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1 Introduction

In compressed sensing (CS) [1–3], we wish to sense a signal f ∈ RC by taking its
product with a matrix Φ ∈ RN×C to obtain a measurement vector y ∈ RN . We
refer to the rows of Φ as the projection vectors, as measurements y correspond
to projections, or inner products, of the signal f onto the rows of the matrix
Φ. When N � C, this acquisition scheme effectively compresses the signal f .
Since in this case the signal recover problem is ill posed, one must exploit prior
information on the signal such as sparsity or compressibility. For example, we
say a signal is K-sparse if only K out of the C entries of f are nonzero.

CS relies on the use of sparse approximation algorithms, as well as specially
tailored signal recovery algorithms based on sparsity, to recover the signal f
from the measurements y and the CS matrix Φ. Most work in CS relies on
random constructions on the matrix Φ; that is, the entries of the matrix are
drawn independently from a suitable probability distribution such as Gaussian
or Rademacher. Such matrices have been shown to provide enough information
about a K-sparse signal f through the measurements y when N = O(K log C).

1.1 The Delsarte-Goethals Frame

The Delsarte-Goethals Frame [4] (DGF) was proposed as a deterministic CS
matrix construction that enables efficient recovery of almost all sparse signals
without the use of randomness in the generation of the measurement matrix.
The matrix uses the Delsarte-Goethals set of matrices DG(m, r), with m, r ∈ Z.
This set is a vector space containing 2(r+1)m binary symmetric matrices of size
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Figure 1: Example Delsarte-Goethals frame ϕ with C = 64 and N = 8. Each
row is labeled by a binary vector x ∈ F3

2, and each column is labeled by a pair
(P, b), with P ∈ DG(m, r) and b ∈ F3

2.

m ×m with the property that the difference of any two distinct matrices has
rank at least m− 2r.

The DGF ϕ is a CS matrix of size N = 2m and C = 2mR, with R ∈
[1, 2m(r+1)] an integer. We index the rows of ϕ with elements x ∈ Fm

2 , repre-
sented as binary vectors of length m. starting with 0, the zero vector. Similarly,
we index the columns with the ordered pairs (P, b), where P ∈ DG(m, r) and
b ∈ Fm

2 . In this way, we label and define the entry of ϕ in row x and column
(P, b) as follows:

ϕP,b(x) = ixPx>+2bx> .

Here x> denotes the transpose of x. Note that all the arithmetic in the ex-
pressions xPx> + 2bx> takes place in the ring of integers modulo 4, since
the expression appears as an exponent for i =

√
−1. Given P, b, the vector

xPx> + 2bx> is a codeword in the Delsarte-Goethals code (defined over the
ring of integers modulo 4). For a fixed matrix P , the 2m columns ϕP,b, b ∈ Fm

2

form an orthonormal basis ΓP that can also be obtained by postmultiplying the
Walsh-Hadamard basis by the unitary transform diag

[
ixPx>

]
. Consequently,

when P has zero diagonal, the resulting basis ΓP has real-valued entries. We
expand our discussion of real-valued DGFs in Section 3. Figure 1 shows an
example DGF for C = 64 and N = 8 (m = 3).

1.2 The Haar Wavelet Basis

The Haar Wavelet Basis provides a set of piecewise smooth functions of different
support sizes and magnitudes, thanks to its multiscale analysis properties. The
first basis function has a constant value throughout its support; all other func-
tions have only two distinct nonzero values, each covering half of the function’s
support. We now define notation for the Haar wavelet basis functions. Our
description here is for 1-D wavelets for simplicity, but the concepts can easily
be extended to 2-D wavelets.

A length-C Haar wavelet ψs,j (where C is a power of 2) is labeled according
to its scale s = 0, . . . , log2 C − 1, and its offset j = 0, . . . , 2s − 1. Its entries are

2



denoted by ψs,j(n), n = 0, . . . , C − 1. For the scale s = 0, we also define the
Haar scaling function:

φ(n) =
√

1/C, 0 ≤ n ≤ C − 1.

The mother Haar wavelet is defined as

ψ(n) =


√

1/C 0 ≤ n < C/2,
−

√
1/C C/2 ≤ n < C,

0 otherwise.

The Haar wavelets at different scales and offsets are generated through dilation
and translation:

ψs,j(n) =
√

2sψ(2sn− Cj).

Specifically, for scales 0 ≤ s < log2 C and offsets 0 ≤ j < 2s, the Haar wavelet
is defined as follows:

ψs,j(n) =


√

2s/C 2−sCj ≤ n < 2−sC(j + 1/2),
−

√
2s/C 2−sC(j + 1/2) ≤ n < 2−sC(j + 1),

0 otherwise.

