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ABSTRACT

The aim of compressed sensing is to recover attributes of
sparse signals using very few measurements. Given an overall
bit budget for quantization, this paper demonstrates that there
is value to redundant measurement. The measurement ma-
trices considered here are required to have the property that
signal recovery is still possible even after dropping certain
subsets of D measurements. It introduces the concept of a
measurement matrix that is weakly democratic in the sense
that the amount of information about the signal carried by
each of the designated D-subsets is the same. Examples of
deterministic measurement matrices that are weakly demo-
cratic are constructed by exponentiating codewords from the
binary second order Reed Muller code. The value in reject-
ing D measurements that are on average larger, is to be able
to provide a finer grid for vector quantization of the remain-
ing measurements, even after discounting the original budget
by the bits used to identify the reject set. Simulation results
demonstrate that redundancy improves recovery SNR, some-
times by a wide margin. Optimum performance occurs when
a significant fraction of measurements are rejected.

Index Terms— Compressed sensing, quantization, democ-
racy, saturation

1. INTRODUCTION

Democracy is the principle that the individual bits in a
coarsely quantized representation of a signal are all given
equal weight in the signal approximation. It is a mathemat-
ical property characteristic of certain sigma-delta converters
[1] but not of standard binary or decimal expansions. The
principle was introduced by Calderbank and Daubechies [2]
who proved that democratic representations cannot achieve
the same accuracy as optimal nondemocratic schemes.

In compressed sensing (CS), a signal α ∈ RC is sam-
pled via the linear measurements y = Φα, where Φ is an
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N × C measurement matrix, and y ∈ RN is the vector of
samples acquired. Laska et al. [3] formalized the concept of
democratic measurement in the CS framework. The princi-
ple that each of the N measurements be given equal weight is
expressed in the requirement that any N − D measurements
should be sufficient to robustly recover the sparse input signal.
One of the virtues of democracy is that it avoids the situation
where removal of some measurements results in high distor-
tion whereas removal of others has negligible effect. Laska et
al. used the Restricted Isometry Property (RIP) introduced by
Candes and Tao [4] to prove that random Gaussian measure-
ment matrices satisfy this strong notion of democracy.

Laska et al. [3] also investigated how to quantize CS mea-
surements. Their baseline is conventional Shannon-Nyquist
uniform sampling where we would scale down the analog sig-
nal amplitude (and therefore increase the quantization error)
to avoid the gross saturation errors that occur when the signal
amplitude exceeds the dynamic range of the quantizer. Their
proposed recovery algorithm simply rejects all measurements
that fall above the saturation level G of the quantizer. The
optimal saturation level is found through experiment to be
markedly different from zero. In this case, the reduced dis-
tortion on the measurements that are retained outweighs the
loss in fidelity from rejecting measurements that saturate.

The analysis given by Laska et al. [3] can be improved in
several ways. First, we note that that the columns of a ran-
dom measurement matrix may be viewed as points randomly
drawn an N -dimensional Euclidean sphere. Thus, encoding
CS measurements via scalar quantization is suboptimal for
the resulting Gaussian distribution. Additionally, since the
bitrate per measurement remains constant through the rejec-
tion process, the total number of bits used to encode the mea-
surements is dependent on the rejection rate D/N . Finally,
there is no accounting for the number of bits needed to en-
code the indices of the rejected measurements, which is re-
quired to perform signal recovery. Our goal in this paper is to
address these issues and demonstrate significant further im-
provements in CS recovery enabled by democratic measure-
ment matrices.

Our proposed problem setup is as follows. We are given
a bit budget B and an initial set of N measurements, with the
choice to reject D measurements from this set. Our bit budget
is divided between (i) a set of bits to encode the set of indices



for the rejected measurements, and (ii) the remaining bits that
encode the values of the preserved measurements. Similarly
to [3], our objective in rejecting measurements is to be able to
place a finer mesh over the measurements that are retained, so
that recovery from such quantized measurements can be more
accurate. However, as we allow more diversity among the sets
of measurements that can be rejected, we are shifting the role
of more bits from encoding measurement values to encoding
rejected indices, making the quantization mesh coarser. This
tradeoff suggests that we weaken the concept of democracy
by allowing only specific sets of measurements to be available
for rejection.

