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Abstract—In this letter, Laplace distribution is used to model
the prior for the direction of arrival (DoA) of sources. In order to
incorporate the real and imaginary part of the received signal, we
propose a method that pairwise estimates the hyperparameters
for parts of the signal coefficients. In addition, we propose a
multi-task algorithm to extend the application of our method to
the situation where multiple measurements are available. Non-
uniform linear arrays are used to demonstrate the validity and
advantages of the proposed method including its improved effi-
ciency and accuracy compared with state-of-art DoA estimation
methods.

Index Terms—non-uniform array, Laplace prior, complex
sources, sparse Bayesian learning

I. INTRODUCTION

DOA estimation using linear arrays is a topic of active
research. The general DoA problem consists of using an

M -element antenna array with known geometry to estimate
the bearing of N far-field incident sources, where M > N .
During the past decades, several methods have been introduced
and applied to the DoA estimation, such as MUSIC algorithm,
ESPRIT and maximum likelihood approach [1]–[5]. In [6] and
[7], sparse Bayesian learning (SBL), also known as relevance
vector machine (RVM) [8] was used. When using RVM, the
DoA estimation problem is solved by converting it to an
optimization problem with `2 norm regularization, where a
Gaussian prior with zero mean is selected for the sources to
be estimated. Compared with Gaussian prior, Laplace priors
are known to enforce the sparsity constraint more heavily [9].

The contributions of this letter are as follows. First, the
DoA problem is formulated as an optimization problem with
`1 norm penalty and solved with the fast marginal likelihood
maximization algorithm in order to reduce the computational
complexity compared with [10]. Second, the real and imag-
inary part of the complex signal are separated to yield a
real-valued problem; a pairwise algorithm is proposed to
leverage the relationship between the real and imaginary part
of complex sources during the estimation. Third, in order to
extend the applicability of the approach to the situation where
the multiple snapshots are available, we propose a multi-
task `1 norm SBL method. The robustness of the proposed
method is improved with multiple snapshots, especially under
noisy environments. The simulation result demonstrates that
the proposed approach improves the efficiency and estimation
accuracy.

II. DOA PROBLEM FORMULATION

A non-uniform linear array, shown in Fig. 1, is comprised
of M identical elements with the ith element located at

Fig. 1: M -element nonuniform linear array

distance li from the origin. The incoming sources, which are
mutually independent, are denoted by sj , j = 1,2,...,N , and
the incident angles of the incoming sources are denoted by
θ = {θ1, ..., θN}, where θi ∈ [-90◦, 90◦], i = 1,2,...,N .
Independent complex white noise is also present in the ele-
ment observations, denoted by ni, i = 1,...,M . For the far-
field sources, the approximate phase variation of the received
signals for the jth source at two elements separated by ∆l is
equal to k∆l sin θj , where k = 2π

λ and λ is the wavelength.
The received signal of the ith element, yi, is written as

yi =

N∑
j=1

e−jkli sin θjsj + ni, i = 1, 2, ....,M. (1)

In matrix form (1) is written as

y = As+ n, (2)

where y = [y1, y2....yM ]T ∈ CM×1, A ∈ CM×N de-
notes the measurement with A(m,n) = e−jklm sin θn , s =
[s1, s2...sN ]T ∈ CN×1 and n = [n1, n2, ..., nM ]T ∈ CM×1 is
subject to a circularly symmetric complex normal distribution
with zero mean and covariance matrix Γ = 2σ2I ∈ RM×M , σ2

is unknown. We allow for the position lm to change with time,
and matrix A will change accordingly. `1 norm automatically
generates a sparse solution [11] for the source estimation
problem we have in mind

s̃ = argmax
s

{
−||y−As||22 − λ||s||1

}
, (3)

where || · ||p represents `p norm. A method with computational
complexity O(K3) was proposed in [10] to estimate s, where
K denotes the size of the sampling grid and is typically
greater than N . By choosing the appropriate prior for s,
we can estimate s under the Bayesian learning framework
and the computational complexity can be reduced sharply by
estimating the sources on the grid individually [12]. According
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to Bayes’ rule, we have the posterior probability in logarithmic
terms

log(posterior) ∝ log(likelihood) + log(prior). (4)

Assuming that the received signal is contaminated with white
noise, the likelihood of the received signal is

