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Abstract—Feature selection is a dimensionality reduction tech-
nique that selects a subset of representative features from high-
dimensional data in order to eliminate redundancy. Recently,
feature selection methods based on sparse learning have attracted
significant attention due to their outstanding performance com-
pared with traditional methods that ignore correlation between
features. However, they are restricted by design to linear data
transformations, a potential drawback given that the underlying
correlation structures of data are often non-linear. To leverage a
more sophisticated embedding, we propose an autoencoder-based
unsupervised feature selection approach that leverages a single-
layer autoencoder for a joint framework of feature selection and
manifold learning, with spectral graph analysis on the projected
data into the learning process to achieve local data geometry
preservation from the original data space to the low-dimensional
feature space.

Index Terms—Unsupervised Feature Selection, Autoencoder,
Manifold Learning, Spectral Graph Analysis, Column Sparsity

I. INTRODUCTION

In recent years, high-dimensional data can be found in
many areas such as computer vision, pattern recognition, data
mining, etc. High dimensionality enables data to include more
information, but learning from high-dimensional data often
suffer from several issues such as Hughes phenomenon [1] and
feature redundancy [2], etc. Moreover, several papers in the
literature have shown that the intrinsic dimensionality of high-
dimensional data is actually small [3–5]. Thus, dimensionality
reduction is a popular preprocessing step for high-dimensional
data analysis, which decreases time for data processing and
also improves generalization of learned models.

Feature selection [6–11] approaches aim at selecting a
subset of the features, and have the advantage of preserving the
same feature space as that of raw data. In recent years, feature
selection algorithms aiming at preserving intrinsic data struc-
ture [12–21] have attracted significant attention due to their
good performance and interpretability [22]. In these methods,
data are linearly projected onto new spaces through a trans-
formation matrix, with fitting errors being minimized along
with some sparse regularization terms. Feature importance is
usually scored using the norms of corresponding rows/columns
in the transformation matrix. In some methods [15–17, 23], the
local data geometric structure, which is usually characterized
by nearest neighbor graphs, is also preserved in the low-
dimensional projection space. One basic assumption of these

methods is that the data to be processed lie in or near linear
space. However, this is not always true in practice, in particular
with more sophisticated data.

In this paper, we propose a novel algorithm for graph and
autoencoder-based feature selection (GAFS). The reason we
choose an autoencoder as a data model is because of its
broader goal of data reconstruction, which is a good match
in spirit for an unsupervised feature selection framework: we
expect to be able to infer the entire data vector from just a few
of its dimensions. In this method, we integrate three objective
functions into a single optimization framework: (i) we use a
single-layer autoencoder to reconstruct the input data; (ii) we
use an `2,1-norm penalty on the columns of the weight matrix
connecting the autoencoder’s input layer and hidden layer to
provide feature selection; (iii) we preserve the local geometric
structure of the data through to the corresponding hidden layer
activation space.

The key contribution of this paper is twofold: 1). We pro-
pose a novel unsupervised feature selection framework which
is based on an autoencoder and graph data regularization.
By using this framework, data manifold can be leveraged,
which loosens the assumption of a subspace model in many
relevant techniques. 2). We present an efficient solver for the
optimization problem underlying the proposed unsupervised
feature selection scheme.

The rest of this paper is organized as follows. Section II
overviews related work. The proposed framework and the
corresponding optimization scheme are presented in Section
III. Experimental results and the corresponding analysis are
provided in Section IV. Section V includes conclusion and
future work.

II. RELATED WORK

In this section, we provide a review of literature related
to our proposed method and introduce the paper’s notation
standard. For a matrix Z, Z(q) denotes the qth column of the
matrix, while Z(p,q) denotes the entry of the matrix at the pth

row and qth column.
The `r,p-norm for a matrix W ∈ Ra×b is denoted as

‖W‖r,p =

 b∑
j=1

(
a∑

i=1

|W(i,j)|r
)p/r

1/p

. (1)



Note that unlike most of the literature, our outer sum is
performed over the `r-norms of the matrix columns instead
of its rows; this is done for notation convenience of our
subsequent mathematical expressions. Datasets are denoted by
X = [X(1),X(2), · · · ,X(n)] ∈ Rd×n, where X(i) ∈ Rd is
the ith sample in X for i = 1, 2, · · · , n, and where d and n
denote data dimensionality and number of data points in X,
respectively.

