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Abstract

The Delsarte-Goethals frame (DGF) has been proposed for deterministic compressive sensing of

sparse and compressible signals. Results in compressive sensing theory show that the DGF enables

successful recovery of an overwhelming majority of sufficiently sparse signals. However, these results

do not give a characterization of the sparse vectors for which the recovery procedure fails. In this paper

we present a formal analysis of the DGF that highlights the presence of clustered sparse vectors within

its null space. This in turn implies that sparse recovery performance is diminished for sparse vectors that

have their nonzero entries clustered together. Such clustered structure is present in compressive imaging

applications, where commonly-used raster scannings of 2-D discrete wavelet transform representations

yield clustered sparse representations for natural images. Prior work leverages this structure by proposing

specially tailored sparse recovery algorithms that partition the recovery of the input vector into known

clustered and unclustered portions. Alternatively, we propose new randomized and deterministic raster

scannings for clustered coefficient vectors that improve recovery performance. Experimental results

verify the aforementioned analysis and confirm the predicted improvements for both noiseless and noisy

measurement regimes.
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I. INTRODUCTION

In compressive sensing (CS) [2, 3], we wish to acquire a signal f 2 RC by taking its product with

a matrix � 2 RN⇥C that we dub the CS matrix, obtaining a vector of measurements y = �f 2 RN .

When N ⌧ C, this acquisition scheme effectively compresses the signal f . Since in this case the signal

recovery problem is ill posed, one must exploit prior information on the signal such as sparsity or

compressibility. CS relies on the use of specially tailored signal recovery algorithms based on sparsity to

estimate the signal f from the measurements y and the CS matrix �. Most work in CS relies on random

constructions on the matrix �, i.e., the entries of the matrix are drawn independently from a suitable

probability distribution such as Gaussian or Rademacher. Such matrices have been shown to provide

enough information about a K-sparse signal f through the measurements y when N = O(K log C).
The Delsarte-Goethals Frame [4] (DGF) was proposed as a deterministic CS matrix construction that

enables efficient recovery of almost all sufficiently sparse signals without the use of randomness in the

design of the measurement matrix. The DGF stands out due to its deterministic nature and to a set of

accompanying fast signal recovery algorithms [4, 5]. It is also robust to noise, measurement loss, and

other practical considerations [6]. However, the DGF must be applied directly on a sparse or compressible

vector. That is, the vector f measured using the CS matrix � must be sparse or compressible in the

canonical domain.

Recent results on average-case performance analysis of sparse recovery [5, 7, 8] have enabled formal

performance guarantees for deterministic matrices such as the DGF. More specifically, since the DGF has

a small spectral norm (due to being a tight frame) and small coherence (due to the properties of the DG

code used to construct the DGF), it can be shown that most sparse signals can be recovered from their

DGF measurements. This result relies on the fact that the coherence and spectral norm bounds imply that

most sufficiently small column submatrices of the DGF are well conditioned. For applications where all

supports of a sparse vector are equally likely, the aforementioned result immediately provides probabilistic

performance guarantees [7–11]. However, the result does not explicitly describe the particular submatrices

that do not meet such conditioning or, equivalently, the supports for sparse signals for which accurate

recovery cannot be guaranteed.

While placing a uniform model over the signal’s sparse support allows such recovery results to be

valid with high probability, sparse signals from many real-world applications actually exhibit significant

structure in the values and locations of the nonzero coefficients [12–14]. Thus, the suitability of the DGF

for a particular application depends on whether there exists overlap between the structure present in the
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sparse signals observed and the structure that may cause failures in CS recovery from DGF measurements.

In particular, initial results for deterministic compressive imaging (CI) via the DGF presented by

Ni et al. [15, 16] show degraded performance compared to that previously published for generic CS.

While most natural images are not themselves sparse or compressible, transforms such as the the 2-D

discrete wavelet transform (DWT) are suitable to obtain compressible image representations. The DGF

can then be applied directly to the wavelet coefficient vector of the image being acquired; this vector

is obtained by sorting the coefficients of the 2-D DWT according to a particular raster scanning; it is

common for this raster scanning to collect coefficients according to wavelet scale and sort them within

each scale by the coordinates of the corresponding wavelet shift . It was hinted in [15] that the DGF

may potentially have problems in CI due to the characteristic clustered structure that appears under such

standard raster scanning of 2-D DWT coefficients. Ni et al. proposed a two-stage recovery algorithm that

addresses these concerns by first estimating the nonzero coefficients concentrated in the coarsest scales

of the wavelet transform using linear inversion, and then recovering the rest of the coefficients from the

residual measurements using standard CS.

