , v〉 ≤ 2(2 +
√

2)2λ2mk + (2−
√

2)λ
√

m‖hIC‖2,1.

Plugging this into (4) gives

1
2
‖X(β − β̂)‖2

2 ≤ 2(2 +
√

2)2λ2mk,

proving the theorem.

A.1 Invertibility condition

Define Z = ‖X∗
I XI − Id‖2, where Id denotes the identity matrix. To study the

distribution of Z, we first study the distribution of the sister random variable
Z ′ = ‖X∗

I′XI′ − Id‖2, with I ′ following the probability model of Theorem 2.
Note that under this modified model, |I ′| is a binomial random variable with
parameter δ = k/p. Using Markov’s inequality and Theorem 2, we can show
that

P(Z ′ > 1/2) ≤ (1/2)−qE(Z ′q)

≤ 2q
(
20µB log(pm) + 9

√
δ log(pm)(1 + (m− 1)µ)‖X‖2 + δ‖X‖2

2

)q

,
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where q = 2 log(pm). Next, we will show that for all t > 0,

P(Z > t) ≤ 2P(Z ′ > t), (5)

an argument dubbed Poissonization in [4]. We write

P(‖X∗
I′XI′ − Id‖2 > t) =

p∑
`=0

P (‖X∗
I′XI′ − Id‖2 > t||I ′| = `) P(|I ′| = `)

≥
p∑

`=k

P (‖X∗
I′XI′ − Id‖2 > t||I ′| = `) P(|I ′| = `)

=
p∑

`=k

P
(
‖X∗

I`
XI`

− Id‖2 > t
)

P(|I ′| = `), (6)

where I` is selected uniformly at random from the set of subsets of {1, . . . , p}
of cardinality `. We now make two observations: (i) since |I ′| is a binomial
random variable with parameters (p, k/p), its median is simply given by k and
therefore P(|I ′| ≥ k) ≥ 1/2; and (ii) P(‖X∗

I`
XI`

− Id‖2 > t) is a nondecreasing
function of `, since X∗

I′`
XI′`

− Id is a submatrix of X∗
I`

XI`
− Id for 1 ≤ `′ ≤ `

and the spectral norm of a matrix is always greater than that of its submatrix.
Therefore we can write

P(‖X∗
I′XI′ − Id‖2 > t) ≥ P

(
‖X∗

Ik
XIk

− Id‖2 > t
) p∑

`=k

P(|I ′| = `)

≥ P
(
‖X∗

Ik
XIk

− Id‖2 > t
)

P(|I ′| ≥ k)

≥ 1
2

P
(
‖X∗

Ik
XIk

− Id‖2 > t
)

=
1
2

P (‖X∗
I XI − Id‖2 > t) , (7)

since Ik and I have the same probability distribution. Thus, by merging (6)
and (7), we obtain

P
(

Z >
1
2

)
≤ 2q+1[10µB log(pm) + 9

√
δ log(pm)(1 + (m− 1)µ)‖X‖2 + δ‖X‖2

2]
q,

We can make the constants C0, C1 large enough so that the term inside brackets
on the right hand side is bounded by 1/4, giving

P(Z > 1/2) ≤ 2(1/2)2 log(pm) = 2(pm)−2 log 2 ≤ 2(pm)−2 log 2.

A.2 Orthogonality condition

Note that ‖X∗z‖2,∞ ≤
√

2 · λ
√

m is implied by ‖X∗z‖∞ ≤
√

2 · λ, which
matches the orthogonality condition of Theorem 1.2 of [4] with only the num-
ber of columns changing from p to pm. Therefore, the condition holds with
probability at least 1− (pm)−1(2π log(pm))−1/2.
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A.3 Complementary size condition

We partition the complementary size condition into two statements:

‖X∗
IC XI(X∗

I XI)−1sign(βI)‖2,∞ ≤ 1
4
, (8)

‖X∗
IC XI(X∗

I XI)−1X∗
I z‖2,∞ ≤

(
3
2
−
√

2
)

λ
√

m. (9)

We begin with the first inequality (8). Denote the vector

Z0,i = X∗
i XI(X∗

I XI)−1sign(βI)

for each i ∈ IC . Further denote

Z0 = max
i/∈I

‖Z0,i‖2 = ‖X∗
IC XI(X∗

I XI)−1sign(βI)‖2,∞.

We then simply need to show that with large probability Z0 ≤ 1/4. Define
the matrix Wi = (X∗

I XI)−1X∗
I Xi for i /∈ I. Further, denote by W j

i , 1 ≤ j ≤
|I|, the submatrix of Wi containing its jth block of rows. We can then write
Z0,i =

∑|I|
j=1 W j

i

∗
sign(βj). where W j

i

∗
is the adjoint of W j

i . The sum terms
have norms bounded by∥∥∥W j

i

∗
sign(βj)

∥∥∥
2
≤
∥∥∥W j

i

∥∥∥
2

∥∥sign(βj)
∥∥

2
=
∥∥∥W j

i

∥∥∥
2
.

At this point we make use of the vector Bernstein inequality from [5, 13].

