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ABSTRACT

The Delsarte-Goethals frame has been proposed for determin-
istic compressive sensing of sparse and compressible signals.
Its performance in compressive imaging applications falls short
of that obtained for arbitrary sparse vectors. Prior work has
proposed specially tailored signal recovery algorithms that par-
tition the recovery of the input vector into clustered and unclus-
tered portions. In this paper we present a formal analysis of the
Delsarte-Goethals frame that shows that its hampered perfor-
mance in compressive imaging is due to the presence of clus-
tered sparse vectors in its null space. Such a clustered struc-
ture is characteristic in commonly-used raster scanning of 2-
D wavelet representations. We also show that a simple ran-
domized raster scanning of the wavelet coefficient vector can
remedy these shortcomings, allowing the use of standard recov-
ery algorithms. Additionally, we propose an alternative deter-
ministic raster scanning that achieves similar recovery perfor-
mance. Experimental results confirm the improvements in re-
covery performance for both the noiseless and noisy measure-
ment regimes.
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1. INTRODUCTION

In compressed sensing (CS) [5, 3], we wish to acquire a signal
f ∈ RC by taking its product with a matrix Φ ∈ RN×C , ob-
taining a measurement vector y ∈ RN . When N � C, this
acquisition scheme effectively compresses the signal f . Since
in this case the signal recover problem is ill posed, one must
exploit prior information on the signal such as sparsity or com-
pressibility. CS relies on the use of specially tailored signal
recovery algorithms based on sparsity to recover the signal f
from the measurements y and the CS matrix Φ. Most work
in CS relies on random constructions on the matrix Φ; that is,
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the entries of the matrix are drawn independently from a suit-
able probability distribution such as Gaussian or Rademacher.
Such matrices have been shown to provide enough information
about a K-sparse signal f through the measurements y when
N = O(K log C).

The Delsarte-Goethals Frame [2] (DGF) was proposed as a
deterministic CS matrix construction that enables efficient re-
covery of almost all sparse signals without the use of random-
ness in the design of the measurement matrix. The DGF stands
out because of its deterministic nature and a set of accompa-
nying fast signal recovery algorithms [2]. The DGF has been
shown to succeed for recovery of an overwhelming majority of
sparse signals. It is also robust to noise, measurement loss, and
other practical considerations. However, the DGF must be ap-
plied directly on a sparse or compressible vector. That is, the
vector f measured using the CS matrix ϕ must be sparse or
compressible in the canonical domain.

Initial results on the performance of the DGF for determin-
istic compressive imaging were presented by Ni et al. [7, 8],
While most natural images are not themselves sparse or com-
pressible, transforms such as the the 2-D discrete wavelet trans-
form are suitable to obtain sparse or compressible image repre-
sentations. The DGF can then be applied directly to the wavelet
coefficient vector of the image being acquired. It was hinted
in [7] that the DGF may potentially have problems sensing im-
ages due to the characteristic clustered structure that appears
under standard raster scanning of 2-D wavelet coefficients. Ni
et al. proposed a two-stage recovery algorithm that addresses
these concerns by exploiting the concentration of nonzero coef-
ficients in the coarsest scales of the wavelet transform.

In this paper, we study the behavior of the DGF for such
signals with clustered coefficient vectors in additional depth.
Specifically, we show that the DGF performs suboptimally for
recovery of sparse signals whose largest coefficients are con-
centrated (or clustered) within the coefficient vector.1 We prove
formally that there exist sparse vectors exhibiting such cluster-
ing within the null space of the DGF, which implies that there
are clustered coefficient vectors that are provably unrecoverable
from DGF measurements. Additionally, this behavior of the

1It is natural to note that the fraction of sparse signals that are clustered is
vanishingly small, which is part of the reason we are so interested in this matrix.



DGF severely hampers the recovery of coefficient vectors hav-
ing their energy clustered in small groups. The 2-D wavelet
coefficients of natural images are a prominent example of clus-
tered vectors due to the large magnitude of coarse-scale wavelet
coefficients and their concentration within a small portion of the
coefficient vector.