Random measurement matrices in CS play a role similar
to that of random coding in Shannon theory, in that both pro-
vide worst case guarantees in the context of an adversarial
signal/error model. Random matrices are easy to construct,
and can be proven to satisfy RIP with high probability [5].
However, storing the entries of a random matrix may require
significant space and there is also no algorithm for efficiently
verifying whether a measurement matrix satisfies RIP. Calder-
bank, Howard and Jafarpour [6] considered deterministic ma-
trices and provided easily verifiable criteria that guarantee the
measurement matrix acts like a near isometry on the over-
whelming majority of sparse signals. Probability still plays
a critical role, but it enters the signal model rather than the
construction of the measurement matrix.

While our weaker notion of democracy applies to both
random and deterministic matrices, we focus in this paper
on deterministic constructions for measurement matrices that
are provably democratic. The columns of these matrices may
be viewed as points that are uniformly distributed over the
Euclidean sphere. Similarly to the random matrix case, the
distribution of the resulting CS measurements is essentially
Gaussian and scalar quantization is suboptimal. We therefore
apply vector quantization to the measurements preserved to
further improve the performance of measurement quantiza-
tion and CS signal recovery. We demonstrate experimentally
that measurement rejection achieve significant improvements
on CS recovery performance by rejecting structured subsets
of measurements from democratic matrices. Furthermore, we
show that the additional considerations taken in this paper
make the optimal rejection levels higher than those achieved
by the framework of [3].

This paper is organized as follows. Section 2 describes
our proposed structured rejection algorithm. Section 3 gives
examples of deterministic measurement matrices that are
weakly democratic. Section 4 presents simulation results
showing that our approach outperforms the conventional one
in typical scenarios. Section 5 concludes the paper.

2. STRUCTURED REJECTION ALGORITHM

Identifying the entries of y to be rejected in order to achieve
the optimum performance is a complex problem in itself. The

implementation of the reject-and-quantize idea in the context
of vector quantization meets several challenges.

First, we want to reduce the variance of the surviving
measurements so that they are easier to quantize. One might
choose to reject the largest entries, or the smallest entries, or
some of the very large and some of the very small entries.
Second, rejection changes the number of bits that are avail-
able per measurement. We wish to not only reject entries that
are outside the dynamic range of the quantizer, but also to re-
distribute the bit budget among the surviving measurements.
Third, the overhead entailed in encoding the indices for the
set of rejected measurements might negate the gain in bit rate
due to the bit budget redistribution.

Suppose first that we fix the value of D and reject (sub-
optimally) the D largest magnitude entries of y. The vector ỹ
containing the remaining N −D entries will have, on the av-
erage, smaller norm compared to that of a vector with N −D
entries drawn at random from y. This allows us to reduce
sizes of the individual quantization cells, in turn decreasing
the quantization error. The overhead size to encode the set of
rejected measurements is log2

(
N
D

)
∼ D log2

N
D bits.

To mitigate the overhead, instead of allowing all measure-
ment subsets of size D to be rejected, we fix a collection of
rejectable subsets of D measurements. The richer the collec-
tion, the more freedom we have as to which measurements
to reject, but also the more overhead to describe the rejected
subset. To explore this tradeoff, we consider several different
collections of rejectable subsets of size D, where we assume
that N = 2m for some positive integer m.

First, we define the collection Ωs for any integer 1 ≤ s ≤
m−1 containing sets of D = 2m−s measurements as follows.
Consider the row numbers from 1 to 2m as the members of a
finite field Fm

2 . The subsets in Ωs correspond to all translates
of all subspaces of Fm

2 of codimension s. Since there are

a total of
Qs

k=1[2
m−2k−1]Qs

k=1[2
s−2k−1]

subspaces of codimension s and a
total of 2s translates, it is easy to check that less than (m −
s + 2)s bits are required to encode a subset from Ωs.

