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ABSTRACT

In many linear regression problems, explanatory variables are
activated in groups or clusters; group lasso has been proposed
for regression in such cases. This paper studies the non-
asymptotic regression performance of group lasso using `1/`2
regularization for arbitrary (random or deterministic) design
matrices. In particular, the paper establishes under a statisti-
cal prior on the set of nonzero coefficients that the `1/`2 group
lasso has a near-optimal regression error for all but a vanish-
ingly small set of models. The analysis in the paper relies on
three easily computable metrics of the design matrix – coher-
ence, block coherence, and spectral norm. Remarkably, under
certain conditions on these metrics, the `1/`2 group lasso can
perform near-ideal regression even if the model order scales al-
most linearly with the number of rows of the design matrix.
This is in stark contrast with prior work on the regression perfor-
mance of the `1/`2 group lasso that only provides linear scaling
of the model order for the case of random design matrices.

Keywords— Group sparsity, linear regression, group lasso,
coherence, block coherence

1. INTRODUCTION

The lasso [18] and group lasso [22] are popular algorithms in the
signal processing and statistics communities. In signal process-
ing, these algorithms allow for efficient sparse approximations
of arbitrary signals in overcomplete dictionaries. In statistics,
they facilitate efficient variable selection and reliable regression
under the linear model assumption. In both cases, there is now
ample empirical evidence to suggest that an appropriately regu-
larized group lasso can outperform the lasso whenever there is a
natural grouping of the dictionary elements/regression variables
in terms of their contributions to the observations [1, 22].

Our goal in this paper is to analytically characterize the re-
gression performance of the group lasso algorithm using `1/`2
regularization for the case in which one can have far more re-
gression variables than observations. Analytical characteriza-
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tion of group lasso in this “underdetermined” setting has re-
ceived some attention lately in the statistics literature [1, 13–16].
However, prior analytical work on the performance of group
lasso either studies an asymptotic regime [1, 14–16], focuses on
random design matrices [1, 15], and/or relies on metrics that are
computationally expensive to evaluate [13, 14, 16]. Recently,
Candés and Plan [4] successfully circumvented somewhat sim-
ilar shortcomings of the performance analysis for the lasso by
imposing a probabilistic model on the vector of regression co-
efficients. Specifically, [4] showed that under mild, computable
conditions on arbitrary (random or deterministic) design matri-
ces, the lasso can perform near-optimally in terms of the regres-
sion error with very high probability for the following model:
(i) locations of the nonzero regression coefficients are chosen
uniformly at random; (ii) “signs” of nonzero regression coeffi-
cients are statistically independent; and (iii) nonzero regression
coefficients have zero median.

In this paper, we study the regression performance of the
group lasso algorithm using `1/`2 regularization in the underde-
termined case under a generalization of the probabilistic frame-
work of [4] to the group case. Specifically, our framework as-
sumes that: (i) locations of the groups of nonzero regression
coefficients are chosen uniformly at random; (ii) “directions”
of the groups of nonzero regression coefficients are statistically
independent; and (iii) nonzero regression coefficients have zero
median. Our main contribution here is proving under this model
that the group lasso1 can also perform near-optimally in terms of
the regression error with very high probability under mild, com-
putable conditions on arbitrary design matrices. To the best of
our knowledge, these are the first results for group lasso that are
non-asymptotic in nature, applicable to arbitrary design matri-
ces through easily computable metrics, and still allow for near-
optimal scaling of the number of observations with the number
of groups of nonzero regression coefficients. Our proof tech-
niques are natural extensions of the ones used in [4] for the
lasso and rely on our recent result concerning the conditioning
of random block-subdictionaries of matrices [2], an extension
of a result by Tropp [20] that facilitated the analysis in [4].

This paper is organized as follows. Section 2 provides back-
ground and notation. Section 3 provides our result and Section 4

1We refer to the group lasso algorithm using `1/`2 regularization as “group
lasso” throughout the rest of the paper for brevity.



contrasts our result with related prior work.

2. BACKGROUND AND NOTATION

We consider a vector of observations y ∈ Rn corresponding to
the classical linear model y = Xβ + z, where X denotes the
design matrix containing one regression variable per column, β
denotes the vector of regression coefficients for these variables,
and z denotes the modeling error. Here, we assume (without
loss of generality) that X has unit-norm columns and we treat
z as an independent and identically distributed (i.i.d.) Gaussian
vector with variance σ2.