To overcome the recovery issues in compressive imaging
caused by this behavior, we show experimentally an improve-
ment in performance afforded by altering the raster scanning
of the coefficient vector so that the clustered structure of the
nonzero coefficients is diluted. While a random raster scanning
is the easiest approach, it would negate many of the attractive
features due to the deterministic nature of the DGF implemen-
tation. As an alternative, we propose a deterministic alternative
raster scanning that is effective at dissipating the clusters that
appear in standard raster scanning of 2-D wavelet coefficients.
This modification provides substantially improved performance
over the standard use of the DGF [7, 8]. We verify this improve-
ment experimentally for recovery of natural images from both
noiseless and noisy measurements.

This paper is organized as follows. Section 2 provides back-
ground and briefly reviews related work. Section 3 provides our
theoretical results on the performance of the DGF for determin-
istic compressive imaging, and Section 4 details our modified
raster scanning schemes that provide improved performance.
Section 5 ends the paper with validating experimental results.

2. BACKGROUND AND RELATED WORK

The Delsarte-Goethals Frame: The Delsarte-Goethals set
DG(m, r), m, r ∈ Z, is a vector space containing 2(r+1)m bi-
nary symmetric matrices of sizem×mwith the property that the
difference of any two distinct matrices has rank at least m− 2r.

The Delsarte-Goethals frame [2] (DGF) ϕ is a measurement
matrix of sizeN = 2m and C = 2mR, withR ∈ [1, 2m(r+1)] an
integer. Its rows can be indexed using elements x ∈ Fm

2 , repre-
sented as binary vectors of length m. Similarly, its columns can
be indexed using ordered pairs (P, b), where P ∈ DG(m, r)
and b ∈ Fm

2 . In this way, we label and define the entry of ϕ
in row x and column (P, b) as ϕP,b(x) = ixPx>+2bx> . Here
x> denotes the transpose of x. Note that all the arithmetic in
the expressions xPx> + 2bx> takes place in the ring of inte-
gers modulo 4, since the expression appears as an exponent for
i =

√
−1. Given P, b, the vector xPx> + 2bx> is a codeword

in the Delsarte-Goethals code (defined over the ring of integers
modulo 4). For a fixed matrix P , the 2m columns {ϕP,b}b∈Fm

2

form an orthonormal basis ΓP that can also be obtained by post-
multiplying the Walsh-Hadamard basis by the unitary transform
diag

[
ixPx>

]
. In this way, the DGF can be written as a concate-

nation of bases ϕ = [ΓP1 ΓP2 . . .], with the matrix aspect ratio
R = C/N determining the number of bases contained in ϕ.

The DGF is well suited for compressive sensing. In partic-
ular, when normalized to obtain unit-norm columns, its worst-
case coherence value is µ(ϕ) = 1/

√
N and its spectral norm

is ‖ϕ‖2 = C/N (since it is a tight frame). These two proper-

ties guarantee that the matrix enables successful recovery of an
overwhelming majority of sparse signals [2, 9]. In the sequel,
we also write DGF (m, r) for the DGF when the dependence
on m, r must be made explicit.

The Haar Wavelet Basis: The Haar wavelet basis is ar-
guably the simplest construction of a discrete wavelet system.
The basis is completely defined by the scaling function, which
has a constant value throughout its support, and its wavelet func-
tion, which has only two distinct nonzero values of the same
magnitude, each covering half of the function’s support. For C
a power of two, the length-C Haar scaling function is given by

φ(n) =
√

1/C, 0 ≤ n ≤ C − 1.

We also define multiscale Haar wavelet functions ψs,j ; each
function is labeled by its scale s = 0, . . . , log2 C − 1, and its
offset j = 0, . . . , 2s − 1:

ψs,j(n) =


√

2s/C 2−sCj ≤ n < 2−sC(j + 1/2),
−

√
2s/C 2−sC(j + 1/2) ≤ n < 2−sC(j + 1),

0 otherwise.

This structure for the support of the wavelet (i.e., the location of
its nonzero values) is known as a dyadic structure: the wavelet’s
support is of size 2−sC, and the offset is a multiple of its size.
For simplicity, we denote byDs,j the set of indices in the dyadic
interval at scale s and offset j:

Ds,j = {2−sCj, 2−sCj + 1, . . . , 2−sC(j + 1)− 1}. (1)

Raster scanning of wavelet representations: Wavelet coef-
ficient vectors of natural images exhibit significant structure on
the location of the largest-magnitude entries within the coeffi-
cient vector. The wavelet coefficients are usually raster scanned
first by scale, and then by offset:

fw = [s0,0 w0,0 w1,0 w1,1 w2,0 . . . w3,0 . . .].