A. Sparse Learning-Based Unsupervised Feature Selection

Many unsupervised feature selection methods based on
subspace structure preservation have been proposed in the past
decades. The basic idea is to use a transformation matrix
to project data to a particular embedding space and guide
feature selection based on the sparsity of the transformation
matrix [12]. To be more specific, the generic framework of
these methods is based on the optimization

min
W
L(Y,WX) + λR(W), (2)

where Y = [Y(1),Y(2), · · · ,Y(n)] ∈ Rm×n (m < d) is an
embedding matrix in which Y(i) ∈ Rm for i = 1, 2, · · · , n
denotes the representation of data point X(i) in the obtained
low-dimensional space. L(·) denotes a loss function, and R(·)
denotes a regularization function on the transformation matrix
W ∈ Rm×d. The methods differ in their choice of embedding
Y and loss and regularization functions; some examples are
presented below.

Multi-cluster feature selection (MCFS) [13] and minimum
redundancy spectral feature selection (MRSF) [14] are two
long-standing and well-known unsupervised feature selection
methods. In MCFS, a graph is first constructed on training
data. Then spectral clustering is performed on data points
using the top eigenvectors of graph Laplacian. We refer
readers to [13] for more details on this spectral clustering
procedure. After that, all data points are regressed to the
learned embedding through a transformation matrix W ∈
Rm×d. The loss function is set to the Frobenius norm of
the linear transformation error and the regularization function
is set to the `1,1 norm of the transformation matrix, which
promotes sparsity. A score for each feature is measured by
the maximum absolute value of the corresponding column of
the transformation matrix. MRSF is a variant of MCFS that
changes the regularization function from an `1,1-norm to an
`2,1-norm that enforces column sparsity on the transformation
matrix. These two algorithms are equivalent otherwise.

The performance of both MCFS and MRSF is often de-
graded by the separate nature of linear dimensionality re-
duction and feature selection [24]. Many approaches on joint
linear embedding and feature selection have been proposed to
address this problem. For example, in unsupervised discrim-
inative feature selection (UDFS) [16], data instances are as-
sumed to come from c classes. UDFS uses local data geometric
structure, which is based on the k-nearest neighbor set of each
data point, to incorporate local data discriminative information
into a feature selection framework. Like MCFS and MRFS,

UDFS also assumes the existence of a transformation matrix
W ∈ Rm×c that maps data to a low-dimensional space. One
drawback of these discriminative exploitation feature selection
methods is that the feature selection performance relies on an
accurate estimation of number of classes.

Instead of projecting data onto a low-dimensional subspace,
some approaches consider combining unsupervised feature
selection methods with self-representation. In these methods,
each feature is assumed to be representable as a linear
combination of all (other) features, i.e., X = WX + E,
where W ∈ Rd×d is a representation matrix and E ∈ Rd×n

denotes a reconstruction error. Zhu et. al. [18] proposed a
regularized self-representation (RSR) model for unsupervised
feature selection that sets both the loss function and the
regularization function to `2,1-norms on the representation
error E (for robustness to outlier samples) and transformation
matrix W (for feature selection), respectively. Extensions of
RSR include [19, 20].

B. Single-Layer Autoencoder
A single-layer autoencoder is an artificial neural network

that aims to learn a function h(x; Θ) ≈ x with a single
hidden layer, where x ∈ Rd is the input data, h(·) is a
nonlinear function, and Θ is a set of parameters. To be more
specific, an autoencoder contains a two-fold workflow, which
are encoding and decoding. Encoding aims at mapping the
input data x to a compressed data representation y ∈ Rm

using y = σ(W1x + b1), where W1 ∈ Rm×d is a weight
matrix, b1 ∈ Rm is a bias vector, and σ(·) is a nonlinear
activation function applied element-wise. Decoding aimes at
mapping the compressed data representation y to a vector in
the original data space x̄ ∈ Rd using x̄ = σ(W2y + b2),
where W2 ∈ Rd×m and b2 ∈ Rd are the corresponding weight
matrix and bias vector, respectively.

The data reconstruction capability of the autoencoder makes
it suitable to capture the essential information of the data while
discarding information that is not useful or redundant. There-
fore, it is natural to assume that the compressed representation
in the hidden layer of a single-layer autoencoder can capture
the manifold structure of the input data when such manifold
structure exists and is approximated well by the underlying
weighting and nonlinearity operations.

The idea of using a single layer autoencoder to do un-
supervised feature selection is first introduced in [25], in
which an autoencoder feature selector (AEFS) is proposed.
The objective function of AEFS includes three parts: a loss
function based on a single-layer autoencoder promoting broad
data structure preservation; a regularization term promoting
feature selection; and a weight decay regularization term. As
mentioned above, a single-layer autoencoder aims at minimiz-
ing the reconstruction error between output and input data by
optimizing a reconstruction error-driven loss function:

L(Θ) =
1

2n

n∑
i=1

‖X(i) − h(X(i);Θ)‖22 =
1

2n
‖X− h(X;Θ)‖2F ,

h(X;Θ) = σ (W2 · σ(W1X + b1) + b2)



where Θ = [W1,W2,b1,b2]. Since W1 is a weight matrix
applied directly on the input data, each column of W1 can
be used to measure the importance of the corresponding data
feature. Therefore, R(Θ) = ‖W1‖2,1 can be used as a
regularization function to promote feature selection. A weight
decay regularization term Q(Θ) = 1

2

(
‖W1‖2F + ‖W2‖2F

)
is

also included in AEFS. Therefore, the objective function in
AEFS can be formulated as

min
Θ

1

2n
‖X−h(X; Θ)‖2F +λ‖W1‖2,1+

β

2

(
‖W1‖2F + ‖W2‖2F

)
where λ and β are two balance parameters.

