New Wavelet Coefficient Raster Scannings for Deterministic Compressive Imaging

Marco F. Duarte

UNIVERSITY

Joint work with Sina Jafarpour and Robert Calderbank

Duke CASSI

EPFL Convol. Imager

- Random matrices with i.i.d. subgaussian entries
- Can recover all k-sparse signals if $N = \mathcal{O}(k \log(\mathcal{C}/k))$
- Signal can be sparse/compressible in arbitrary basis
- High complexity for signal recovery costly storage/matrix product for random matrices

Deterministic CS matrices

• Delsarte-Goethals Frame: $\varphi_{P,b}(x) = i^{xPx^{ op}+2bx^{ op}}$

 $\varphi = [H \ D_2 H \ D_3 H \ \dots \ D_R H] \quad D_j = \operatorname{diag}\left(\{i^{xP_j x^T}\}_{x \in \mathbb{F}_2^m}\right)$

[Calderbank, Howard, Jafarpour 2009]

– $N=2^m$ rows indexed by $x\in\mathbb{F}_2^m$ – $\mathcal{C}=2^mR$ columns, $R\in\{1,\ldots,2^{m(r+1)}\}$, indexed by (P,b), $P \in DG(m,r)$, $b \in \mathbb{F}_2^m$

Deterministic CS matrices

- DGF structure allows for efficient matrix multiplication
- Since DGF has small coherence and spectral norm, can *recover most* sufficiently sparse signals via ℓ_1 -norm minimization [Tropp 2008][Calderbank, Howard, Jafarpour 2009]
- No characterization of *failure modes* (sparse vectors in null space of $DGF\varphi$)

Prior Work: DG Frame Imaging

Apply DGF on image's wavelet coefficients:

$$y = \varphi \theta = \varphi \Psi^T f$$

Prior Work: DG Frame Imaging

- Two-Stage Approach (TSA) for DGF Image Recovery:
 - -Estimate $\widehat{\theta_1} = H^{-1}y$
 - Calculate residual $r = y H\hat{\theta}_1$
 - Estimate $[\theta_2 \ \ldots \ \theta_R]$ (remainder of θ) from r using standard CS recovery algorithms

[Ni, Datta, Mahanti, Roudenko, Cochran 2010]

Clustering in Coefficient Vectors

- 2D wavelet coefficients are raster scanned into vectors *from coarsest to finest scales*
- More large coefficients present at coarsest scales, clustered at beginning of rasterized vector
- Can clusters be **to blame** for loss in performance?
- Study if clustered vectors appear in **null space** of φ

Dyadic Column Partitionings

\bullet Begin by considering groupings of columns of φ

- Dyadic partitionings: $I_{s,j} \subseteq DG(m,r) \times \mathbb{F}_2^m$ 2^s sets of $2^{m-s}R$ columns, $s \in [0, \log_2 C), j \in [0, \dots, 2^s)$
- Dyadic partitionings can be written as

$$I_{s,j} = \begin{cases} \{P_l\}_{l \in \mathcal{P}_{s,j}} \times \mathbb{F}_2^m & s \le \log_2(R), \\ \{P_{\lfloor jR/2^s \rfloor}\} \times \left(a_{s,j} \oplus \mathbb{F}_2^{\log_2 \mathcal{C} - s}\right) & s > \log_2(R). \end{cases}$$

Behavior of Dyadic Column Sums

$$S_{s,j}(x) = \sum_{(P,b)\in\mathcal{I}_{s,j}}\varphi_{P,b}(x)$$

- If $S_{s,j}(x) = 0$ for all $x \in \mathbb{F}_2^m$, then columns in $\mathcal{I}_{s,j}$ are *linearly dependent*.
- Properties from group theory allow us to prove:

- If
$$s \leq \log_2 R$$
 then $S_{s,j}(x) = \begin{cases} |\mathcal{I}_{s,j}| & x = 0, \\ 0 & x \neq 0 \end{cases}$

- If $s > \log_2 R$ then $S_{s,j}(x) \in \{0, \pm |\mathcal{I}_{s,j}|\}$

 Many sums vanish, others can cancel each other canceling adjacent dyadic interval sums?

