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Linear Regression and the Lasso

• One regression variable per unit-norm column of X
• Modeling error assumed to be i.i.d. 
• Lasso: obtain sparse regression coefficient vector as
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Group Linear Regression

• Correlated variables grouped in m column submatrices
• Group Lasso: use mixed norm on coefficient vector
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Existing Performance Guarantees 
for Group Lasso

• Asymptotic convergence for linear regression, coefficient 
estimation over random design matrix 
[Bach 2008][Meier, van de Geer, Bühlmann 2008]

• Asymptotic convergence for linear regression, coefficient 
estimation, model selection over random noise 
[Liu and Zhang 2009][Nardi and Rinaldo 2010] 

• Non-asymptotic convergence of linear regression, 
coefficient estimation over random noise via 
combinatorially complex matrix conditions 
[Chesneau and Hebiri][Huang and Zhang 2010]

• Today: non-asymptotic convergence for linear regression 
over random noise via simple matrix conditions



•Probabilistic model on regression 
coefficient vector:
–support                     of     selected uniformly at 
random

–signs of k nonzero entries     are i.i.d. and equally 
likely 

•Simple metrics on design matrix
–spectral norm 
–worst-case coherence 

Recent Analytical Tools for Lasso  

[Candès, Plan 2010]



Theorem: Assume that

•                    and

•                       .

If                 and                     , then the 
output of lasso obeys we can guarantee that

with probability at least                .

Recent Analytical Tools for Lasso  

[Candès, Plan 2010]



• New definition of sign patterns for grouped 
regression coefficient vector 

New Analytical Tools for Group Lasso  

• Probabilistic model on regression coefficient vector
that accounts for correlations within groups:
–active groups                       of     selected uniformly at random
–group signs of nonzero groups of    are statistically independent:

–nonzero regression coefficients have zero median:



•Spectral norm 

•Worst-case coherence:
 

•Worst-case block coherence:

Simple Metrics on Design Matrix

See also [Eldar, Rauhut 2010]



Theorem: Assume that

•                       ,
•                   , and
•                               . 
If                        and                      , then the 
output of group lasso obeys

with probability at least

Near-Optimal Group Linear Regression

Note that for m=1, group lasso is same as lasso,
and we obtain the result of [Candès, Plan 2010]



Lemma [Duarte, Bajwa, Calderbank 2010]

Define i.i.d. Bernoulli random variables
with parameter              and form a block submatrix
                              . Then for                      , we have 
the bound

• Generalizes results on conditioning of random 
subdictionaries [Tropp 2008] to grouped submatrices

• Theorem’s conditions on                               
provide O(1) bounds on 

Near-Group-Isometries in Expectation



(Well) conditioning in expectation, combined with 
distribution on z, imply that with the given probability 
these three properties hold simultaneously:

• invertibility:          is invertible and 
• orthogonality:    
• complementary size:

where

Proof Sketch

(similar to [Candès, Plan 2010])



Group Lasso and 
Multiple Measurement Vectors

•m sparse correlated vectors
• Vectors     share common support
• Single design matrix X
• Observation model                    , error 

• MMV problem can alternatively be expressed as 
group sparse linear regression:



Group Lasso and 
Multiple Measurement Vectors

Guarantees available for many MMV recovery algorithms:
• rely on random design matrix,
• focus on asymptotic behavior,
• focus on coefficient estimation or model selection, 
• rely on combinatorially complex matrix metrics, or
• apply only for noiseless model

[Tropp 2006][Tropp, Gilbert, Strauss 2006][Gribonval, Rauhut, Schnass, Vandergheynst 2008] 
[Obozinski, Wainwright, Jordan 2009][Lee, Bresler 2010][Kim, Lee, Ye 2010]
[Davies, Eldar 2010][Eldar, Kuppinger, Bölcksei 2010][Eldar, Rauhut 2010]



• Recent tools for average case analysis of linear 
regression via lasso can be extended to group lasso

• New probability model that captures correlations 
present within each group of predictor variables

• Can apply this probability model to standard lasso: 
group lasso relaxes lasso’s requirement from 
                                  to

• Extending guarantees to model selection, 
coefficient estimation for grouped variables

Summary and Future Work
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