One drawback of this method is that they do not preserve
local data geometric structure from the raw feature space
to the hidden layer/activation space. This means there is no
guarantee that the relative similarity of each instance pair is
preserved across the embedding, which may be harmful to the
performance of the subsequent feature selection.

III. PROPOSED METHOD

In this section, we introduce our proposed graph
autoencoder-based unsupervised feature selection (GAFS).
Our proposed framework performs broad data structure preser-
vation through a single-layer autoencoder and also preserves
local data geometric structure through spectral graph analysis.

Local geometric structures of the data often contain dis-
criminative information of neighboring data point pairs [13].
They assume that nearby data points should have similar rep-
resentations. It is often more efficient to combine both broad
and local data information during low-dimensional subspace
learning [26]. In order to characterize the local data geometric
structure, we construct a k-nearest neighbor (kNN) graph G
on the data space. The edge weight between two connected
data points is determined by the similarity between those two
points. In this paper, we choose cosine distance as similarity
measurement for its simplicity. Therefore the adjacency matrix
A for the graph G is defined as

A(i,j) =

 X(i)TX(j)

‖X(i)‖2‖X(j)‖2
X(i) ∈ Nk(X

(j)) or X(j) ∈ Nk(X
(i)),

0 otherwise,

where Nk(X(i)) denotes the k-nearest neighborhood set for
X(i), and X(i)T refers to the transpose of X(i). The Laplacian
matrix L of the graph G is defined as L = D−A, where D is
a diagonal matrix whose ith element on the diagonal is defined
as D(i,i) =

∑n
j=1 A(i,j).

In order to preserve the local data geometric structure in
the learned embedding (i.e., if two data points X(i) and X(j)

are close in original data space then the corresponding low-
dimensional representations Y(i) and Y(j) are also close in the
low-dimensional embedding space), we set up the following
graph regularization cost function:

G(Θ) =
1

2

n∑
i=1

n∑
j=1

‖Y(i) −Y(j)‖22A(i,j) = Tr(Y(Θ)LY(Θ)T),

where Tr(·) denotes the trace operator, Y(i)(Θ) =
σ(W1X

(i) + b1) for i = 1, 2, · · · , n (and we often
drop the dependence on Θ for readability), and Y(Θ) =
[Y(1)(Θ),Y(2)(Θ), · · · ,Y(n)(Θ)].

The objective function of GAFS can be written in terms
of the following minimization with respect to the parameters
Θ = [W1,W2,b1,b2]:

Θ̂ = argmin
Θ
F(Θ) = argmin

Θ
L(Θ) +R(Θ) + G(Θ) (3)

= argmin
Θ

[
1

2n
‖X− h(X;Θ)‖2F + λ‖W1‖2,1 + γTr(YLYT)

]
,

where λ and γ are two balance parameters. In this paper, we
use the sigmoid function as the nonlinear activation function
h(·). Since we do not observe significant influence of the
weight decay regularization term Q on feature selection, we
discard this term in our objective function in order to re-
duce computational load. Filter-based feature selection is then
performed using the score function GAFS(q) = ‖W(q)

1 ‖2
based on the weight matrix W1 from Θ̂. Details on the
implementation of (3) are provided in [27].

IV. EXPERIMENTS

In this section, we evaluate the feature selection perfor-
mance of GAFS as well as other state-of-the-art algorithms
on two benchmark datasets. We first select p representative
features and then perform clustering on those selected features.

A. Data Description
We perform experiments on two image benchmark

datasets: MNIST and COIL20. Datasets are downloaded from
http://featureselection.asu.edu/datasets.php

B. Evaluation Metric
We perform unsupervised learning (i.e., clustering) tasks on

datasets formulated by the selected features in order to evaluate
the effectiveness of feature selection algorithms. We use k-
means clustering on the selected features and use clustering
accuracy (ACC) to evaluate the clustering performance of all
methods, which is defined as ACC = 1

n

∑n
i=1 δ(gi,map(ci)),

where n is the total number of data samples, δ(·) is defined
by δ(a, b) = 1 when a = b and 0 when a 6= b, map(·) is
the optimal mapping function between cluster labels and class
labels obtained using the Hungarian algorithm [28], and ci and
gi are the clustering and ground truth labels of a given data
sample xi, respectively. We repeat the clustering process 20
times with random initialization for each case following the
setup of [13] and [16], and we report the corresponding mean
values.