In this paper, we study the behavior of the DGF for such signals with clustered coefficient vectors in

additional depth. Specifically, we show that the DGF performs suboptimally for recovery of sparse signals

whose largest coefficients are concentrated (or clustered) within the coefficient vector.1 We prove formally

that there exist sparse vectors exhibiting such clustering within the null space of the DGF, which implies

that there are clustered sparse vectors that are provably unrecoverable from DGF measurements. Such

vectors can be obtained, for example, as the linear combination of two Haar wavelets of matching scale

and appropriate shifts; note that this property is independent of the transform used in the compression

(in particular, the 2-D DWT used in CI).

We also show that the clustered nature of these vectors in the null space of the DGF severely hampers

the recovery of sparse vectors having their nonzero coefficients in a cluster. The 2-D wavelet coefficients

of natural images are a prominent example of clustered vectors due to the large magnitude of coarse-scale

wavelet coefficients and their concentration within a small portion of the coefficient vector.

To overcome the recovery issues in CI caused by this behavior, we show experimentally an improvement

in performance afforded by altering the raster scanning of the coefficient vector so that the clustered

structure of the nonzero coefficients is diluted. While a random raster scanning is the easiest approach, it

1It is natural to note that the fraction of sparse signals that are clustered is vanishingly small, which is part of the reason we

are so interested in the DGF.
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would negate many of the attractive features due to the deterministic nature of the DGF implementation.

As an alternative, we propose a deterministic alternative raster scanning that is effective at dissipating the

clusters that appear in standard raster scanning of 2-D wavelet coefficients, similar to that used in [17].

This modification provides substantially improved performance over the standard use of the DGF [15,

16]. We verify this improvement experimentally for recovery of natural images from both noiseless and

noisy measurements.

This paper is organized as follows. Section II provides background and briefly reviews related work.

Section III contains our analytical results on the null space of the DGF, and Section IV details compressive

imaging as a relevant example application of our analysis. Section V presents validating experimental

results, and Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. The Delsarte-Goethals Frame

The Delsarte-Goethals set DG(m, r), m, r 2 Z, r <

m�1

2

, is a set containing 2

m(r+1) binary symmetric

matrices of size m ⇥ m with the property that the difference of any two distinct matrices has rank at

least m� 2r.

The Delsarte-Goethals frame [4] (DGF) � is a measurement matrix of size N = 2

m and C = 2

m

R,

with R 2 [1, 2

m(r+1)

] an integer. Its rows can be indexed using elements x 2 Fm

2

, represented as

binary vectors of length m. Similarly, its columns can be indexed using ordered pairs (P, b), where

P 2 DG(m, r) and b 2 Fm

2

. In this way, we label and define the entry of � in row x and column

(P, b) as �

P,b

(x) = i

xPx

>
+2bx

>
. Here x

> denotes the transpose of x. Note that all the arithmetic in the

expressions xPx

>
+ 2bx

> takes place in the ring of integers modulo 4, since the expression appears

as an exponent for i =

p�1. Given P, b, the vector xPx

>
+ 2bx

> is a codeword in the Delsarte-

Goethals code (defined over the ring of integers modulo 4). For a fixed matrix P , the 2

m columns

{�
P,b

}
b2Fm

2

form an orthonormal basis �

P

that can also be obtained by postmultiplying the Walsh-

Hadamard basis by the unitary transform diag

h
i

xPx

>
i
. The DGF can then be written as a concatenation

of bases � = [�

P

1

�

P

2

. . .], with the matrix aspect ratio R = C/N determining the number of bases

contained in �. Note that if we set r to its maximum value r =

m�1

2

, the DG(m, r) code is equivalent to

the second-order Reed-Muller code; therefore, the DGF obtained in this case is equivalent to the Reed-

Muller sensing matrix of [5]. Additionally, since each DG(m, r) code is a subset of the Reed-Muller

code, each DGF is a column submatrix of the Reed-Muller sensing matrix.
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Fig. 1. Example Delsarte-Goethals frame � with C = 64 and N = 8. Each row is labeled by a binary vector x 2 F3
2, and each

column is labeled by a pair (P, b), with P 2 DG(3, 1) and b 2 F3
2.