This structure for the support of the wavelets (i.e., the location of its nonzero
values) is known as a dyadic structure: the wavelet’s support is of size 2−sC,
and the offset is a multiple of its size. For simplicity, we denote by Ds,j the set
of indices in the dyadic interval at scale s and offset j:

Ds,j = {2−sCj, 2−sCj + 1, . . . , 2−sC(j + 1)− 1}.

For example, using this notation, we can write

ψs,j(n) =
√

2s/C
(
χDs+1,2j (n)− χDs+1,2j+1(n)

)
,

where χP(n) denotes the indicator function for the set P on n; thus we have
that the support of ψs,j is Ds,j .

It is easy to check that the wavelets defined above have unit norm and are
orthogonal to each other, making an orthonormal basis for RC . We collect the
functions ψs,j as the columns of a Haar wavelet basis matrix Ψ, so that its
columns are indexed by the ordered pairs (s, j), 0 ≤ s < log2 C, 0 ≤ j < 2s and
its rows are indexed by n, 0 ≤ n ≤ C.

1.3 Contributions

The DGF stands out because of its deterministic nature and the fast signal
recovery algorithms enabled by its construction [4]. However, the DGF must
be applied directly on a sparse or compressible vector. That is, the signal f
measured using the CS matrix ϕ must be sparse or compressible in the canonical
domain. While most natural images do not have this property, transforms
used for image compression are suitable to obtain sparsity or compressibility,
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Figure 2: Example dyadic column intervals for a DGF of size C = 64, N = 8
(m = 3).

with examples including the 2-D discrete cosine transform and the 2-D discrete
wavelet transform.

In this report, we show the performance of DGF for signal recovery is sen-
sitive to the presence of nonzero clusters in the sparse vector to be recovered.
Such a property appears, for example, in piecewise smooth signals that are
sparse in a wavelet domain. Specifically, we show that there exist many pairs of
Haar wavelets of sufficiently coarse scales whose linear combination lies in the
null space of the DGF. In the case of canonically sparse signals, this property
means that the DGF has sub-optimal recovery performance for sparse signals
whose support is clustered within the coefficient vector, as there is a nonnegli-
gible component of the signal that projects to the null space of the DGF. The
sensitivity can be bypassed by reordering the elements of the vector being sensed
or, equivalently, permuting the columns of the DGF before sensing [5].

2 Dyadic Column Sums of the DGF

We now consider the sum of columns of the DGF that correspond to the support
of a dyadic wavelet. For each scale-offset pair (s, j), we let the set Is,j ⊆
DG(m, r)×Fm

2 denote the pairs (P, b) for the columns at the positions contained
in the dyadic interval Ds,j ; we call Is,j a dyadic column interval. Some examples
are shown in Figure 2. Thus, one can write fs,j = ϕψs,j , which yields

fs,j(x) =
∑

(P,b)∈Is+1,2j

ϕP,b(x)−
∑

(P,b)∈Is+1,2j

ϕP,b(x). (1)

We begin by stating some properties of these subsets Is,j .

Proposition 1. If s ≥ log2(C/N) = log2R, then Is,j = {Ps,j} × Fs,j, where
Ps,j is a fixed matrix in DG(m, r)\DG(m, 0), and Fs,j = as,j ⊕Flog2 C−s

2 , with
as,j ∈ Fs−log2 R

2 .
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In words, Fs,j is a subset of Fm
2 whose elements share the s − log2R most

significant bits; fluctuations on later bits span the subset. Thus, for s ≥
log2(C/N) = log2R, the subset Is,j is defined by the matrix Ps,j and the
“header” as,j containing the fixed most significant bits of b over Is,j .

Proposition 2. If s ≤ log2(C/N) = log2R, then Is,j = Ps,j × Fm
2 , where Ps,j

is a subset of DG(m, r) \DG(m, 0) containing 2−sC matrices.

Proof sketch. Since the offset and size of the interval Is,j is a multiple of
N = 2m, the selected columns include the set of bases ΓP for a subset of matrices
P used in the construction of the DGF (as defined in Section 1.1).

Armed with this properties, we consider the behavior of “dyadic sums” of
columns of ϕ, defined as

Ss,j(x) :=
∑

(P,b)∈Is,j

ϕP,b(x),

which simplifies the calculation in (1) to

ys,j(x) =
√

2s+1/C(Ss+1,2j(x)− Ss+1,2j+1(x)).