C. Experimental Setup
In our last experiment, we compare GAFS with Laplacian

Score1 [29], SPEC2 [30], MRSF3 [14], UDFS4 [16], and
1Available at

http://www.cad.zju.edu.cn/home/dengcai/Data/code/LaplacianScore.m
2Available at https://github.com/matrixlover/LSLS/blob/master/fsSpectrum.m
3Available at https://sites.google.com/site/alanzhao/Home
4Available at http://www.cs.cmu.edu/ yiyang/UDFS.rar
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Fig. 1. Clustering accuracy with respect to different unsupervised feature
selection algorithms and the percentage of features selection p (%)

RSR5 [18]. In this experiment, we fix some parameters and
tune others according to a “grid-search” strategy. For all
algorithms, we select p ∈ {2%, 4%, 6%, 8%, 10%, 20%,
30%, 40%, 50%, 60%, 70%, 80%} of all features for each
dataset. For all graph-based algorithms, the number of nearest
neighbor in a kNN graph is set to 5. For all algorithms
projecting data onto a low-dimensional space, the space di-
mensionality is set in the range of m ∈ {10, 20, 30, 40}. In
GAFS, the range for the hidden layer size is set to match
that of the subspace dimensionality m6, while the balance
parameters are given ranges λ ∈ {10−4, 10−3, 10−2, 10−1, 1}
and γ ∈ {0, 10−4, 5 × 10−4, 10−3, 5 × 10−3}, respectively.
We refer readers to [27] for parameter setup of competing
methods.

D. Performance Comparison

We present the ACC results of GAFS and the compar-
ison feature selection algorithms on all datasets in Fig. 1.
From these figures, we can find that GAFS is consistently
comparable with the best performing methods with respect
to different percentages of selected features. Though methods
such as MRSF and UDFS outperform GAFS in some cases,
they cannot provide stable performance. To be more concrete,
MRSF provides similar performance with GAFS when p is
large or small, but the clustering curves drop drastically in
the middle; UDFS is comparable with GAFS after p = 20%
for both datasets, but for smaller p the competing method
provide lower clustering accuracy than GAFS. Comparing the
performance of GAFS with that of using all features, which
is represented by a black dashed line in each figure, we
can find that GAFS can always achieve better performance
with far less features. In the meanwhile, with fewer features,
the computational load in corresponding clustering tasks can
be decreased. These results demonstrate the effectiveness of
GAFS in terms of removing irrelevant and redundant features
in clustering tasks.

E. Parameter Sensitivity

We study the performance of GAFS on balance parameters
λ and γ, with fixed percentage of selected features and hidden

5Available at https://github.com/guangmingboy/githubs doc
6We will alternatively use the terminologies subspace dimensionality and

hidden layer size in descriptions of GAFS.

(a) MNIST (b) COIL20
Fig. 2. Performance variation of the GAFS w.r.t. balance parameters λ
(sparsity penalty) and γ (graph penalty).

layer size. We set p = 20%, as Fig. 1 shows that the
performance stabilizes starting at that value of p. For subspace
dimensionality, we choose m = 10 since we observe that the
performance of GAFS is not sensitive to the value of m. The
performance results are shown in Fig. 2. For the parameter
λ, which controls the column sparsity of W1, we can find
that for both MNIST and COIL20, the overall performance
is best when λ = 10−2 and both smaller and larger values
of λ degrade the performance. This is because the diversity
among instances of these two datasets is large enough: a
large value of λ may remove informative features, while a
small value of λ prevents the exclusion of small, irrelevant,
or redundant features. For the parameter γ, which controls
local data geometric structure preservation, we can find that
both large values and small values of γ degrade performance;
we also note that γ = 0 is a case similar to AEFS. On one
hand, we can conclude that local data geometric structure
preservation does help improve feature selection performance
to a certain degree. On the other hand, large weights on local
data geometric structure preservation may also harm feature
selection performance.

V. CONCLUSION

In this paper, we proposed a graph and autoencoder-based
unsupervised feature selection (GAFS) method which projects
the data to a lower-dimensional space using a single-layer
autoencoder. We bypass the limitation of existing methods
that the dimensionality reduction subspace must be a linear
projection of the data space, and simultaneously take local
data geometric structure preservation into consideration. Ex-
perimental results demonstrate the advantages of GAFS versus
methods in the literature for clustering tasks.

In the future, we plan to explore the effectiveness of more
elaborate versions of an autoencoder for feature selection
purposes. Furthermore, we will also extend our framework to
more sophisticated machine learning problems such as transfer
learning.
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