The DGF is well suited for CS. In particular, when normalized to obtain unit-norm columns, its worst-

case coherence value is µ(�) = 2

r�2

/

p
N and its spectral norm is k�k

2

= C/N (since it is a tight

frame). These two properties guarantee that the matrix enables successful recovery of an overwhelming

majority of sparse signals [5, 7–10]. In the sequel, we also write DGF (m, r) for the DGF when the

dependence on m, r must be made explicit. Figure 1 shows an example DGF for N = 8 (m = 3) and

C = 64 (R = 8).

The DGF stands out due to its deterministic nature and to the fast signal recovery algorithms enabled

by its construction [4, 5]. However, the DGF must be applied directly on a sparse or compressible vector.

That is, the signal f measured using the CS matrix � must be sparse or compressible in the canonical

domain. While many natural signals do not have this property, transforms used for signal compression

are suitable to obtain sparsity or compressibility, with examples for images including the 2-D discrete

cosine transform and the 2-D discrete wavelet transform.

B. The Haar Wavelet Basis

The Haar Wavelet Basis provides a set of piecewise constant functions of different support sizes and

magnitudes. The first length-N Haar wavelet basis function (where C is a power of 2) has a constant

value throughout its support; it is known as the Haar scaling function and denoted by

�(n) =

p
1/C, 0  n  C � 1.
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The rest of the Haar wavelet basis functions have only two distinct nonzero values, each covering half

of the function’s support. The mother Haar wavelet function is defined as

 (n) =

8
>>><

>>>:

p
1/C 0  n < C/2,

�p
1/C C/2  n < C,

0 otherwise.

The Haar wavelet  
s,j

is labeled according to its scale s = 0, . . . , log

2

C�1, and its offset j = 0, . . . , 2

s�1.

It is generated from the mother Haar wavelet through dilation and translation:

 

s,j

(n) =

p
2

s

 (2

s

n� Cj).

Specifically, for scales 0  s < log

2

C and offsets 0  j < 2

s, the Haar wavelet is defined as follows:

 

s,j

(n) =

8
>>><

>>>:

p
2

s

/C 2

�sCj  n < 2

�sC(j + 1/2),

�p
2

s

/C 2

�sC(j + 1/2)  n < 2

�sC(j + 1),

0 otherwise.

This structure for the support of the wavelets (i.e., the location of its nonzero values) is known as a dyadic

structure: the wavelet’s support is clustered and of size 2

�sC, and the offset of the clustered support is

a multiple of its size. For simplicity, we denote by D
s,j

the set of indices in the dyadic interval at scale

s and offset j:

D
s,j

= {2�sCj, 2�sCj + 1, . . . , 2

�sC(j + 1)� 1}. (1)

Using this notation, we can write

 

s,j

(n) =

p
2

s

/C �IDs+1,2j
(n)� IDs+1,2j+1

(n)

�
, (2)

where IP(n) denotes the indicator function for n belonging in the set P; thus the support of  
s,j

is

D
s,j

. It is easy to check that the wavelets defined above have unit norm and are orthogonal to each other,

building an orthonormal basis for RC .

III. CLUSTERED SPARSE VECTORS IN THE NULL SPACE OF THE DGF

In this section, we study the behavior of the DGF when applied to clustered sparse coefficient vectors.

Using properties of the Delsarte-Goethals codes, we identify small sets of columns that are linearly

dependent and cancel out when added with appropriate signs. We will show that such sets of columns

can be partitioned into two subsets of adjacent columns that, after adding the columns within each set

and subtracting one set addition from the other, result in perfect cancellation. This, in turn, allows us to
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Fig. 2. Example dyadic column intervals for a DGF of size C = 64, N = 8 (m = 3).

establish the presence of certain clustered sparse vectors in the null space of the DGF. We show that such

vectors can be expressed as the superposition of pairs of Haar wavelets, which simplifies their notation.2

We begin by defining notation that will simplify the exposition. For each pair (s, j) with s =

0, . . . , log

2

C�1 and j = 0, . . . , 2

s�1, we let the set S
s,j

✓ DG(m, r)⇥Fm

2

denote the pairs (P, b) that

generate the columns of the DGF with indices contained in the dyadic interval D
s,j

defined in (1); we

call S
s,j

a dyadic column interval. Some examples are shown in Figure 2. We provide some properties

of the column indices (P, b) contained in the subsets S
s,j

.