The Amazing Vanishing Haar Wavelets

$$\psi_{s,j}(x) = \begin{cases} \sqrt{2^s/\mathcal{C}} & 2^{-s}\mathcal{C}j \le n < 2^{-s}\mathcal{C}(j+1/2) \\ -\sqrt{2^s/\mathcal{C}} & 2^{-s}\mathcal{C}(j+1/2) \le n < 2^{-s}\mathcal{C}(j+1) \\ 0 & \text{otherwise} \end{cases}$$

• Product $\eta_{s,j} = \varphi \psi_{s,j}$ can be expressed as sum of dyadic intervals:

 $\eta_{s,j}(x) = S_{s+1,2j}(x) - S_{s+1,2j+1}(x)$

- With results on dyadic sums, we have $\eta_{s,j} = 0$ if $s < \log_2 R$
- How about wavelets at finer scales?

Theorem:

Denote the projected difference of Haar wavelets by $\eta_{s,j_1,j_2} = \varphi(\psi_{s,j_1} - \psi_{s,j_2})$. Then $\eta_{s,j_1,j_2} = 0$ if • $s < \log_2 R$, for all j_1, j_2 ; • $\log_2 R \le s \le \log_2 R + 2r$, $a_{s,j_1} = a_{s,j_2}$, and $x(P_{s,j_1} - P_{s,j_2})x^{\top} = 0 \mod 4$ for all x with $\mathcal{B}_{s-\log_2 R+1:m}(x) = 0$ • $\log_2 R \leq s \leq \log_2 R + 2r$ and $x(P_{s,j_1} - P_{s,j_2})x^{\top} = 2(a_{s,j_2} - a_{s,j_1})\mathcal{B}_{1:s-\log_2 R}(x)^{\top} \mod 4$ for all x with $\mathcal{B}_{s-\log_2 R+1:m}(x) = 0$

where $\mathcal{B}_{p:q}(x)$ denotes bits p to q of x.

Theorem:

Denote the projected difference of Haar wavelets by $\eta_{s,j_1,j_2} = \varphi(\psi_{s,j_1} - \psi_{s,j_2})$. Then $\eta_{s,j_1,j_2} = 0$ if • $s < \log_2 R$, for all j_1, j_2

Theorem:

Denote the projected difference of Haar wavelets by $\eta_{s,j_1,j_2} = \varphi(\psi_{s,j_1} - \psi_{s,j_2})$. Then $\eta_{s,j_1,j_2} = 0$ if

• $\log_2 R \le s \le \log_2 R + 2r$, $a_{s,j_1} = a_{s,j_2}$, and $x(P_{s,j_1} - P_{s,j_2})x^{\top} = 0 \mod 4$ for all x with $\mathcal{B}_{s-\log_2 R+1:m}(x) = 0$

Theorem:

Denote the projected difference of Haar wavelets by $\eta_{s,j_1,j_2} = \varphi(\psi_{s,j_1} - \psi_{s,j_2})$. Then $\eta_{s,j_1,j_2} = 0$ if

• $\log_2 R \le s \le \log_2 R + 2r$, $a_{s,j_1} = a_{s,j_2}$, and $x(P_{s,j_1} - P_{s,j_2})x^\top = 2(a_{s,j_2} - a_{s,j_1})\mathcal{B}_{1:s-\log_2 R}(x)^\top \mod 4$ for all x with $\mathcal{B}_{s-\log_2 R+1:m}(x) = 0$

How to Vanish Vanishing Clusters

 Randomly permute entries of vector

 Deterministically permute entries of vector

• Equivalent to permuting columns of matrix.

Experimental Results

Original

TSA - 21.74dB

BP w/RP - 23.6dB

Experimental Results

Original

TSA - 21.74dB

BP

BP w/RR - 23.6dB

Experimental Results

Algorithm	SNR (dB)	Time (s)
TSA	21.74	1008
BP + Random Raster	23.60	820
IHT + Random Raster	22.25	804
BP + Deterministic Raster	23.52	822
IHT + Deterministic Raster	20.98	813

Algorithm	$\sigma = 0.01$	$\sigma = 0.05$	$\sigma = 0.1$
TSA	21.64	19.51	16.37
BP + Random Raster	23.41	20.71	18.18
IHT + Random Raster	22.24	20.82	17.20

Summary and Future Work

- Established theory that explains *shortcomings* of Delsarte-Goethals frame for *clustered* sparse and compressible signals
- Designed *new raster scannings* for 2D wavelet vectors for natural images
- Standard recovery algorithms can be used once clusters are dissipated
- In progress: *full characterization* of null space of Delsarte-Goethals frame
- It is possible to show that the null space of DGF contains $2\sqrt{N}$ -sparse vectors that are clustered

http://www.cs.duke.edu/~mduarte