Next, we define the collection Ω⊥s ⊂ Ωs that con-
tains subsets of Fm

2 corresponding to translates of a the
subspace spanned by s elements from the generator set
{20, 21, 22, . . . , 2m}. Since there are a total of

(
m
s

)
subsets of

size s and a total of 2s translates, number of bits required to
index subsets from Ω⊥s is log2 2s

(
m
s

)
≈ s

(
1 + log2

m
s

)
.

The structured rejection algorithm is summarized below.

• Fix a collection Ω of subsets with D elements.

• Reject the measurements for the subset ω ∈ Ω that fea-
tures the largest norm.

• Quantize the remaining measurements ỹ using a vector
quantizer trained accordingly.

• Pass the quantized representation of ỹ and rejected sub-
set ω to the CS recovery algorithm.



• Remove the rows of the measurement matrix indexed
by ω and recover α using the quantized version of ỹ.

3. DEMOCRATIC MEASUREMENT MATRICES

Given m odd and 0 ≤ r ≤ (m− 1)/2, the Delsarte-Goethals
set DG(m, r) is a vector space of 2m(r+2) binary symmet-
ric matrices of size m × m with the property that the mod-
ulo 2 sum of two distinct matrices has rank at least m − 2r.
The matrices in DG(m, r) can be parameterized by elements
a0, a1, . . . , ar from the finite field Fm

2 by setting

xP (a0, . . . , ar)y
> = Tr

"
a0xy +

rX
t=1

at(x
2t+1 + xy2t + 1)

#
,

where Tr denotes the trace from Fm
2 to F2, and multiplication in the

right side is modulo an irreducible polynomial used to generate the
finite field Fm

2 . The set DG(m, (m − 1)/2) is the vector space of
all binary symmetric matrices.

Let N = 2m and C = 2m(r+2). The Delsarte Goethals frame
(DGF (m, r) for short) [6] is an N × C complex matrix where the
rows are indexed by binary m-tuples x, and the columns are indexed
by pairs (P, b) where P ∈ DG(m, r) is a binary symmetric matrix
and b is a binary m-tuple. The entry in row x ∈ Fm

2 and column
(P, b) is given by

ϕP,b(x) = ıxPx>+2bx> . (1)

Theorem 1. The DGF (m, (m − 1)/2) is weakly democratic; two
sets of rows indexed by affine subspaces of the same dimension are
equivalent.

Proof. All arithmetic in the exponent of (1) takes place in Z4, the
ring of integers modulo 4, and that for all binary vectors w ∈ Fm

2 ,
(x + 2w)P (x + 2w)> = xPx>. Since

(x⊕ y)P (x⊕ y)> = (x + y)P (x + y)>

= xPx> + yPy> + 2yPx>,

it follows that interchanging rows of the DGF indexed by x and x⊕y
can be realized by interchanging columns (P, b) and (P, b+yP ) and
multiplying by the phase factor yPy>. Next, let A be a nonsingular
linear transformation. We have

(xA)P (xA)> = x(APA>)x> = xPAx> + 2dQAx>,

where PA, QA are binary symmetric matrices such that

APA> = PA + 2QA (mod 4),

and dQA is the diagonal of QA. It follows that the permutation of
DGF rows x → xA can be realized as the permutation of columns
(P, b) → (PA, dQA⊕b⊕bA>). Thus, the measurements x ∈ Ω are
equivalent to the measurements in the set x′ ∈ ΩA ⊕ y for a signal
f ′ obtained from a modulation and permutation of the original signal
f . These two operations preserve sparsity, and the corrections can
be implemented during signal recovery.

It can also be shown that the DGF (m, 0) is weakly democratic
in that two sets of rows indexed by affine subspaces of codimension
1 are equivalent.