Lemma 1. For s ≤ log2(C/N), we have

Ss,j(x) =
{
|Is,j | x = 0,
0 x 6= 0.

Proof. We write

Ss,j(x) =
∑

(P,b)∈Is,j

ϕP,b(x) =
∑

P∈Ps,j

∑
b∈Fm

2

ixPx>+2bx> =
∑

P∈Ps,j

ixPx>
∑

b∈Fm
2

i2bx>.

For x 6= 0 the second sum is equal to zero, rendering Ss,j(x) = 0. When x = 0,
the second sum is equal to N . Additionally, since x = 0, the first sum is equal
to |Ps,j |, and so we have

Ss,j(x) = |Ps,j |N = |Is,j |,

proving the lemma.
For the next lemma, we denote by Bl1:l2(x) the subset of bits {l1, . . . , l2} from

the binary vector x ∈ Fm
2 . For example, B1:l(x) contains the l most significant

bits of the binary vector x. Similarly, Bl+1:m(x) contains the remaining bits of
x.

Lemma 2. For s ≥ log2(C/N), we have that Ss,j(x) can only take one of these
values: {0, 2−sC,−2−sC}.
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Proof. We write

Ss,j(x) =
∑

(P,b)∈Is,j

ϕP,b(x) =
∑

b∈Fs,j

ixPs,jx>+2bx>

= ixPs,jx>
∑

b∈Flog2 C−s
2

i2as,jB1:s−log2 R(x)+2bBs−log2 R+1:m(x)>

= ixPs,jx>+2as,jB1:s−log2 R(x)
∑

b∈Flog2 C−s
2

i2bBs−log2 R+1:m(x)>. (2)

For Bs−log2 R+1:m(x) 6= 0 the sum is equal to zero, rendering Ss,j(x) = 0. When
Bs−log2 R+1:m(x) = 0, the sum is equal to 2−sC. Finally, note that the exponent
on the first term is even, proving the lemma.

Now comes our final result. We consider the linear combination of two Haar
wavelets projected by the DGF at the same scale ηs,j1,j2,±(x) = ys,j1 ± ys,j2 ,
and look to determine which combinations of wavelets belong in the nullspace
of ϕ.

Theorem 1. For 1 ≤ s ≤ log2(C/N) and 0 ≤ j1, j2 < 2s, j1 6= j2, we have
ηs,j1,j2,+ = 0 if

• s < log2(C/N) (for all j1, j2);

• log2(C/N) ≤ s ≤ log2(C/N) + 2r, as,j1 = as,j2 (that is, the two dyadic
wavelet intervals are at the same position within the domain of the corre-
sponding DG matrices Ps,j1 6= Ps,j2) and x(Ps,j1 − Ps,j2)x

> = 0(mod 4)
for all x ∈ Fm

2 such that Bs−log2 R+1:m(x) = 0; or

• s ≥ log2(C/N) and x(Ps,j1−Ps,j2)x
> = 2(as,j2−as,j1)B1:s−log2 R(x)> (mod 4)

for all x ∈ Fm
2 such that Bs−log2 R+1:m(x) = 0.

The conditions also hold for ηs,j1,j2,− = 0 by adding a term of 2 in the equalities
(mod 4).

Note that it is no clear whether the third condition can hold, and the num-
ber of scales for which the second condition can hold is dependent on the set
DG(m, r) used in the DGF. For the Kerdock set DG(m, 0), s = log2(C/N).

Proof. We begin by writing

ηs,j1,j2,±(x) =
√

2s+1/C[(Ss+1,2j1 − Ss+1,2j1+1)± (Ss+1,2j2 − Ss+1,2j2+1)]. (3)

Lemmas 1 and 2 show that the value of a dyadic sum of a given scale can take
only two or five distinct values, respectively, depending on the scale s used.
When s < log2(C/N), Lemma 1 provides ηs,j1,j2,± = 0 for all j1, j2; this gives
the first condition in the theorem. When s ≥ log2(C/N), the sums from (2)
involved in (3) vanish for all x with Bs−log2 R+2:m(x) 6= 0, and so we have

ηs,j1,j2,±(x) = 0 if Bs−log2 R+2:m(x) 6= 0.
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If Bs−log2 R+2:m(x) = 0, all terms inside the sum in (2) are equal to one and
each of the sums involved in (3) are equal to 2−s−1C. With this information,
and plugging (2) in (3), we obtain

ηs,j1,j2,±(x) =
√

2−s−1C
[
ixPs,j1x>+2as,j1B1:s−log2 R(x)>

(
(−1)0·Bs−log2 R+1(x) − (−1)1·Bs−log2 R+1(x)

)
±ixPs,j2x>+2as,j2B1:s−log2 R(x)>

(
(−1)0·Bs−log2 R+1(x) − (−1)1·Bs−log2 R+1(x)

)]

=


√

2−s+1C
[
ixPs,j1x>+2as,j1B1:s−log2 R(x)>

±ixPs,j2x>+2as,j2B1:s−log2 R(x)>
]

if Bs−log2 R+1(x) = 0,
0 if Bs−log2 R+1(x) = 1.