Here s0,0 denotes the scaling coefficient, and ws,j denotes the
wavelet coefficient at scale s and offset j. When a partial-level
wavelet transform is used, the raster scan begins with the multi-
ple scaling coefficients, rasterized into a vector form, followed
by the wavelet coefficients ordered as in (1).

Wavelet transforms of natural images have certain properties
that affect the configuration of their raster-scanned representa-
tions. First, the coefficients decay in magnitude as the scale
increases, resulting in a concentration of the largest coefficients
in the beginning of the vector. Furthermore, the number of 2-D
wavelet coefficients of an image at scale s is equal to 3 · 4s, im-
plying that the largest coefficients of the signal are concentrated
within a very small portion of the vector.

Related Work: Leveraging the properties of wavelet repre-
sentation vectors, Ni et al. proposed a two-stage recovery algo-
rithm [7]. The first stage estimates the coefficients at coarsest
scales using a submatrix projection, which due to their location
entails a simple projection into the basis ΓP1 . The second stage
estimates the remainder of the coefficient vector using a greedy
sparse signal recovery algorithm. The incremental nature of the



Fig. 1. Example dyadic column intervals for a DGF of size
C = 64, N = 8 (m = 3).

proposed estimation algorithm reduces the number of nonzeros
of the signal being estimated, resulting in an improvement over
standard CS recovery of the full coefficient vector.

3. THE NULL SPACE OF THE DGF

In this section, we study the behavior of the DGF when applied
to clustered coefficient vectors. More specifically, we focus on
linear combinations of Haar wavelets; these functions are piece-
wise constants and have dyadic supports, which line up with
subgroups of the index sets (P, b) assigned to columns of the
DGF. The measurement vectors for these functions correspond
to averages of the columns in subgroups of the index set which,
as we will show, vanish under specific conditions. Thus, these
functions are included in the null space of the DGF.

We begin by defining notation that will simplify the expo-
sition. For each dyadic wavelet scale-offset pair (s, j), we let
the set Is,j ⊆ DG(m, r) × Fm

2 denote the pairs (P, b) for
the columns at the positions contained in the dyadic interval
Ds,j ; we call Is,j a dyadic column interval. Some examples are
shown in Figure 1. We provide some properties of the column
indices (P, b) contained in the subsets Is,j .

Proposition 1. If s ≥ log2R, then Is,j = {Ps,j}×Fs,j , where
Ps,j is a fixed matrix inDG(m, r), andFs,j = as,j⊕Flog2 C−s

2 ,
with as,j ∈ Fs−log2 R

2 .

In words, Fs,j is a subset of Fm
2 whose elements share the

s − log2R most significant bits; fluctuations on later bits span
the subset. Thus, the subset Is,j is defined by the matrix Ps,j

and the “header” as,j containing the fixed most significant bits
of b over Is,j .

We now consider the linear combination of two Haar
wavelets projected by the DGF at the same scale ηs,j1,j2,±(x) =
ϕ(ψs,j1 ± ψs,j2), and look to determine which combinations of
wavelets belong in the null space of ϕ, N (ϕ). The following
theorem is proven in [6].

Theorem 1. Let ϕ denote the DGF (m, r) and write xh,l and
xf,l for the first and last l entries of the vector x ∈ Fm

2 , 1 ≤
l ≤ m, respectively. For 0 ≤ s < log2 C and 0 ≤ j1, j2 < 2s,
j1 6= j2, we have ηs,j1,j2,+ = 0 (i.e., ψs,j1 ± ψs,j2 ∈ N (ϕ)) if

• s < log2R (for all j1, j2);

• log2R ≤ s ≤ log2R+ 2r, as,j1 = as,j2 (that is, the two
dyadic wavelet intervals are at the same position within
the domain of the corresponding bases ΓPs,j1

, ΓPs,j2
) and

x(Ps,j1 −Ps,j2)x
> = 0(mod 4) for all x ∈ Fm

2 such that
xf,log2 C−s = 0; or

• s ≥ log2R and x(Ps,j1 − Ps,j2)x
> = 2(as,j2 −

as,j1)x
>
h,s−log2 R (mod 4) for all x ∈ Fm

2 such that
xf,log2 C−s = 0.

The conditions also hold for ηs,j1,j2,− = 0 by adding a term of
2 in the equalities (mod 4).

