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Abstract—In wideband communication one often aims to detect
a weak signal received together with a strong interferer. One
can design a spectrally shaped sequence to be convolved with
the received signal featuring a bandpass for the message and
a notch for the interferer. Unfortunately, when the sequence
must be quantized, commonly used constrained optimization
schemes (e.g., semidefinite programs) are not amenable due to the
spectrum distortion from quantization. We explore an alternative
method that applies random projections on the solution of the
semidefinite program. Our experimental evidence shows that our
proposed method succeeds in finding suitable spectrally shaped
sequences.

Index Terms—wideband communication, analog-to-digital con-
version, sequence design, integer programming, semidefinite
relaxation, rank-one approximation, random projection

I. INTRODUCTION

The bandwidth of wireless communications is increasing
rapidly due to the intense demand of applications such as
cognitive radio and ultrawideband [1, 2]. Dealing with such
large bandwidth requires the receivers to process signals with
a very wide spectrum, resulting in very fast sampling rates and
pushing the receivers to their performance limits: the Nyquist
sampling theorem requires the analog-to-digital converters
(ADCs) to perform at extremely high sampling frequencies.
Recently, compressive sensing techniques have introduced the
random demodulator as an architecture that acquires large
bandwidth signals using a low-rate ADC by leveraging a
randomized convolution operation [3], which has also been
described as a random modulation and/or pre-integration [4].
In essence, the random demodulator convolves the received
signals with a pseudo-random sequence followed by low-rate
sampling. The original signal is then recovered by exploiting
the sparsity property of the underlying signal spectrum.

Another aspect that is commonly observed in wideband
communications is that the received signals are commonly
composed of weak signals of interest from distant sources
(e.g., transmitters away from the receivers) in the presence
of strong signals from nearby sources (e.g., interferers closer
to the receivers). The former and latter components of the
received signals are colloquially called the message and inter-
ferer. It is important to separate and eliminate the interferer
before the message is processed. Thus, it would be desirable
to use a spectrally shaped sequence allowing the message but

stopping the interferer, rather than the default pseudo-random
sequence with a flat spectrum, during demodulation. A recent
contribution on the design of spectrally shaped sequences has
proposed a method using fast Fourier transform and element-
wise operations [2]. However, while the sequence obtained
by this method features excellent spectral shaping, it is also
complex-valued and therefore is difficult to implement at the
circuit level in certain practical applications such as random
demodulation.

In this paper, we consider the problem of designing a
spectrally shaped binary (±1) sequence that improves the
implementation feasibility of filtering during demodulation. In
our examples in this paper, the spectral shape of the sequence
is tailored for message passing and interferer cancellation;
more specifically, we aim to find a binary sequence with
sufficient large spectrum magnitudes for frequencies where
message lies while keeping sufficient small magnitudes for the
frequencies where the interferer may exist. To be more precise,
assume that ΩM and ΩI are two disjoint subsets of normalized
discrete-time frequencies in the range [−π, π) that represent
the frequency occupancies of the message and interferer,
respectively. We then define our problem as the design of
a binary sequence s ∈ {−1, 1}N for which ‖FMs‖22 is
maximized while ‖FIs‖22 is bounded by some interferer power
tolerance α, where FM and FI respectively denote subsets of
the discrete Fourier transform basis elements corresponding to
the frequencies in the message and interferer bands ΩM and
ΩI , respectively. However, the binary constraint renders this
optimization problem NP-hard.