The key distinguishing feature of our model is that we as-
sume there is a natural grouping of the regression variables.
For the sake of exposition, we consider p equal-sized groups
of the regressors, leading to the block representation β =
[βT

1 βT
2 . . . βT

p ]T , where βi ∈ Rm, 1 ≤ i ≤ p, denote dif-
ferent groups of size m in β. We define the `q,r norm of a
vector β ∈ Rpm containing p blocks of size m entries each as

‖β‖q,r =

(
p∑

i=1

‖βi‖r
q

)1/r

,

with the standard modification for q, r = ∞. The group lasso
solution for estimating β from y under this setup can then be
written as [22]

β̂ = arg min
β∈Rpm

1
2
‖y −Xβ‖2

2 + 2λσ
√

m‖β‖2,1.

3. REGRESSION PERFORMANCE OF GROUP LASSO

In this section, we provide performance guarantees for group
lasso for the underdetermined case, n < pm, using the metric
of regression error: ‖Xβ−Xβ̂‖2. In order to make this problem
well-posed and tractable, we assume that the vector of regres-
sion coefficients β ∈ Rpm is k-block sparse with #{i : βi 6=
0} = k � p and we impose a statistical prior on β. Specifi-
cally, we assume that: (i) block support of β, I = {i : βi 6= 0},
has a uniform distribution over all k-subsets of {1, . . . , p}; (ii)
“directions” of the nonzero blocks of β are statistically inde-
pendent: P

(⋂
i∈I sign(βi) ∈ Ai

)
=
∏

i∈I P
(
sign(βi) ∈ Ai

)
,

where sign(βi) = βi/‖βi‖2 denotes the unit-norm vector point-
ing in the direction of βi in Rm; and (iii) nonzero regression
coefficients have zero median: E(sign(β)) = 0, where sign(·)
denotes the entry-wise sign operator.

The main result of this paper relies on three easily com-
putable metrics of the design matrix, namely, coherence, block
coherence, and spectral norm of X . The coherence of a matrix
X ∈ Rn×pm with unit norm columns is defined as

µ = max
1≤i,i′≤p,1≤j,j′≤m,(i,j) 6=(i′,j′)

|〈Xij , Xi′j′〉|,

where Xij denotes the jth column of the ith block of X =
[X1 . . . Xp]. Similarly, the block coherence of X is defined as

µB = max
{

max
1≤i,i′≤p,i 6=i′

‖X∗
i Xi′‖2, max

1≤i≤p
‖X∗

i Xi − I‖2

}
,

where Xi denotes the ith block of X . Note here that X∗
i denotes

the adjoint of Xi rather than a submatrix of X∗. We now state
our main theorem, which is motivated by the analysis in [4].

Theorem 1. Suppose that the vector of regression coefficients β
is drawn according to the statistical model described earlier. If
k ≤ C0p/‖X‖2

2 log(pm), and the matrix X satisfies µ ≤ 1/m
and µB ≤ C1/ log(pm) for some positive numerical constants
C0 and C1, then the group lasso estimate β̂ computed with λ =√

2 log(pm) obeys

‖Xβ −Xβ̂‖2
2 ≤ Cmkσ2 log(pm)

with probability at least 1 − (pm)−1(2π log(pm))−1/2 −
8(pm)−2 log 2. Here, C > 0 is a constant independent of the
problem parameters.

Proof. We mirror the procedure of the proof of Theorem 1.2
in [4]. The proof uses the following lemma, proven in [7].

Lemma 1. The group lasso estimate obeys

‖X∗(y −Xβ̂)‖2,∞ ≤ 2λσ
√

m.

We also borrow the following theorem from [2].

Theorem 2. Define random variables δ1, . . . , δp that are inde-
pendent and identically distributed (i.i.d.) Bernoulli with pa-
rameter δ := k/p, and form a block subdictionary XI′ = [Xi :
δi = 1]. Then, for q = 2 log(pm), we have the bound

[E‖X∗
I′XI′ − Id‖q

2]
1/q ≤20µB log(pm) + δ‖X‖2

2

+ 9
√

δ log(pm)(1 + (m− 1)µ)‖X‖2.

We assume that σ = 1 without loss of generality and estab-
lish three conditions that together imply the theorem:

• Invertibility. The submatrix X∗
I XI is invertible and obeys

‖(X∗
I XI)−1‖2 ≤ 2.

• Orthogonality. The vector z obeys ‖X∗z‖2,∞ ≤
√

2m·λ.

• Complementary size. The following inequality holds:

2λ
√

m‖X∗
IC XI(X∗

I XI)−1sign(βI)‖2,∞

+‖X∗
IC XI(X∗

I XI)−1X∗
I z‖2,∞ ≤ (2−

√
2)λ

√
m.

It is possible to show that the three conditions hold with the
specified probability [7]. Since β̂ minimizes the group lasso
objective function, we must have

1
2
‖y−Xβ̂‖2

2 +2λ
√

m‖β̂‖2,1 ≤
1
2
‖y−Xβ‖2

2 +2λ
√

m‖β‖2,1.

