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Linear Regression and the Lasso
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e One regression variable per unit-norm column of X
e Modeling error assumed to be i.i.d. z ~ N (0, 0°1)
e | asso: obtain sparse regression coefficient vector as

AN

B = arg min ||y — X 3|2 + 2o |31
BERP
[Tibshirani, 1996]



Group Linear Regression
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e Correlated variables grouped in m column submatrices
° Group Lasso: use mixed norm on coefficient vector

B = arg ﬁmﬁym ly — XBl2

where HﬁHz,l — Z HﬁzHQ [Yuan and Lin, 2006]



Existing Performance Guarantees
for Group Lasso

o Asymptotic convergence for linear regression, coefficient

estimation over random design matrix
[Bach 2008][Meier, van de Geer, Buhlmann 2008]

o Asymptotic convergence for linear regression, coefficient

estimation, model selection over random noise
[Liu and Zhang 2009][Nardi and Rinaldo 2010]

e Non-asymptotic convergence of linear regression,
coefficient estimation over random noise via

combinatorially complex matrix conditions
[Chesneau and Hebiri][Huang and Zhang 2010]

e Today: non-asymptotic convergence for linear regression
over random noise via simple matrix conditions



Recent Analytical Tools for Lasso

e Probabilistic model on regression
coefficient vector:

~support I C {1,...,p} of 01 selected uniformly at
random

-signs of k nonzero entries (3 are i.i.d. and equally
likely +1

e Simple metrics on designh matrix
—spectral norm || X ||2
-worst-case coherence u(X) = maxy<;z;<p [(X;, X;)]

[Candeés, Plan 2010]



Recent Analytical Tools for Lasso

Theorem: Assume that

If \=+2logp and z ~ N(0,0%I), then the
output of lasso obeys we can guarantee that

| X8 — XB|} < Cko?logp
with probability at least 1 — O(p~1).

[Candeés, Plan 2010]



New Analytical Tools for Group Lasso

e New definition of sign patterns for grouped
regression coefficient vector 3 =81 B2 ... By

sign(5;) = Bi/||Bill2

e Probabilistic model on regression coefficient vector
that accounts for correlations within groups:

—active groups I C {1,...,p} of 3 selected uniformly at random
— group signs of nonzero groups of 3 are statistically independent:

]P)( zEISlgn(ﬁz - A HIP) sign 62) c A, )

1e1
— nonzero regression coefficients have zero median:

(sign(3)) = 0




Simple Metrics on Design Matrix

e Spectral norm || X ||5

e Worst-case coherence:

= Xijy Xir,jr
X)) = max WX, Xir o)l

e Worst-case block coherence:

T T
— I'X, XTX, — I
um(X) = maox { o X7 X e X7~ 1] |

See also [Eldar, Rauhut 2010]



Near-Optimal Group Linear Regression

C )

Theorem: Assume that

~ Cop
b S X logtm) ¢
o 1(X)<1/m, and
o 1B(X) < Ci/log(pm).

If A= +/2log(pm) and z ~ N(O, 0'2]), then the
output of group lasso obeys

| X3 — X@H% < Cmko?log(pm)
with probability at least 1 — O((pm)~1)

Note that for m=1, group lasso is same as lasso,
and we obtain the result of [Candes, Plan 2010]



Near-Group-Isometries in Expectation

Lemma [Duarte, Bajwa, Calderbank 2010]

Define i.i.d. Bernoulli random variables 91, ..., d,

with parameter 6 = k/p and form a block submatrix
Xy =|X; : 9; =1]. Then for ¢ = 2log(pm), we have
the bound

B X5 X — I3 < 20up(X)log(pm) + 5| X3
+ 94/ log(pm) (1 + (m — 1)u(X)) | X

e Generalizes results on conditioning of random
subdictionaries [Tropp 2008] to grouped submatrices

e Theorem’s conditions on up(X), wu(X), ||X]|-
provide O(1) bounds on [E|| X} X — I||2]1/4




Proof Sketch

(Well) conditioning in expectation, combined with
distribution on z, imply that with the given probability
these three properties hold simultaneously:

o invertibility: X; X, is invertible and ||(X; X;) 7', <2
e orthogonality: | X*z||2 co < V2mA

e complementary size:
22MVm|| X e X1 (X5 X)) tsign(Br)|
| X 7o Xr (X7 X1) ™ X7 2]

2,00

200 < (2= V2)AVm

where || 3]

2,00 = I0AX 18i |2

(similar to [Candes, Plan 2010])



Group Lasso and
Multiple Measurement Vectors

e m sparse correlated vectors B = |31 (B2 ... Bn] € RP*™
e VVectors 3; share common support

e Single design matrix X

e Observation model Y = XB + Z, error Z € R**™

e MMV problem can alternatively be expressed as
group sparse linear regression:

y' = vect (YT) 3 = vect (BT) 7' = vect (ZT)

X' =XTwI

y/:X//BI_I_Z/



Group Lasso and
Multiple Measurement Vectors

y' = vect (YT) 3 = vect (BT) 7' = vect (ZT)
X =XToI

y/ — Xlﬁl _|_ Z/
Guarantees available for many MMV recovery algorithms:
e rely on random design matrix,
e focus on asymptotic behavior,
e focus on coefficient estimation or model selection,
e rely on combinatorially complex matrix metrics, or
e apply only for noiseless model

[Tropp 2006][Tropp, Gilbert, Strauss 2006][Gribonval, Rauhut, Schnass, Vandergheynst 2008]
[Obozinski, Wainwright, Jordan 2009][Lee, Bresler 2010][Kim, Lee, Ye 2010]

[Davies, Eldar 2010][Eldar, Kuppinger, Bolcksei 2010][Eldar, Rauhut 2010]



Summary and Future Work

e Recent tools for average case analysis of linear
regression via lasso can be extended to group lasso

e New probability model that captures correlations
present within each group of predictor variables

e Can apply this probability model to standard |lasso:
group lasso relaxes lasso’s requirement from

pp(X) < Ci/mlog(pm) to pp(X) < C1/log(pm)

e Extending guarantees to model selection,
coefficient estimation for grouped variables

http://www.cs.duke.edu/~mduarte
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