The theorem shows that there exist vectors with 2N nonze-
ros, composed of the sum or difference of two Haar wavelets,
that belong in the null space of the DGF. We have also found
experimentally vectors with significantly fewer nonzeros that
are in N (ϕ). As an example, for the DGF (15, 0) and the
DGF (13, 0), we have found vectors of sparsity ‖f‖0 = 1024
in their null spaces, composed of the difference of two Haar
wavelets at scales s = 9 and s = 7, respectively.

The proof of Theorem 1 can be extended to real-valued adap-
tation using (a) zero-diagonal DG matrices P , as used in [7],
and (b) by generating a larger matrix from the DGF via the Gray
map; see [6] for details. We note in passing that the two-step ap-
proximation of [7] separates the recovery of the clustered por-
tion from the coefficient vector, covering its firstN entries, from
the recovery of the unclustered portion. Thus, the approach al-
leviates the issues described in the theorem by recovering the
clustered portion without using sparsity-based tools.

4. ALTERNATIVE RASTER SCANNINGS

A simple approach to alleviate the issues of the DGF with clus-
tered sparse and compressible coefficient vectors is to modify
the raster scanning of the coefficients so that the clustered struc-
ture is dissipated. It is easy to show that a random raster scan-
ning will dissipate the clustering with high probability. How-
ever, a random raster scanning is not completely compatible
with the DGF, as it nullifies several useful properties of its deter-
ministic nature, such as scalability in computation to the signal
length and implementation simplicity.

As an alternative, we introduce a deterministic raster scan-
ning that evenly distributes the content of coefficient clusters
and scales across the bases ΓPi

composing the DGF. We start
from the standard raster scanning for wavelet coefficients and
apply a permutation described by the mapping

p(n) = (n mod R)N + bn/Rc,

which provides a bijective mapping of the set {0, . . . , C − 1}
onto itself. In words, the mapping takes each set of consecutive
coefficients of size R and spreads it across the R bases {ΓPi

};
the subsequent blocks are partitioned similarly and ordered lex-
icographically. The resulting raster scanning separates the 2-D
wavelet coefficients at a given scale and adjacent offsets by a



Algorithm SNR (dB) Time (s)
TSA 21.74 1008
BP + Random Raster 23.60 820
IHT + Random Raster 22.25 804
BP + Deterministic Raster 23.52 822
IHT + Deterministic Raster 20.98 813

Table 1. Performance and computational cost of signal recov-
ery algorithms. The use of the proposed raster scannings signif-
icantly improves image recovery performance.

Algorithm σ = 0.01 σ = 0.05 σ = 0.1
TSA 21.64 19.51 16.37
BP + Random Raster 23.41 20.71 18.18
IHT + Random Raster 22.24 20.82 17.20

Table 2. Performance of signal recovery algorithms for noisy
measurements. The use of random raster scanning significantly
improves the performance under the noisy measurement regime.

distance ofN entries within the coefficient vector. Furthermore,
neighboring coefficients in this raster scan either correspond to
different scales or to coefficients for wavelets with offsets whose
difference is equal to N .

5. EXPERIMENTAL RESULTS

In this section, we present some experimental results that val-
idate the improvements in performance of deterministic com-
pressive imaging afforded by the raster scannings proposed in
Section 4. Our experiments use an MRI image of size C =
512×512. We use the Daubechies-8 discrete wavelet transform
to obtain compressible coefficients for the image, and we set the
number of measurements to N = 65536, providing a compres-
sion ratio of 25%. We test the two-step approximation (TSA)
algorithm from [7], basis pursuit (BP) [4], and iterative hard
thresholding (IHT) [1] using the standardDGF (16, 0). We also
test BP and IHT under the proposed raster scannings described
in Section 4. First, we compare the quality and computational
cost of the different approaches; the results, shown in Table 1,
show that under similar computational cost, the proposed ma-
trix designs provide significant improvement in the quality of
recovery. Representative example recovered images are shown
in Figure 2. We also compare the quality of recovery for the dif-
ferent raster scanning approaches when independent and iden-
tically distributed Gaussian noise of variance σ2 is added to the
measurements for several values of σ. The resulting signal-to-
noise ratios (SNRs), shown in Table 2, show once again that
the proposed raster scannings significantly improve the perfor-
mance of image recovery.
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