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ABSTRACT
Compressive sensing (CS) allows for acquisition of sparse

signals at sampling rates significantly lower than the Nyquist
rate required for bandlimited signals. Recovery guarantees
for CS are generally derived based on the assumption that
measurement projections are selected independently at ran-
dom. However, for many practical signal acquisition appli-
cations, this assumption is violated as the projections must
be taken in groups. In this paper, we consider such appli-
cations and derive requirements on the number of measure-
ments needed for successful recovery of signals when groups
of dependent projections are taken at random. We find a
penalty factor on the number of required measurements with
respect to the standard CS scheme that employs conventional
independent measurement selection and verify the predicted
penalty through simulations.

Index Terms— compressive sensing, incoherent mea-
surements, grouped sampling

1. INTRODUCTION

Modern receivers and sensors need to process an enormous
amount of bandwidth to satisfy continuously growing de-
mands on communication and sensing systems. Due to the
complexity and high power consumption of hardware at large
bandwidths, a number of innovative approaches for signal
acquisition have recently emerged, including a class based
on compressive sensing (CS). In CS approaches, the full sig-
nal bandwidth is not converted, hence avoiding the costly
hardware; rather, prior knowledge of a concise signal model
allows the recovery to focus only on signal aspects relevant
to feature extraction. In particular, if there exists a basis in
which a signal of interest can be represented sparsely (i.e.,
it can be fully characterized with a small number of coeffi-
cients), then it is possible to obtain all information needed for
successful reconstruction of the signal from a relatively small
number of randomized incoherent measurements [1]. This
number is often much smaller than the number of samples
implied by the Nyquist sampling rate for representation of all
bandlimited signals.

Most CS contributions assume independent randomness
in the measurement projections that is exploited to derive
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Fig. 1. Left: Independently random 2-D sampling. Right: Radial
acquisition trajectories used for MRI, which group measurement se-
lections into slices of the 2-D Fourier domain.

bounds on the number of projections needed for successful
recovery. However, for many practical signal acquisition
applications, this assumption is violated as the projection
measurements must be selected in groups. As an example,
consider Magnetic Resonance Imaging (MRI), where the
measurements in the 2-D Fourier space cannot be taken at
random but need to follow sampling trajectories that satisfy
hardware and physiological constraints: the radial acquisition
trajectories of MRI shown in Fig. 1 are known to be espe-
cially suitable for high-contrast objects. Using such sampling
trajectories clearly introduces structure into the measurement
process and hence violates a key assumption underlying the
standard analysis of CS schemes.

In this work, we derive bounds on the number of measure-
ments needed for successful recovery of signals when the ran-
dom projection measurements are structured into predefined
groups. We introduce a metric that upper bounds the mul-
tiplicative penalty on the number of required measurements
introduced by grouping with respect to conventional CS ac-
quisition employing independently random measurement se-
lection; such a metric is dependent on the sparse signal sup-
port and might be useful in the design of many practical sig-
nal acquisition systems with grouped measurement structures.
While this metric cannot currently be evaluated in a closed
form, we employ a computationally feasible method that pro-
vides lower and upper bounds on its value. We also verify via
simulations the penalty predicted by the proposed metric.

2. BACKGROUND
2.1. Compressive Sensing
Consider the acquisition of anN ×1 signal vector x. Assume
that x is known to be sparse in some basis; that is, we say the
signal x is K-sparse for some integer K if x has a representa-



tion c = UHx having onlyK non-zero entries in some known
orthonormal basis U , although the value and location of those
non-zero entries may be unknown. In the CS framework, we
acquire the M × 1 output y = Φx, for some M � N , where
Φ is the measurement matrix. According to CS theory, given
certain constraints on Φ and M , x can be reconstructed from
y with high probability.

2.2. Incoherent Measurements
Given an orthonormal measurement basis V , a K sparse sig-
nal x = Uc, sparse in some known orthonormal basis U can
be reconstructed successfully from a set of M independently
drawn random samples Ω ⊆ {1, . . . , N} of y = V HUc with
probability not lower than 1− δ, for any δ > 0, as long as the
number of samples is large enough. Define A = V HU and
denote by AΩ the matrix built from the M rows of A corre-
sponding to the index set Ω. Define the coherence µ(A) of
the matrix A as µ(A) = maxi,j |A(i, j)|, which has range
µ(A) ∈ [ 1√

N
, 1] [1]. A pair of bases V and U for which the

minimal value of µ(A) is achieved is referred to as a perfectly
incoherent pair of bases.