It is easy to show that the optimization problem defined
above can be written as a convex semidefinite programming
(SDP) problem with an additional (non-convex) rank-one
constraint. Relaxing the SDP problem by dropping the rank
constraint makes the problem convex and easily solvable but
leaves behind the issue of extracting a feasible sequence
from the resulting SDP matrix solution if it does not have
unit rank. It is common to approximate the solution to the
rank-constrained optimization by obtaining the best rank-one
approximation to the SDP solution, which can be obtained
from the eigenvector with the largest eigenvalue in a manner
similar to principal component analysis. Nonetheless, while
the resulting eigenvector does exhibit the desired spectral
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shaping (as will be shown in the sequel, cf. Figure 2),
this eigenvector does not meet the binary constraint of our
original problem, and the necessary quantization required on
this eigenvector severely affects the spectral shape of the
sequence. It has also been shown recently that an alternative
SDP relaxation can return a matrix solution with rank at
most two [5]. However, the formulation requires sparsity for
the matrices involved in the quadratic objective function and
constraints, a property that is not present in our application.

As an alternative to the methods listed above, we leverage
a random projection technique as an alternative approach to
obtain quantized solutions to the spectrally shaped sequence
design problem, as originally proposed by Goemans and
Williamson [6] for the max-cut binary optimization problem.
A significant amount of literature extends this method to solve
the problem approximately under a variety of settings [7–9].
In a nutshell, a randomization strategy returns an approximate
solution that maximizes or minimizes the expected value of
the objective function while the constraints are satisfied in
expectation as well. A single (best) approximation will be
selected from repeated draws of the randomization process
with respect to a suitable criterion for optimality (e.g., by
evaluating the values of the objective function and constraints).

In this paper, we present an algorithm for the design of
spectrally shaped binary sequences that combines the use of
a SDP relaxation and randomized projections that provide
multiple feasible binary sequences. We provide a suitable
criterion to choose a particular instance from the random-
ized projections so that the resulting sequence best matches
the specific constraints on the message band and interferer
band for applications in wideband communications. We show
through our experimental results that, for small-scale versions
of the problem, our randomized method returns the same
binary sequence as the exhaustive search over all possible can-
didates. While exhaustive search becomes prohibitive when the
sequence length is moderately large, we also show examples
of sequences found with our approach that provide suitable
spectral shaping for practical applications.

II. BACKGROUND

A. Spectrally Shaped Binary Sequence Design

A spectrally shaped sequence for modulation purposes pro-
vides a passband and a notch for pre-determined message
and interferer bands. A power-based approach for designing a
length-N binary sequence can be written as

ŝ = arg max
s∈{−1,1}N

‖FMs‖22

s.t. ‖FIs‖22 ≤ α, (1)

for some interferer power tolerance α > 0. Here FM and
FI collect all discrete Fourier transform basis elements cor-
responding to the message band ΩM and the interferer band
ΩI , respectively. It is commonly known that such an integer
optimization problem is NP hard; furthermore, an exhaustive
search is too inefficient to be used except in cases where the
sequence length is very small.

It is equivalent to formulate the sequence design (1) as
a quadratic optimization problem. By defining a rank-one
matrix S = ssT , the objective function in (1) has a linear
representation with respect to S as follows:

‖FMs‖22 = sTFH
MFMs = trace

(
FH

MFMss
T
)

= trace
(
FH

MFMS
)
, (2)

where (·)T and (·)H denote the transpose and Hermitian
(conjugate transpose) operations, respectively. Similarly, the
constraint can be written as ‖FIs‖22 = trace

(
FH

I FIS
)
. On

the other hand, any matrix S can be factorized as ssT if S
is positive semidefinite and rank (S) = 1. Therefore, we can
reformulate the sequence design (1) as the following quadratic
optimization problem:

Ŝ = arg max
S∈RN

trace
(
FH

MFMS
)

s.t. trace
(
FH

I FIS
)
≤ α,

Sii = 1, i = 1, 2, . . . , N,

S � 0,

rank (S) = 1. (3)

Here, S � 0 denotes that S is positive semidefinite. The
constraints on the diagonal elements Sii = 1 guarantee the
binary nature of the sequence s.

Although (3) is as difficult to be solved as (1), the only
non-convex constraint included in (3) is the rank constraint
rank (S) = 1, and the objective function and all other
constraints are convex with respect to S. Thus, previous
research work has focused on addressing this single non-
convex constraint.