Proposition 1. If s � log

2

R, then S
s,j

= {P
s,j

}⇥F
s,j

, where P

s,j

is a fixed matrix in DG(m, r), and

F
s,j

= {a
s,j

}� Flog

2

C�s

2

, with a

s,j

2 Fs�log

2

R

2

and � denoting pairwise concatenation.

In words, F
s,j

is a subset of Fm

2

whose elements share the s� log

2

R most significant bits; fluctuations

on later bits span the subset. Thus, the subset S
s,j

is defined by the matrix P

s,j

and the “header” a

s,j

containing the fixed most significant bits of b over S
s,j

.

We now consider the linear combination of two Haar wavelets projected by the DGF at the same scale

⌘

s,j

1

,j

2

,±(x) = �( 

s,j

1

± 
s,j

2

). When this combination is applied to the DGF �, the outcome ⌘
s,j

1

,j

2

,±(x)

will correspond to the difference between the sums of columns in two distinct dyadic column subsets. We

would like to determine determine which pairs of wavelet superpositions  
s,j

1

± 

s,j

2

belong in the null

space of �, N (�), by determining values of s, j
1

, and j

2

that render the combination ⌘
s,j

1

,j

2

,±(x) = 0

(either for an addition or a subtraction). Each such combination identifies for us a set of 2�s+1C linearly

dependent columns in the DGF �. The following theorem provides our main result and is proven in

Appendix A.

2Note that the use in this section of Haar wavelets to express vectors in the null space of the DGF is completely independent

of the particular transform used for sparsity in CS; in particular, it is not related to the choice of DWT used to achieve sparsity

in CI.
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Theorem 1. Let � denote the DGF (m, r) and write x

h,l

and x

f,l

for the first and last l entries of the

vector x 2 Fm

2

, 1  l  m, respectively. For 0  s < log

2

C and 0  j

1

, j

2

< 2

s, j
1

6= j

2

, we have

⌘

s,j

1

,j

2

,� = 0 (i.e.,  
s,j

1

�  

s,j

2

2 N (�)) if

• s < log

2

R (for all j
1

, j
2

);

• log

2

R  s  log

2

R + 2r, a
s,j

1

= a

s,j

2

(that is, the two dyadic column intervals are at the same

position within the the bases �

Ps,j
1

, �
Ps,j

2

containing them) and x(P

s,j

1

�P

s,j

2

)x

>
= 0(mod 4) for

all x 2 Fm

2

such that x
f,log

2

C�s

= 100 . . . 0; or

• s � log

2

R+ 2r and x(P

s,j

1

� P

s,j

2

)x

>
= 2(a

s,j

2

� a

s,j

1

)x

>
h,s�log

2

R

(mod 4) for all x 2 Fm

2

such

that x
f,log

2

C�s

= 100 . . . 0.

The conditions also hold for ⌘
s,j

1

,j

2

,+

= 0 by adding a term of 2 in the equalities (mod 4) involving x.

The theorem shows that there exist vectors expressed as the sum or difference of two Haar wavelets

that are part of the null space of the DGF. These vectors have sparsity K = 2

�s+1C, where s is the

scale of the two wavelets involved. The proof of Theorem 1 can be extended to real-valued adaptation

using (i) zero-diagonal DG matrices P , as used in [15], or (ii) by generating a matrix from the DGF

with twice as many rows via the Gray map; see Appendix B for details.

IV. APPLICATION: COMPRESSIVE IMAGING

Compressive imaging has emerged as one of the most popular applications of CS, in large part due

to the significant amount of compressibility and structure in known sparse representations for natural

images, as well as to the feasibility of imaging architectures that compute compressive measurements

without requiring the capture of all individual pixels in the image. Options include optical modulators [18]

and integrated imaging sensor and analog computation modules [19, 20]; see [14] for a survey.

Perhaps the most popular compressible representation for CI is given by the discrete wavelet transform

(DWT). DWT coefficient vectors for natural images exhibit significant structure on the location of the

largest-magnitude coefficients within the vector. While our description will focus on the 1-D DWT, the

concepts extend to 2-D images in a straightforward fashion. The DWT coefficients are usually raster

scanned first by scale, and then by offset, to build a wavelet coefficient vector f
w

:

f

w

:= [s

0,0

w

0,0

w

1,0

w

1,1

w

2,0

. . . w

3,0

. . .]. (3)

Here s

0,0

denotes the scaling coefficient and w

s,j

denotes the DWT coefficient at scale s and offset j.