When the elements of Ω are drawn independently at ran-
dom, it can be shown that the number M of measurements
required for successful recovery of sparse x depends on the
coherence of the matrix A.

Theorem 1. [1] Let A be an N × N orthogonal matrix
(AHA = I) with coherence µ(A). Fix an arbitrary subset T
of the signal domain. Choose a subset Ω of the measurement
domain of size |Ω| = M and a sign sequence z on T , both
uniformly at random over all possible choices. Suppose that

M ≥ Const ·Nµ2(A)|T | log(N/δ). (1)

Then with probability exceeding 1 − δ, every signal c0 sup-
ported on T with signs matching z can be recovered from
y = AΩc0 by solving the linear program

min
c
||c||1 s.t. AΩc = AΩc0. (2)

Theorem 1 shows that the number of measurements required
for successful recovery of a sparse signal scales linearly with
the signal’s sparsity, but only logarithmically with its length,
as long as V and U are perfectly incoherent.

2.3. Grouped Incoherent Measurements
In certain applications, the assumptions of Theorem 1 are vi-
olated as measurements must be taken in groups instead of
independently at random. More specifically, divide the set
of N rows of the measurement basis V into N/G disjoint
groups Gi, i = 1, . . . , N/G, of size G each. Note that it will
still be possible to take a set of measurements Ω for a sig-
nal, following Theorem 1, by selecting M/G groups out of
theN/G groups available, independently at random.1 We say

1We assume that G divides M and N for simplicity.

that such a process provides a grouped incoherent measure-
ment scheme. Grouped incoherent measurement schemes can
be seen as a generalization of the standard incoherent mea-
surement scheme used in Theorem 1 by setting G = 1.

2.4. Example Applications
Interference-Robust Compressive Wideband Receiver:

One important example application for a grouped incoherent
measurement scheme is an interference-robust compressive
wideband receiver.2 If a large communication bandwidth is
employed, interference is nearly always present. More im-
portantly, it is common for the signal of interest to be buried
in an interferer that is orders of magnitude stronger. This
might force the receiver’s RF front end into the nonlinear
range and cause intermodulation distortion that makes the
interference cancellation methods based on interference null
space projection [2] ineffective. As an alternative, we may
opt to perform sampling only at times in which the RF front
end is not saturated and exhibits linear behavior, e.g., at times
when the interferer’s value is small. A typical interferer is
modulated; therefore, while its first few zero-crossings can be
considered as random, the remaining set of subsequent zero-
crossings are dictated by the frequency of the interferer’s
carrier. Therefore, a sampling approach that aims to oper-
ate within the linear region of the RF front end results in a
grouped incoherent measurement scheme, in effect providing
an interference-robust compressive wideband receiver.

Medical Imaging: There are a multitude of medical imag-
ing applications that rely on tomography principles, where
CS can be applied to reduce the number of measurements re-
quired for accurate image recovery [3]; common examples
include MRI and computed axial tomograpy (CAT). In tomo-
graphic imaging, the 2-D image measurements obtained via a
tomographic scan correspond to samples of the Radon trans-
form of the image. These samples can be grouped by orien-
tation and processed in groups via the discrete Fourier trans-
form. According to the projection slice theorem, the output of
this transformation provides samples of the image’s 2-D dis-
crete Fourier transform along a line running through the origin
(cf. Fig. 1). Thus, the measurements obtained correspond to
a grouped measurement in the 2-D Fourier transform domain
of the image, and groups can be selected independently by
selecting tomographic scan orientations independently.