B. Semidefinite Relaxation

To approximately solve (3), one may choose to simply drop
the rank constraint to obtain the following relaxation:

Ŝ = arg max
S∈RN

trace
(
FH

MFMS
)

s.t. trace
(
FH

I FIS
)
≤ α,

Sii = 1, i = 1, 2, . . . , N,

S � 0. (4)

The resulting convex problem is the SDP relaxation of (1)
and can be efficiently solved by many modern optimization
toolboxes, e.g., SeDuMi or SDPT3.

Through this relaxation, the difficulty of binary sequence
design has been pushed to the extraction of a binary sequence
ŝ that is an optimal feasible solution to (1) from the matrix
solution Ŝ resulting from the SDP (4). If Ŝ is of rank
one, then one can always get the sequence by factorizing
Ŝ = ŝŝT and ŝ will be the feasible and optimal solution
for problem (3). Otherwise, if the rank of Ŝ is larger than
one, alternative approaches are needed to extract a sequence ŝ
from the solution Ŝ, while observing optimality and feasibility.
Nonetheless, we note that in both cases the extracted sequence
will not be a feasible solution for (1) unless it happens to be
binary, a coincidence that is unlikely to occur in practice.



A common approach to approximate the rank-constrained
solution to (3) leverages the principal eigenvector of Ŝ (i.e.,
the eigenvector with the largest eigenvalue) to construct the
approximation. Specifically, when rank(Ŝ) = r, then Ŝ has
r eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λr > 0 and eigen-
vectors u1, u2, . . . , ur ∈ RN such that its eigendecompo-
sition is given by Ŝ =

∑r
k=1 λkuku

T
k = UΛUT , where

U = [u1, u2, . . . , ur] and Λ is the diagonal matrix such that
diag (Λ) = [λ1, λ2, . . . , λr]. Since λ1u1uT1 is the best rank one
approximation of Ŝ in the Frobenius norm sense, s̃ =

√
λ1u1

would provide the corresponding approximation to the optimal
sequence, provided that it is feasible to (1). Otherwise, a
feasible solution ŝ can be obtained by projecting s̃ into the
feasible solution space. For example, in our binary case, binary
quantization by ŝ = sign (s̃), where sign (·) returns the signs
of all entries, will return a feasible solution.

Although the eigendecomposition above is a simple way of
obtaining a rank-one approximation from the SDP solution Ŝ,
it is not suitable in our problem. As shown in Figure 1, while
the eigenvector with largest eigenvalue provides a very good
match to the desired bandpass filter for the message (which
also filters out the interferer), the binary quantized eigenvector
presents a spectrum that is much less suitable - in particular,
the strength of the spectrum for the message and interferer are
comparable to one another. A more sophisticated scheme to
obtain a binary sequence from the relaxation (4) is needed to
provide better quantized sequences.

III. RANDOMIZED MATRIX APPROXIMATION

As an alternative to the eigendecomposition above, random-
ization also provides a path to obtain approximate solutions
for (1) starting from the matrix solution Ŝ of (4) [6]. Assume
that v ∈ Rr is a random vector whose entries are drawn inde-
pendently and identically according to the standard Gaussian
distribution, i.e., v ∼ N (0, I), where I is the identity matrix.
Let s̃ = UΛ1/2v, where Λ1/2 denotes the element-wise square
root of Λ. We then obtain

s̃ ∼ N
(

0, (UΛ1/2)(UΛ1/2)
T
)

= N
(
0, UΛUT

)
= N (0, Ŝ);

this implies that Ŝ = E
(
s̃s̃T
)
, where E (·) denotes element-

wise expectation. When Ŝ is the optimal solution for (4), s̃
also maximizes E

(
‖FM s̃‖22

)
due to the linearity of the trace:

E
(
‖FM s̃‖22

)
= E

(
trace

(
FH

MFM s̃s̃
T
))

= trace
(
FH

MFM E
(
s̃s̃T
))

= trace
(
FH

MFM S̃
)
. (5)

Similarly, E
(
‖FI s̃‖22

)
= trace(FH

I FI S̃) ≤ α. Thus, the
random variable s̃ maximizes the expectation of the objective
function in (1) and satisfies the corresponding constraint
in expectation. Therefore, the random projection s̃ can be
interpreted as a statistical approximation to the solution of
(4). We can further apply binary quantization to this random
vector to obtain a binary random variable ŝ = sign (s̃).