Set h = β̂ − β, and note that

‖y −Xβ̂‖2
2 = ‖(y −Xβ)−Xh‖2

2

= ‖Xh‖2
2 + ‖y −Xβ‖2

2 − 2〈Xh, y −Xβ〉.



Plugging this identity with z = y−Xβ into the above inequality
and rearranging the terms gives

1
2
‖Xh‖2

2 ≤ 〈Xh, z〉+ 2λ
√

m(‖β‖2,1 − ‖β̂‖2,1). (1)

Next, break up h into hI and hIC = β̂IC and rewrite (1) as

1
2
‖Xh‖2

2 ≤ 2λ
√

m(‖βI‖2,1 − ‖βI + hI‖2,1 − ‖hIC‖2,1)

+ 〈h, X∗z〉. (2)

For each i ∈ I , we have

‖β̂i‖2 = ‖βi + hi‖2 ≥ ‖βi‖2 −
〈hi, βi〉
‖βi‖2

≥ ‖βi‖2 −
〈

hi,
βi

‖βi‖2

〉
≥ ‖βi‖2 − 〈hi, sign(βi)〉.

This is due to the projection of hi on span{βi} having mag-
nitude 〈hi,βi〉

‖βi‖2 . Thus, we can write ‖β̂I‖2,1 ≥ ‖βI‖2,1 −
〈hI , sign(βI)〉. Merging this inequality with (2) gives us

1
2
‖Xh‖2

2 ≤ 〈Xh, z〉+ 2λ
√

m(〈hI , sign(βI)〉 − ‖hIC‖2,1),

= 〈h, X∗z〉+ 2λ
√

m(〈hI , sign(βI)〉 − ‖hIC‖2,1),
= 〈hI , X

∗
I z〉+ 〈hIC , X∗

IC z〉
+ 2λ

√
m(〈hI , sign(βI)〉 − ‖hIC‖2,1). (3)

We will need a brief lemma extending Hölder’s inequality to the
block norms defined earlier. Its proof is a simple exercise.

Lemma 2. For all a, b ∈ Rpm, 〈a, b〉 ≤ ‖a‖2,1‖b‖2,∞.

The orthogonality condition and the lemma above implies

〈hIC , X∗
IC z〉 ≤ ‖hIC‖2,1‖XIcz‖2,∞ ≤

√
2m · λ‖hIC‖2,1.

Merging this result with (3) results in

1
2
‖Xh‖2

2 ≤ 〈hI , v〉 − (2−
√

2)λ
√

m‖hIC‖2,1, (4)

where v = X∗
I z − 2λ

√
m · sign(βI). We aim to bound each

of the terms on the right hand side independently. For the first
term, we have

〈hI , v〉 = 〈(X∗
I XI)−1X∗

I XIhI , v〉 = 〈X∗
I XIhI , (X∗

I XI)−1v〉
= 〈X∗

I XIh, (X∗
I XI)−1v〉 − 〈X∗

I XIhIC , (X∗
I XI)−1v〉.

Denote the two terms on the right hand side as A1 and A2, re-
spectively. For A1 we use Lemma 2 to obtain

A1 ≤ ‖(X∗
I XI)−1v‖2,1‖X∗

I XIh‖2,∞.

Now we bound these two terms. For the first term,we get

‖(X∗
I XI)−1v‖2,1 ≤

√
k‖(X∗

I XI)−1v‖2

≤
√

k‖(X∗
I XI)−1‖2‖v‖2 ≤ 2k‖v‖2,∞,

due to the invertibility condition. Using the orthogonality con-
dition, we get

‖v‖2,∞ = ‖X∗
I z − 2λ

√
m · sign(βI)‖2,∞

≤ ‖X∗
I z‖2,∞ + 2λ

√
m ≤ (2 +

√
2)λ

√
m.

For the second term, we use Lemma 1 and the orthogonality
condition to get

‖X∗
I XIh‖2,∞ ≤ ‖X∗

I (Xβ − y)‖2,∞ + ‖X∗
I (y −Xβ̂)‖2,∞

≤ ‖X∗
I z‖2,∞ + ‖X∗

I (y −Xβ̂)‖2,∞

≤ (2 +
√

2)λ
√

m.

So we get A1 ≤ 2(2 +
√

2)2λ2mk. For A2, we have from
Lemma 2 that

|A2| ≤ ‖hIC‖2,1‖X∗
IC XI(X∗

I XI)−1v‖2,∞

≤ (2−
√

2)λ
√

m‖hIC‖2,1,

because of the complementary size condition. Using now these
bounds on A1, A2, we have

〈hI , v〉 ≤ 2(2 +
√

2)2λ2mk + (2−
√

2)λ
√

m‖hIC‖2,1.