Multi-dimensional signals and signal ensembles: For sig-
nals spanning many physical dimensions, such as space, time,
spectrum, etc., it is often difficult to design CS acquisition de-
vices that can calculate random projections involving all sig-
nal samples. Instead, it is commonly easier to modify the
CS acquisition process so that it is applied separately to each
piece of a partition of the multidimensional signal. Exam-
ples include hyperspectral imaging and video acquisiton, sen-
sor networks, and synthetic aperture radar [4, 5]. Consider

2We thank Robert Jackson for suggesting this architecture for addressing
the interference problem in wideband receivers.



in particular the case where the choice of measurements used
for each partition comes from a single orthonormal basis and
is shared among partitions, introducing structure in the mea-
surements. For example, a compressive video camera may
use the same incoherent projections on each frames in the
video sequence. The resulting global measurement basis is
downsampled in a group-structured fashion. The grouped in-
coherent measurement framework can be applied when a sin-
gle orthonormal basis is used for compression of the entire
multidimensional signal [4].

3. PERFORMANCE ANALYSIS FOR GROUPED
INCOHERENT MEASUREMENTS

3.1. Performance Metric
The grouped incoherent measurement scheme introduced in
Section 2.3 violates the assumptions of Theorem 1 and causes
an increase of the number of measurements needed for suc-
cessful recovery of sparse signals. Such a penalty factor de-
pends on the structure of the groups G = {G1, . . . ,GN/G},
on the product of the measurement and transformation basis
A = V HU , and on the set T defining the sparse signal sup-
port. We define a penalty factor

γ(A, T,G) = max
i∈1,...,N/G

∥∥AGiT

∥∥
2→1

, (3)

where ‖M‖p→q = maxf ‖Mf‖q/‖f‖p denotes the p → q
operator norm of the matrix M , M denotes the matrix M af-
ter row normalization, and AGiT is the submatrix of A that
preserves the G rows corresponding to the group Gi and the
|T | columns corresponding to the sparsity set T . Given the set
T defining the sparse support, the penalty factor γ(A, T,G)
is a measure of similarity among the rows of AGiT for each
i. For example, if the rows of AGiT are equal for some i,
we will have γ(A, T,G) = G; in contrast, if all rows of
AGiT are mutually orthogonal for each i, then we will have
γ(A, T,G) =

√
G.

3.2. Recovery Guarantees
We now provide requirements on the number of measure-
ments needed for successful recovery of the sparse signal x
when the subset Ω of the measurement domain is built in a
structured way. The following theorem is proven in [6].

Theorem 2. Let A be an N ×N orthogonal matrix (AHA =
I) with coherence µ(A). Fix an arbitrary subset T of the
signal domain. Choose a subset Ω of the measurement do-
main of size |Ω| = M as the union of M/G groups from
G = {G1, . . . ,GM/G} and a sign sequence z on T , both uni-
formly at random over all possible choices. Suppose that

M ≥ γ(A, T,G) · Const · µ3(A)N3/2|T | log(N/δ). (4)

Then with probability exceeding 1 − δ, every signal c0 sup-
ported on T with signs matching z can be recovered from
y = AΩc0 by solving the linear program (2), for any δ > 0.

The theorem shows that for perfectly incoherent measure-
ment and sparsity bases, γ(A, T,G) provides a multiplicative
penalty on the number of measurements necessary for suc-
cessful signal recovery due to the grouped structure of the
incoherent measurement selection. Note that for a group size
G = 1 and for perfectly incoherent pair of bases V and U our
result coincides with Theorem 1 as it is equivalent to drawing
elements of Ω uniformly at random. Additionally, when the
rows of someAGiT are identical, the additional measurements
bundled within the group provide no additional information,
and we must scale the number of measurements by G in the
worst case. This observation agrees with the penalty value
γ(A, T,G) = G for such a matrix AT and group structure G.

3.3. Calculation of the Performance Metric
For a fixed sparsity set T , we can obtain lower and upper
bounds on the value of γ(A, T,G) by leveraging the Pietsch
Factorization theorem [7].

Theorem 3. Each matrix B can be factored as B = FD
where D is a nonnegative, diagonal matrix with trace(D2) =
1 and ‖B‖∞→2 ≤ ‖F‖2 ≤ Kp‖B‖∞→2, where Kp is a

constant equal to
√

π
2 ≈ 1.25 for the real field and

√
4
π ≈

1.13 for the complex field.