Algorithm 1 Randomized Binary Sequence Design
Input: message band ΩM , interferer band ΩI , random search

size R, selection score function g(·)
Output: binary sequence ŝ

1: generate Fourier transform bases FM and FI for message
and interferer bands

2: formulate the relaxed SDP problem according to (4)
3: solve optimal solution Ŝ
4: decompose Ŝ = UΛUT

5: for ` = 1, 2, . . . , R do
6: generate random vector v ∼ N (0, I)
7: obtain approximation by projecting s̃` = UΛ1/2v
8: quantize ŝ` = s̃`
9: end for

10: select best binary sequence ŝ = arg max1≤`≤M g(ŝ`)

We propose this combination of SDP and randomized pro-
jection for the design of spectrally shaped binary sequences,
as shown in Algorithm 1. We begin by formulating the
relaxed SDP problem (4) according to the pre-determined
message and interferer bands. We note that in practice the
message and interferer bands do not need to be restricted to
a single continuous interval. After solving (4), we obtain the
eigendecomposition of the solution matrix Ŝ and use it to
project multiple draws of the random vector v that achieve the
desired spectral shaping in expectation; the number of draws R
is a parameter of the algorithm. Subsequently, we apply binary
quantization on the multiple random projections {s̃`}R`=1 to
obtain multiple approximated feasible solutions {ŝ`}R`=1 to
the original problem (1). Finally, a selection score function
g(·) that measures the quality of the approximation is used
to select the best-performing option among the randomized
approximations.

It is intuitive to use the objective function in (1) as the
selection score function, i.e., g(s̃l) = ‖FM s̃l‖22. However,
there is no guarantee that maximizing the message spectrum
power will provide attenuation for the interferer with respect to
the message; an example exhibiting such lack of attenuation is
shown in Figure 2. To ensure the presence of such attenuation,
we can use a selection score function as the ratio between
the minimum magnitude of the spectrum in the message band
and the maximum magnitude of the spectrum in the interferer
band; this ratio is formally written as

g(s̃l) =
min |FM s̃l|
max |FI s̃l|

, (6)

where the absolute value is taken in an entry-wise fashion and
the minimum and maximum are evaluated over the entries
of the corresponding vectors. Maximizing this ratio has the
potential to select desirable sequences to meet the spectral
shaping requirements, as our numerical experiments in the next
section will show.
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Fig. 1. Normalized spectra for the original eigenvector (left) and the eigenvector after binary quantization (right). Black and red markers denote the interferer
and message bands. Spectra are normalized with respect to the mean magnitude of the message band.

−1 −0.5 0 0.5 1
−40

−30

−20

−10

0

10

Frequency, π rad

N
o

rm
a

liz
e

d
 M

a
g

n
it
u

d
e

, 
d

B

−1 −0.5 0 0.5 1
−40

−30

−20

−10

0

10

Frequency, π rad

N
o

rm
a

liz
e

d
 M

a
g

n
it
u

d
e

, 
d

B

Fig. 2. Normalized spectra of example binary sequence that, among the R = 10000 random projection draws, maximizes the message spectrum power (left)
and the message-to-interferer spectrum magnitude ratio (6) (right). Black and red markers denote the interferer and message bands. Spectra are normalized
with respect to the mean magnitude of the message band.