Lemma 3. Let {vk} ∈ Rm be a finite sequence of independent random vectors.
Suppose that E(vk) = 0 and ‖vk‖2 ≤ B almost surely, and put σ2 ≥

∑
k E‖vk‖2

2.
Then for all 0 ≤ t ≤ σ2/B,

P

(∥∥∥∥∥∑
k

vk

∥∥∥∥∥
2

≥ t

)
≤ e−

t2

8σ2 + 1
4 .

We use the lemma by setting B = max1≤j≤|I| ‖W j
i ‖2 and σ2 =

∑|I|
j=1 ‖W

j
i ‖2

2 =
‖Wi‖2

2 to obtain

P(|Z0,i| > t) ≤ 2e−t2/8 maxj∈I ‖Wi‖22

for 0 ≤ t ≤ 1 (as σ2 > B). A union bound then gives us P(Z0 > t) ≤
2pme−t2/8κ2

, where κ > maxi/∈I ‖Wi‖2. We can see that under the invertibility
condition,

max
i/∈I

‖Wi‖2 = max
i/∈I

‖(X∗
I XI)−1X∗

I Xi‖2 ≤ 2 max
i/∈I

‖X∗
I Xi‖2 = 2‖X∗

I XIC‖B,1.

Thus, conditioned on a bound

γ > ‖X∗
I XIC‖B,1 (10)
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and the invertibility condition, and replacing t = 1/4, the probability of the
first inequality failing to hold is at most 2pme−1/512γ2

.
The second condition (9) is implied by

‖X∗
IC XI(X∗

I XI)−1X∗
I z‖∞ ≤

(
3
2
−
√

2
)

λ. (11)

To prove this equivalent condition, we use the second half of [4, Lemma 3.3],
restated below.

Lemma 4. Let (W ′
j)j∈J be a fixed collection of vectors in Rn and set Z1 =

maxj∈J |〈W ′
j , z〉|. We then have P(Z1 ≥ t) ≤ 2|J |e−t2/2(κ′)2 for any κ′ ≥

maxj∈J ‖W ′
j‖2.

We denote W ′
ij = XI(X∗

I XI)−1X∗
I Xij for i /∈ I, 1 ≤ j ≤ m. Then we can

write
Z1 = ‖X∗

IC XI(X∗
I XI)−1z‖∞ = max

i/∈I,1≤j≤m
|〈W ′

i,j , z〉|.

To use Lemma 4 in this case, we assume that the invertibility condition holds
and search for a bound on κ′:

κ′ = max
i/∈I,1≤j≤m

‖XI(X∗
I XI)−1X∗

I Xij‖2 ≤
√

2 max
i/∈I,1≤j≤m

‖X∗
I Xij‖2

≤
√

2 max
i/∈I

‖X∗
I Xi‖2 =

√
2‖X∗

I XIC‖B,1 ≤
√

2γ.

Thus, we have that conditioned on the bound (10) and the invertibility condi-
tion, (11) holds except with probability at most 2pme−(3/2−

√
2)2λ2/4γ2

.
To finalize, we define the event

E = {Z ≤ 1/2} ∪ {‖X∗
I XIC‖B,1 ≤ γ}.

Then we have that the probability P of the complementary size condition not
being met is upper bounded by

P ≤ P({Z0 > 1/4} ∪ {Z1 ≥ (3/2−
√

2)λ}|E) + P(EC)

≤ 2pme−1/512γ2
+ 2pme−(3/2−

√
2)2λ2/4γ2

+ P(Z > 1/2) + P(‖X∗
I XIC‖B,1 > γ)

≤ 2pme−1/512γ2
+ 2pme−(3/2−

√
2)2λ2/4γ2

+ 2(pm)−2 log 2 + P(‖X∗
I XIC‖B,1 > γ).

We set γ = C2/
√

log(pm) so that each of the first two terms of the right hand
side is upper bounded by 2(pm)−2 log 2. To get the probability of the bound (10)
being valid, we appeal to [2, Lemma 5] together with the Markov inequality and
a Poissonization argument (see (5) and (7) for an example) to obtain

P(‖X∗
I XIC‖B,1 > γ) ≤ 2γ−qE(‖X∗

I XIC‖q
B,1)

≤ 2γ−q(21.5√qµB +
√

δ(1 + (m− 1)µ)‖X‖2 + δ‖X‖2
2)

q

11



where q = 2 log(pm). We replace the value of γ and q selected above as well as
the bounds on k, µ and µB from the theorem to obtain

P

(
‖X∗

I XIC‖B,1 >
C2√

m log(pm)

)
≤ 2

(
8C1

C2
+

2
C2

√
2C0

m
+

2C0

C2

)2 log(pm)

.

By picking the constants C0, C1, C2 small enough so that the base of the expo-
nential term on the right hand side is less than 1/2, we get P(‖X∗

I XIC‖B,1 >

C2/
√

log(pm)) < (pm)−2 log 2. Thus, the complementary size condition holds
with probability at least 1− 8(pm)−2 log 2.

By joining the three conditions (noting that the third condition already
accounts for the first), we have that Theorem 1 holds with probability at least
1− 8(pm)−2 log 2 − (pm)−1(2π log(pm))−1/2.
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