P (y|s, σ2) = CN (y|As, 2σ2I), (5)

where CN (y|µ,Σ) represents complex normal distribution on
y with mean µ and covariance matrix Σ. Its logarithm is

logP (y|s, σ2) = − 1

2σ2
||y−As||22 (6)

where the constant terms are ignored. Choosing the Laplace
prior for the sources, we can obtain the prior distribution in
logarithmic form by

logP (si) = −λ|si| , (7)

where the constant terms are ignored and λ is the scalar
parameter. The source can be estimated by maximizing the
posterior probability. However the number and directions of
actual sources are unknown. To facilitate this the sampling
grid which is a vector consisting of the possible angles
θ̃ = [θ̃1, ..., θ̃K ] ∈ RK×1 is created. The angles of the
actual sources are assumed to be in the grid. The source
corresponding to θ̃ is denoted by s̃ ∈ CK×1, the only non-zero
entries of s̃ appear at angles the sources arrive from.

III. COMPLEX SOURCE ESTIMATION

In [6], the real and imaginary part of sources are separated
during estimation. Namely, (2) is rewritten as

ȳ = Ās̄+ n̄, (8)

where ȳ =

[
<(y)
=(y)

]
, s̄ =

[
<(s̃)
=(s̃)

]
, n̄ =

[
<(n)
=(n)

]
and

Ā =

[
<(Ã) −=(Ã)

=(Ã) <(Ã)

]
, (9)

where Ã ∈ CM×K is computed similarly to A but using all
angles in the grid. The likelihood becomes

P (ȳ|s̄, σ2) = N (ȳ|Ās̄, σ2I), (10)

where N (y|µ,Σ) represents normal distribution on y with
mean µ and covariance matrix Σ. Before the sources are
estimated, a prior distribution is assigned to the unknown
sources. Since K � N , s̄ is a vector with high degree of
sparsity.

A. Bayesian learning with Laplace prior

In RVM, a Gaussian prior is used for the prior distribution
over the source. In this letter, the Laplace prior is used because
it enforces the sparsity constraint more heavily compared with
Gaussian prior [9]. The Laplace prior is known to be non-
conjugate with the Gaussian distribution [13], the likelihood
in (10) is shown to be Gaussian which prevents the marginal
likelihood to be expressed in a closed form with a Laplace

prior. In order to overcome the drawback, we adopt the
hierarchical model of [14]. In the first stage,

P (s̄|α) = N (s̄|0,α), (11)

where α = diag(α1, α2... α2K), αi denotes the variance for
s̄i. In the second stage, we have

P (αi|λ) =
λ

2
exp

(
−λαi

2

)
, i = 1, 2, ...2K. (12)

In the third stage, Jeffrey’s hyperprior is applied,

P (λ) ∝ 1

λ
. (13)

The prior distribution of the sources is given by

P (s̄|λ) =

2k∏
i=1

∫ ∞
0

P (s̄i|αi)P (αi|λ)dαi. (14)

Using the identity∫ ∞
0

e−uy
2−v/y2dy =

√
π

2
√
u
e−2
√
uv, (15)

we have the following distribution for the sources:

P (s̄|λ) =
λK

22K
exp(−

√
λ

2K∑
i=1

|s̄i|), (16)

where Laplace prior is applied to each signal coefficient. The
posterior distribution over s̄ is

P (s̄|ȳ,α, σ2) ∝ P (ȳ|s̄, σ2)P (s̄|α) = N (s̄|µ,Σ), (17)

where µ and Σ are given by [8]

µ = σ−2ΣĀT ȳ, (18)

Σ = (α−1 + ĀT Ā/σ2)−1. (19)

In order to compute (18) and (19), we need to estimate the
hyperparamters α defined in (11), λ in (13) and the noise
variance σ2. Their value can be estimated by maximizing the
marginal likelihood which is given by

P (ȳ|α, λ, σ2) =

∫
P (ȳ|s̄, σ2)P (s̄|α)P (α|λ)P (λ)ds̄. (20)

The logarithm of marginal likelihood is [8]

logP (ȳ|α, λ, σ2) =− 1

2

[
2M log 2π + log |C|+ ȳTC−1ȳ

]
− λ

2

2M∑
i=1

αi + (2M − 1) log λ, (21)

where

C = σ2I + ĀαĀT . (22)

Setting the derivatives of (21) with respect to hyperparameters
to zero, we can obtain the optimal hyperparameters [9]

αnewi =
1

− 1
2λ +

√
1

4λ2 +
µ2
i +Σi,i

λ

, i = 1, 2, ...2K, (23)

λnew =
2M − 1∑2K
i=1 αi/2

, (24)

(σ2)new =
‖y −Aµ‖2

2M −
∑2K
i=1(1− αiΣ(i,i))

. (25)
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In summary, we obtain initial estimates of the parameters α
and σ2, and our iterations update these estimates using (23)-
(25); then we use (18) and (19) to update the estimated mean
and variance of the sources. The estimated results µ and Σ
will be returned when the marginal likelihood converges.

