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Compressive Imaging Architectures
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• Random matrices with i.i.d. subgaussian entries
• Can recover all k-sparse signals if
• Signal can be sparse/compressible in arbitrary basis
• High complexity for signal recovery - 

costly storage/matrix product for random matrices

Compressive Imaging 
via Random Matrices
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• Delsarte-Goethals Frame: 

–               rows indexed by 
–                 columns,                                , indexed by        ,

                     ,

Deterministic CS matrices
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[Calderbank, Howard, Jafarpour 2009]



• DGF structure allows for efficient matrix multiplication
• Since DGF has small coherence and spectral norm, 

can recover most sufficiently sparse signals via 
   -norm minimization

Deterministic CS matrices

[Tropp 2008]

• No characterization of failure modes 
(sparse vectors in null space of DGF   )

[Calderbank, Howard, Jafarpour 2009]
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Prior Work: DG Frame Imaging

• Apply DGF on image’s wavelet coefficients:

Wavelet Coefficients

[Ni, Datta, Mahanti, Roudenko, Cochran 2010]

Recovery via BPOriginal



• Two-Stage Approach (TSA) for DGF Image Recovery:
–Estimate 
–Calculate residual 

–Estimate                   (remainder of   ) from r using 
standard CS recovery algorithms

Prior Work: DG Frame Imaging

Recovery via BP Recovery via TSA/BPOriginal

[Ni, Datta, Mahanti, Roudenko, Cochran 2010]



• 2D wavelet coefficients are raster scanned into 
vectors from coarsest to finest scales

• More large coefficients present at coarsest scales,
clustered at beginning of rasterized vector

• Can clusters be to blame for loss in performance?
• Study if clustered vectors appear in null space of 

Clustering in Coefficient Vectors



• Begin by considering groupings of columns of 
• Dyadic partitionings: 

    sets of             columns, 
• Dyadic partitionings can be written as  

Dyadic Column Partitionings

P1 P2 ...



• If                 for all           , then columns in        are 
linearly dependent.

• Properties from group theory allow us to prove:

– If                  then 

– If                  then 

• Many sums vanish, others can cancel each other - 
canceling adjacent dyadic interval sums?

Behavior of Dyadic Column Sums



• Product                 can be 
expressed as sum of dyadic 
intervals:

• With results on dyadic 
sums, we have           if

• How about wavelets at finer 
scales?

The Amazing Vanishing Haar Wavelets

n



Theorem:
Denote the projected difference of Haar wavelets 
by                                 . Then                 if
•              , for all j1, j2;
•                                ,                , and 

                                     for all x with 

•                                 and 

for all x with 

where           denotes bits p to q of x.
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• Equivalent to permuting columns of matrix.

How to Vanish Vanishing Clusters

• Randomly 
permute entries of 
vector

• Deterministically 
permute entries of 
vector



Experimental Results

Original TSA - 21.74dB

BP BP w/RP - 23.6dB
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• Established theory that explains shortcomings of 
Delsarte-Goethals frame for clustered sparse and 
compressible signals

• Designed new raster scannings for 2D wavelet 
vectors for natural images

• Standard recovery algorithms can be used once 
clusters are dissipated

• In progress: full characterization of null space of 
Delsarte-Goethals frame

• It is possible to show that the null space of DGF 
contains       -sparse vectors that are clustered

Summary and Future Work

http://www.cs.duke.edu/~mduarte
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