IV. NUMERICAL EXPERIMENTS

To show the performance of our binary spectrally shaped
sequence design procedure (Algorithm 1), we conduct several
experiments under varying sequence lengths N and number
of random draws R. The message and interferer bands corre-
sponding to consecutive intervals of widths |ΩM | and |ΩI |,
respectively, are separated from each other by ∆ discrete-
time frequency samples, and are chosen uniformly at random
from all feasible choices in the N discrete-time frequency
samples in the frequency range [−π, π). We also set the power
tolerance for the interferer band to α = 0.1|ΩI |.

In the first experiment, we test the performance of our pro-
posed algorithm on the design of spectrally shaped sequences
with small length. As a baseline, we use the same selection
score function (6) to select a binary sequence in an exhaustive
search over all 2N available options. Such an exhaustive search
is only feasible for sufficiently small values of N ; in this case,
we set N = 16. To compare the performance of our proposed
approach against the baseline, we define the approximation
accuracy for Algorithm 1 as the ratio

A =
g(ŝ)

mins∈{−1,1}N g(s)
.

Figure 3 shows the mean and median approximation accuracy
over 1000 trials (with each trial corresponding to a different
draw of message and interferer bands) as a function of the size
of the random search R. Here we set |ΩM | = |ΩI | = ∆ = 2
and the random search size R varies in the range of [50, 500].
It is clear from the median accuracy that our proposed ran-
domized method has the potential to return the same sequences
with the largest spectrum ratio (6) as the exhaustive search.
This fact is particularly remarkable given than its search size
is less than 1% of the size of exhaustive search.

In the second experiment, we test the performance of the
proposed algorithm on the design of larger-scale sequences.
Figure 4 presents the average spectrum ratio (measured in dB)
as a function of both the width of the interferer band |ΩI | and
the spacing ∆ between message and interferer bands; we fix
N = 256 and |ΩM | = 25, |ΩI | and ∆ both vary between 1
to 10, and we run 100 random trials for each pair of values.
The performance of our proposed algorithm decreases as the
interferer width increases; this behavior is intuitive because a
large interferer bandwidth will restrict the space of sequences
that are feasible. More surprisingly, we have that the band
spacing has little effect on the performance of the design of
binary sequence using the random approach.
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Fig. 4. Average spectrum ratio (6) in dB as a function of interferer width
|ΩI | and band spacing ∆ for the proposed randomized method. The average
is taken over 100 randomized trials for each pair of values.

V. CONCLUSION

In this paper, we propose an algorithm to design a spectrally
shaped binary sequence. Our specific spectral shaping provides
a passband and a notch for a pair of pre-determined message
and interferer bands, respectively. We first pose the sequence
design problem as a SDP problem (which is a common convex
relaxation) and combine it with a random projection based on
the solution to the SDP to obtain an approximation to the
optimal sequence in a statistical sense. The statistical nature
of the approximation process implies that the quality of the
approximation can be increased by sampling the underlying
random process an increasing number of times and selecting
the draw that maximizes a particular suitability metric, which,
in our case, is the ratio between the spectra of the message
and interferer bands. Our experiments show that for small
sequence lengths the randomized method is able to obtain
the same optimal sequences as the exhaustive search at a
fraction of the search cost, which shows promise for the use of
our randomized method in spectrally shaped binary sequence
design featuring larger length. Additionally, we find from the
experiments that for longer sequences the interferer width
plays a more significant factor in the quality of the obtained

binary sequences than the band spacing.
Many questions remain open both on the analysis and

possible refinements of our algorithm. For example, the binary
constraint on the sequence places a significant limitation on
the design space for the desired sequence. More flexible
quantization schemes that allow for multiple levels in the
values of the sequence may improve the performance of our
randomized method. Furthermore, one could consider changes
to the objective function and the constraints (e.g., switching the
two) and to the selection score function in order to make them
more relevant to other types of applications. Possible examples
include considering the dynamic range of the message and
interferer spectra or the allocation of transmission power to
different parts of the spectrum.
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