B. Pairwise fast marginal likelihood maximization

The computational complexity of the method in Sec. III-A
is O(K3) due to of computation of the inverse of Σ. In
order to reduce the computational complexity, the source can
be estimated in the ”constructive” way [12]: it starts with
selecting source from one direction, then sources from more
diretions are added iteratively, the size of Σ increases from 1
and stopping at a number which is much smaller than K [12].
In addition, the relationship between the real and imaginary
parts of source are taken into account. We propose to estimate
hyperparameters in pairs based on the belief that the non-
zero entries in the real part suggests that the corresponding
imaginary entries are non-zero with high probability and vice
versa.

1) Single snapshot: The term C in (22) is rewritten as

C = σ2I +
∑
j 6=i

α−1
j Āj(Āj)

T + α−1
i Āi(Āi)

T , (26)

where Āi denotes the ith column of Ā. We define C−i ≡
σ2I+

∑
j 6=i α

−1
j Āj(Āj)

T which separates terms independent
of αi from terms dependent on αi. With (26), the marginal
likelihood (21) can also be rewritten to include L(α−i), which
is independent on αi, and L(αi), which is dependent on αi
[8]. L(αi) is given by

L(αi) =
1

2

[
log

1

1 + αipi
+

(qi)
2αi

1 + αipi
− λαi

]
, (27)

where pi = (Āi)
T (C−i)

−1Āi and qi = (Āi)
T (C−i)

−1(ȳ).
Instead of updating all of α, the maximum Lc(αi +αi+K) ≡
L(αi) + L(αi+K), i = 1, ...K, which includes real and
imaginary parts jointly, is selected at each iteration, and
the associated αi and αi+K are recomputed iteratively. The
optimal αi is given by [12]

αi =

{
−Y+

√
Y 2−4XZ
2X , if (qi)

2 − pi > λ
0, if (qi)

2 − pi ≤ λ,
(28)

where X = λp2
i , Y = p2

i + 2λpi, Z = λ+ pi − q2
i .

The set S is used to represent the estimated directions for
incoming sources. Initially, S is empty, then S is iteratively
updated when α is updated iteratively. If either αi or αi+K is
non-zero, we add the angle associated with αi and αi+K to
the set S . If both of them are 0, we remove the angle from S.

2) Multiple snapshots: Multiple snapshots helps reduce the
correlation between the columns of the measurement matrix,
and thus the difficulty in recovering the source is decreased.
The effect of multiple snapshots on the Gram matrix (i.e.,∑L
l=1(Ā

l)T Āl/L) is presented in Fig. 2 and Fig. 3, in which
a 12-element linear array is considered, the location of element
lm is subject to uniform distribution

lm ∼ U [(m− 1) ∗∆s, (m− 1) ∗∆s+ r]. (29)

50 100 150 200 250 300 350

50

100

150

200

250

300

350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2: Gram matrix with
one snapshot.
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Fig. 3: Gram matrix with
100 snapshots.

When multiple independent measurements are available and
the incoming sources are assumed to be unchanged, the
marginal likelihood with respect of αi is written as

L(αi) =
1

2

L∑
l=1

[
log

1

1 + αipli
+

(qli)
2αi

1 + αipli
− λαi

]
, (30)

where L is the number of snapshots, the superscript l
stands for the lth snapshot, pli = (Āl

i)
T (Cl

−i)
−1Āl

i, q
l
i =

(Āl
i)
T (Cl

−i)
−1(ȳ)l and Āl denotes the measurement matrix

at the lth snapshot. Setting the derivative of (30) with respect
to the hyperparameter αi equal to 0, we have

L∑
l=1

−pli + (qli)
2 − λ− αi

[
(pli)

2 + 2λpli
]
− α2

iλ(pli)
2

(1 + αipli)
2

= 0.

(31)
With the approximation pli � α−1

i [15] the optimal hyperpa-
rameters are given by

αi =

{
−Ym+

√
Y 2
m−4XmZm

2Xm
, if Qm − Pm > λRm

0, if Qm − Pm ≤ λRm,
(32)

where Xm = Lλ, Ym = L+ 2λPm, Zm = λRm+Pm−Qm,
Pm =

∑L
l=1

1
pli

, Rm =
∑L
l=1

1
(pli)

2 and Qm =
∑L
l=1(

qli
pli

)2. It
can be seen when L = 1, (32) is equivalent to (28).