4. EXPERIMENTS

We now evaluate the CS recovery performance of the structured re-
jection algorithm described in Section 2 via a suite of simulations
and compare it to that of the approach in [3].

Our measurement matrix Φ is the real matrix with N = 2m+1

rows and C = 22m columns obtained from the DGF (m, 0) via
Gray mapping, i.e., doubling the number of rows and storing the real
part of the original matrix in the upper half and the imaginary part in
the lower half.

To perform vector quantization, we used the scalar vector quan-
tizer (SVQ) [7] trained as follows. For each collection Ω of re-
jectable subsets of D measurements considered, we generated a se-
quence of 200 k−sparse α ∈ RC with standard Gaussian nonzero
entries. For each α we calculated N measurements as y = Φα
and rejected the entries of y indexed by the elements of the largest
norm subset from to Ω. A maximum of 10 iterations of the two-step
training algorithm from [7] were performed to fit the quantizer to the
distribution of surviving measurements. We also performed uniform
scalar quantization (USQ) as a baseline [3].

To evaluate the performance of the new approach, 100 measure-
ment vectors y were generated and quantized in the same manner.
Basis pursuit denoising [8] was then used to obtain the estimate of
the signal α̂ using the SPGL1 toolbox [9]. As in [3], the recovery
SNR served as the performance measure:

SNR = 20 log10

‖α‖2
‖α− α̂‖2

Figure 1 plots the recovery SNR versus the rejection rate D/N of
the structured (Ω = Ωs or Ω⊥

s ) and unstructured (Ω = all subsets
of size D) rejection approaches. The bitrate per surviving measure-
ment after taking into account the rejected index coding overhead is
plotted in Fig. 2. The rejected index coding overhead of the unstruc-
tured rejection is so large that the resulting bitrate per measurement
is smaller than that of the conventional approach (i.e. at D = 0).
As a result, the unstructured rejection approach fails to match the
performance of the conventional approach. Structured rejection al-
lows us to boost the bit rate as D increases; the gain due to finer
quantization outweighs the performance degradation due to the loss
of measurements, as shown in Fig. 1. Once the number of rejected
measurements D becomes large, the tradeoff is broken and the im-
proved quantization accuracy cannot balance the degraded recovery
performance due to undermeasurement. The figure shows that the
tradeoff’s optimal rejection rate D/N is smaller as the measurement
ratio N/C decreases. The results also show that the smaller collec-
tion Ω⊥

s outperforms Ωs, suggesting that having a smaller collection
Ω suffices in this case.

5. CONCLUSION

There is value to redundant measurement in compressed sensing.
With a fixed total bit budget, rejecting D measurements allows to
provide a finer quantization mesh on the measurements that remain.
The result is an improvement in recovery performance: as our sim-
ulation results demonstrate, given N measurements, it is better to
reject up to half of them and quantize the rest finely rather than keep
them all but quantize them coarsely. To realize these gains, weak
democracy of the measurement matrix is required, meaning that
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Figure 1: Reconstruction SNR versus fraction of rejected measurements D/N . We use a DGF (7, 0) measurement matrix on K = 20-sparse
signals α withN (0, 1) nonzero entries. The dimensionality of the signal space is (a) C = 2N (a) and (b) C = 5N (C random columns of the
measurement matrix are used). We use SVQ with block length 32. We set a total bit budget of B = 2N bits. SVQ consistently outperforms
USQ and reaches optimal performance for rejection rates of 1/2 and 1/4, respectively.
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Figure 2: Bitrate per surviving measurement versus D/N for the
total bit budget B = 2N bits. DGF (7, 0).

recovery must be robust to dropping certain subsets of D measure-
ments. The Delsarte-Goethals frame is an example of a deterministic
measurement matrix that is weakly democratic. Future work will
focus on characterizing the optimal points on the rejection-structure
tradeoff to find suitable collections and sizes of rejection supports Ω.
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