Plugging this into (4) gives

1
2
‖X(β − β̂)‖2

2 ≤ 2(2 +
√

2)2λ2mk,

proving the theorem.

4. DISCUSSION AND RELATED WORK

Note that since β has mk nonzero regression coefficients, The-
orem 1 states that the group lasso results in near-optimal regres-
sion error (modulo the logarithmic factor) of O(mkσ2 log(pm))
provided the coherence and block coherence of the design
matrix are not too high. Equally importantly, the theorem
states that if the design matrix is an approximately tight frame,
‖X‖2

2 ≈ pm
n , then this regression error can be achieved as

long as the number of nonzero regression coefficients satis-
fies mk = O(n/ log(pm)). Summarizing, our result estab-
lishes that the group lasso performs near-optimal regression
even when the number of nonzero regression coefficients scales
almost linearly with the number of observations, provided X is
an approximately tight frame and its coherence and block co-
herence are not too high. Example design matrices satisfying
these requirements include random Gaussian matrices and de-
terministic matrices designed from Grassmanian packings [3].

In terms of relation with previous work, there have been
other efforts in the recent past to establish near-optimal perfor-
mance of the group lasso in the underdetermined setting [1, 13–
16]. However, there are three key aspects of our work that set it
apart from these and similarly related works. First, our results
are completely non-asymptotic in nature. Second, our results
are applicable to arbitrary design matrices through the metrics



of coherence, block coherence, and spectral norm, all of which
are easily computable in polynomial time. Third, our results al-
low for near-optimal scaling of the number of observations with
the number of groups of nonzero regression coefficients for ma-
trices that are approximately tight frames. Note also that the key
enabling factor that makes our results possible is a weak statis-
tical prior on the vector of regression coefficients β, in contrast
with prior work on the group lasso focused on deterministic β.

There is also a line of work in compressive sensing and
sparse approximation literature that can be thought of as a spe-
cial case of the problem studied here. In that work, termed the
multiple measurement vector (MMV) [5] or multivariate linear
regression [17] problem, it is assumed that a total of m corre-
lated vectors B = [β1 β2 . . . βm] are observed using a single
design matrix X ∈ Rd×p to obtain a set of observation vec-
tors Y = XB + Z, where Z ∈ Rd×m denotes the observation
noise. The key distinguishing feature of the MMV setup is the
assumption that the vectors {βi}m

i=1 share the same support, so
that B has only a small number k of nonzero rows.

Interestingly, it is possible to express the MMV problem in
terms of a group linear regression problem studied in this pa-
per. Denote by vect(A) a column vector obtained by stacking
the columns of the matrix A. Next, define y′ = vect(Y T ),
β′ = vect(BT ), and z′ = vect(ZT ) as the vectorized ver-
sions of the observations, the sparse vectors, and the noise,
respectively. Additionally, define the expanded design matrix
X ′ = XT ⊗ Id, where ⊗ denotes the Kronecker product. It
then follows that the MMV problem can be equivalently ex-
pressed as y′ = X ′β′ + z′, where β′ ∈ Rpm has a total of k
nonzero blocks. Thus, the MMV problem can be viewed as a
special case of the group linear regression problem where the
design matrix X ′ has a particular Kronecker structure. In this
special case, the proof of Theorem 1 relies on our recent result
concerning the conditioning of random block-subdictionaries of
matrices [2], but conditioning of random block-subdictionaries
of X ′ is trivially guaranteed by the random subdictionaries re-
sult of [20] because of the special structure of X ′, which leads
to a stronger variant of Theorem 1.

While we can provide a regression error performance guar-
antee for the MMV problem via group lasso, the significant
body of literature on MMV [6, 8–12, 17, 19, 21] focuses either
on model selection (support detection) or on estimation (recon-
struction) error. Additionally, most of these works either study
an asymptotic regime, focus on random design matrices, or rely
on metrics that are either computationally expensive to evaluate
or which do not allow for near-optimal scaling of the number
of observations with the number of nonzero rows of B. The
notable exception to this is a recent work by Eldar and Rauhut
[10], which provides guarantees for exact recovery of B from
Y in a noiseless setting. However, studying the regression error
– the focus of this paper – is vacuous in a noiseless setting.

We conclude by noting that for m = 1 in the group linear re-
gression problem, in which case the group lasso reduces to the
standard lasso, Theorem 1 reduces to that obtained in [4] for the
lasso. Further, while it is possible to make use of [2] together
with the analysis in [4] to analyze the performance of the stan-

dard lasso for group regression error, this would require impos-
ing statistical independence on the signs of nonzero regression
coefficients even within the groups in β. We plan to highlight
these and other subtle, but important, differences between the
lasso and the group lasso in the future.
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