IV. NUMERICAL RESULTS

In this section, the proposed method from III-B is tested
with two configurations of linear arrays and K = 181. The
first configuration is described in (29), and we refer to it as
a normal non-uniform array. For the second configuration,
twelve elements are grouped in four clusters and each cluster
has three elements whose positions change with time. The
distance between neighboring cluster is 100 wavelengths. We
call this the cluster configuration. The latter is encountered
in real life such as distributed ground communication with
mobile user clusters. The signal-to-noise ratio (SNR) is defined
as SNR = 10 log10

‖yp‖2∞
2σ2 , where yp = As ∈ CM×1 stands

for the signal vector received without noise. Fig. 4a presents
the estimated sources with standard `1 norm SBL method of
Sec. III-A while the results in Fig. 4b are estimated with the
method of Sec. III-B. We see that if the relationship between
the real and imaginary parts is ignored, one spurious source is
included in the estimate which is highlighted in Fig. 4a with
a red circle. The estimated results with the cluster array are
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Fig. 4: Estimated signal direction and strength, SNR = 10 dB, N = 3, L = 100,M = 12. (a) Normal array with general `1
norm algorithm [9], (b) normal array with pairwise algorithm (III-B) and (c) cluster array with pairwise algorithm (III-B).
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(a) Normal array.
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(b) Cluster array.

Fig. 5: The change of marginal likelihood vs. iteration. Left
Y-axis: the likelihood at one iteration (30), right Y-axis: the
sum of the likelihood until the current iteration, L(α)t =∑t
i=1 L(αi), αi is the hyperparameter estimate at ith iteration.

plotted in Fig. 4c. The marginal likelihood versus iterations
for the example in Fig. 4a is shown in Fig. 5a. The number
of required iterations for the pairwise algorithm is around half
of the required number of iterations for the standard `1 norm
SBL method under the same convergence criterion. The cluster
configuration is also tested with SNR = 10 dB; the results are
plotted in Fig. 5b.

The comparison between the proposed method (III-B) with
standard RVM [8], RVM with fast algorithm [12] and standard
`1 norm SBL [9] is listed in Table I in terms of accuracy,
execution time and number of nonzero (NNZ) elements. The
number of actual sources is N = 3 in the experiment. We
check the strongest N signals of the estimated result which
are denoted by Ŝ = {Ŝ(θ̂1), Ŝ(θ̂2), ..., Ŝ(θ̂N )}, Ŝ(θ̂i) denotes

the estimated source from direction θ̂i. If the estimated source
Ŝ(θ̂i) meets all of the following criteria, it is counted as being
predicted correctly
• the estimated angle matches the direction of the actual

source, θ̂i ∈ θ
• the estimated signal strength is at least half of the strength

of the actual signal, |Ŝ(θ̂i)|2 ≥ 0.5 × |S̃(θ̂i)|2, S̃(θ̂i)
denotes the actual source at θ̂i

• the estimated signal strength is at least twice the strongest
strength of the estimated sources from wrong directions,
|S̃(θ̂i)|2 ≥ 2 ·max{S̃(θ̂w) : θ̂w = S − θ}.

From Table I, it can be been seen our proposed method
achieves higher prediction accuracy and shorter execution time
compared with the existing methods, and a higher degree of
sparsity is obtained with our approach.

Accuracy (%)/ L = 1, L = 10, L = 100,
time (s) /NNZ SNR = 10dB SNR = 10dB SNR = 10dB

RVM [8] 18.7/4.47/362 27.7/4.91/362 31.5/5.1/362
fast RVM [12] 7.35/0.05/10.6 16.7/0.57/73.5 36.3/2.55/165
`1 norm [9] 8.7/0.07/19 17.4/0.17/43.2 35.1/0.87/47.3
pair `1 norm 18.7/0.05/18.3 44.1/0.15/42.8 70.8/0.45/52.3

TABLE I: Prediction accuracy and execution time with SNR
= 10 dB, NNZ: number of nonzero elements.

V. CONCLUSION

In this paper, we propose an approach to estimate DoA of
complex signals and the approach that has the capability to
handle multiple snapshots. The proposed method is compared
with existing DoA methods to show its better performance
such as higher prediction accuracy and shorter execution time.
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