We then have that ηs,j1,j2,+(x) = 0 for all x ∈ Fm
2 if for all x ∈ Fm

2 such that
Bs−log2 R+1:m(x) = 0,

xPs,j1x
> + 2as,j1B1:s−log2 R(x)> = xPs,j2x

> + 2as,j2B1:s−log2 R(x)> (mod 4)

and ηs,j1,j2,−(x) = 0 if

xPs,j1x
>+2as,j1B1:s−log2 R(x)> = xPs,j2x

>+2as,j2B1:s−log2 R(x)>+2 (mod 4),

which is the third condition given in the theorem. We focus on ηs,j1,j2,+(x) and
study a couple of special cases.

• If Ps,j1 = Ps,j2 , then we need 2as,j1 x̄
> = 2as,j2 x̄

> for all x̄ ∈ Fs−log2 R
2 .

This is only possible if as,j1 = as,j2 , which is a contradiction with j1 6= j2
and Ps,j1 = Ps,j2 .

• If Ps,j1 6= Ps,j2 and as,j1 = as,j2 = a0, then we obtain

ηs,j1,j2,±(x) =
√

2−s+1C i2a0B1:s−log2 R(x)>
[
ixPs,j1x> ± ixPs,j2x>

]
. (4)

This implies that (Ps,j1 + Ps,j2) has rank at most m − s + log2(C/N).
Since the DGF class of matrices forces this rank to be at least m − 2r,
we may have ηs,j1,j2,± = 0 (i.e., sums of wavelets at scale s are in the
null space) only if s ≤ log2(C/N) − 2r. Therefore this can only occur if
log2(C/N) ≤ s ≤ log2(C/N) + 2r.

This gives the second condition in the theorem.

3 Real-valued versions of the DGF

In certain cases, we desire a CS matrix with real-valued entries; there are two
possible approaches to adapt the DGF to a real-valued CS matrix. We now
show that for each one of these options, the argument in the proof of Theorem 1
can be easily adapted, and therefore the same vectors are in the null space of
the real-valued versions of the DGF.

7



l g(l)
1 [1 1]
i [1 − 1]
−1 [−1 − 1]
−i [−1 1]

Table 1: Gray map table.

First, one can restrict the matrices P ∈ DG(m, r) to the subset of the DG
set of matrices with zero-valued diagonal entries. With such a restriction, the
term xPx> = 2

∑
0≤i<j<2m xixjPi,j is an even number, rendering the entries

of ϕ real-valued. In this case, Theorem 1 can be applied without change, since
the result is not dependent on the particular choice of matrices P .

Alternatively, one can create a CS matrix having twice as many rows as the
DGF by applying the Gray map g : {1,−1, i,−i} → {−1, 1}2 to the entries of ϕ,
given in Table 1. The Gray map has the property that the norm of the difference
between any two powers of i is equal to the norm of the difference of their Gray
map image vectors. The new Gray-mapped CS matrix, which we denote by
ϕG, has 2m+1 rows and 2m(r+1) columns indexed by (h, x) ∈ F2 × Fm

2 and
(P, b) ∈ DG(m, r)×Fm

2 , respectively. By defining the equivalence P = P ′+dP ,
where dP is the extracted diagonal of P and P ′ is the remainder of P , the entries
of ϕG can be written as follows:

ϕG
P,b(h, x) = ixP ′x>+2bx>+2hε1(dP x>)+ε2(dP x>),

where

ε1(l) = l mod 2 and ε2(l) =
{

0 if l = 0, 1 mod 4,
2 if l = 2, 3 mod 4,

i.e., ε1 and ε2 extract the two bits of the binary representation of l mod 4. Since
the dependence of ϕG

P,b(h, x) on b is the same as that of ϕP,b(x), it is easy to see
that the proof of Theorem 1 is extendable to dyadic sums of the Gray-mapped
DGF.
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