Since ‖M‖2→1 = ‖MH‖∞→2, thanks to the duality of
the operator norms, we can find bounds on γ by performing
Pietsch factorization of the matrices (AGiT )H = FiDi, for
i = 1, . . . , N/G, where Di is a nonnegative diagonal matrix
with trace(D2

i ) = 1. The value of γ(A, T,G) can then be
bounded by

1

Kp
max
i
||Fi||2 ≤ γ(A, T,G) ≤ max

i
||Fi||2, (5)

The Pietsch factorization of matrix B can be performed
by solving a semidefinite program [7]. As will be pointed
out in the simulations in the next section, the looseness of the
bound (5) can limit the utility of γ.

4. SIMULATIONS

In this section, we present simulation results for CS recov-
ery from grouped incoherent measurements for signals with
sparse Fourier domain representations. Consider a discrete
signal s of length N = 1100 and sparsity |T | = 5% · N ,
sparse in the frequency domain, generated as a product of an
orthonormal Fourier basis of size N ×N and a sparse coeffi-
cient vector c with values of non-zero entries distributed uni-
formly: ∼ U(−1, 1). Consider two different configurations
for the grouped incoherent measurements:
G1: 100 groups of size 11 were constructed such that

the first sample of each of the groups was chosen out of the
first 100 samples of s: {s[1], . . . , s[n]}, and the remaining
10 samples for each group were shifted with respect to the
first sample by multiples of 100. More specifically, G1

i =
{i, i+100, i+200, . . . , i+1000}. This configuration appears



in the interference-robust compressive wideband receiver ap-
plication. The first sample corresponds to a random zero-
crossing of a modulated interferer. Additional samples corre-
spond to subsequent zero-crossings of the interferer’s carrier.
G2: 100 groups of size 11 were constructed such that

each group contained 11 consecutive, adjacent samples. More
specifically, G2

i = {s[i+(i−1) ·11] : s[i ·11]}. Such configu-
ration assumes that the samples are taken in sequential bursts.

Figure 2 shows the relation between the penalty factor
γ(A, T,G) from (3) and the ratio between the number M
of samples required for successful recovery for the two de-
scribed group structures and the number of samples M0 re-
quired for successful recovery for random sampling. The val-
ues shown are the minimal number of measurements needed
to obtain normalized recovery error NRE = ‖s− ŝ‖/‖s‖ <
0.001 for 99 out of 100 draws of the measurement groups
(uniformly at random) and the values of the Fourier coeffi-
cients (from U [−1, 1]). Each point of the scatter plots corre-
sponds to a fixed signal support. We consider three different
classes of signal supports: for the first two types, the positions
of the non-zero Fourier coefficients are chosen uniformly at
random within a sub-band built out of two and four 5%-wide
channels, respectively, positioned uniformly at random within
the entire frequency band; we then compare their performance
against the baseline of signals with unrestricted sparse sup-
ports. Figure 2 shows that for the first two classes γ was
a good performance indicator; in contrast, for the last class
the values of γ misleadingly suggest that both group struc-
tures perform equally well. Additionally, for a set of image
processing experiments we performed but omit due to space
constraints, γ was not a useful indicator of performance for
group structures of practical interest. This is indicative of the
potential looseness of the bound provided by Theorem 2. We
believe that such looseness is a characteristic of guarantees
that rely on worst-case metrics, such as the coherence µ(A)
and our grouped metric γ(A, T,G), and is compounded by
the looseness in the estimate of γ(A, T,G) obtained via The-
orem 3 (of up to 21%).

5. CONCLUSIONS AND FUTURE WORK

In this work, we have presented an analytically derived mul-
tiplicative penalty on the number of measurements needed
for CS recovery when the measurements exhibit grouped
structure instead of the usual independently drawn measure-
ment assumption taken by most existing CS literature. Such
grouped sampling is of large practical interest as full ran-
domization of measurements is difficult to achieve in many
compressive sensing acquisition systems. A notable limita-
tion of the introduced penalty factor γ is that it is dependent
on the signal support. We expect further work to focus on
penalty metrics that are independent of the support of the sig-
nal being measured, and to expand the guarantees provided
to more applicable approximately sparse signals and to noisy
measurement schemes.

Fig. 2. γ vs. M/M0 for group structures G1 and G2 when Fourier
coefficients of 5% sparse signal s were concentrated within: (top)
a sub-band built out of two 5%-wide channels; (middle) a sub-band
built out of four 5%-wide channels; and (bottom) the entire band.
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