When a partial-level DWT transform is used, the raster scan begins with the multiple scaling coefficients

stacked into a vector, followed by the DWT coefficients ordered as in (3).
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A. Effect of Wavelet Raster Scanning on Vector Structure

DWT transforms of piecewise smooth signals and natural images have several properties that affect

the configuration of their raster-scanned representations. First, the coefficients decay in magnitude as the

scale increases, resulting in a concentration of the largest coefficients in the beginning of the vector.

Furthermore, the number of 1-D and 2-D DWT coefficients of an image at scale s is equal to 2

s�1 and

3 · 4s�1, respectively, implying that the largest coefficients of the signal are clustered within a very small

fraction of the coefficient vector.

A study by Ni et al. [15] of the performance of deterministic CI via a DGF shows that the performance

is poor when compared to that previously published for generic CS. Leveraging the properties of DWT

representation vectors, [15] proposed a two-stage recovery algorithm that improves the performance of

CI via the DGF [15]. The first stage estimates the N coefficients at coarsest scales using a submatrix

projection that ignores the contribution to the measurements from the rest of the coefficient vector. Due to

their location at the beginning of the coefficient vector and the structure of the DGF, this procedure entails

a simple projection into the basis �

P

1

. The second stage subtracts the contribution to the measurements

of the estimates for the first N coefficients and estimates the remainder of the coefficient vector using

a greedy sparse signal recovery algorithm. The incremental nature of the proposed estimation algorithm

reduces the number of nonzeros of the signal being estimated, resulting in an improvement over standard

CS recovery of the full coefficient vector.

In light of the result of Theorem 1, our contention is that the recovery performance from CS mea-

surements via the DGF suffers due to the clustered structure arising in the DWT coefficient vector. The

DWT coefficients for the coarsest scales, which contain the largest magnitudes, are all clustered within

a small contiguous portion of the coefficient vector. The projections of this structured vector into the

sparse clustered vectors in the null space of the DGF with overlapping supports characterize the loss of

information in the coarsest-scale coefficients, as well as the introduction of spurious nonzero coefficient

estimates for the corresponding matching support of the null space vector elsewhere in the coefficient

vector, and most likely in the finest scales of the DWT. In practice, this loss of information is perceived

mostly by the presence of noticeable artifacts of small scale due to the aforementioned spurious nonzero

coefficients; the effect of the information loss in the coarsest scale coefficients is not as visibly noticeable,

but is manifested via metrics like the recovery signal-to-noise ratio (SNR) or peak SNR.



10

B. Alternative Raster Scannings

Under our contention, one can expect to see an improvement in the performance of the two-stage

algorithm of [15] compared to standard recovery algorithms, given that the first stage of the algorithm

in [15] estimates and removes the contribution of the clustered significant coefficients in the image

measurements. Once the cluster in the vector to be recovered is dissipated in this fashion, the rest of the

vector can be estimated accurately using standard sparse recovery algorithms.

In view of our results, we conjecture that the same improvements in performance can be obtained

simply by dissipating the cluster present in the signal’s coefficient vector without manipulating the signal

to reduce its level of sparsity K. In fact, we may observe better performance in the estimation of the

coarse scale coefficients, as the estimates obtained by the algorithm of [15] suffer from interference from

the nonzero coefficients that lie outside of the coarsest scales.

A simple approach to alleviate the issues of the DGF with clustered sparse and compressible coefficient

vectors is to modify the raster scanning of the coefficients so that the clustered structure is dissipated.

It is easy to show that a random raster scanning will dissipate the clustering with high probability;

such scrambling or permutation has been previously leveraged in the CS literature [17, 21–23]. In CS

practice, such permutation can be obtained by switching the DGF during sensing to a new sensing matrix

that features the same columns as the DGF but collected in an arbitrary order. However, a random

raster scanning is not completely compatible with the DGF, as it nullifies several useful properties of its

deterministic nature, such as scalability in computation to the signal length and implementation simplicity.

As an alternative, we introduce a deterministic raster scanning that evenly spreads the content of

coefficient clusters and scales across the bases �
Pi

composing the DGF. We start from the standard raster

scanning for DWT coefficients and apply a permutation described by the mapping

p(n) = (n mod R)N + bn/Rc, (4)

which provides a bijective mapping of the set {0, . . . , C�1} onto itself. In words, the mapping takes each

set of consecutive coefficients of size R and spreads it across the R bases {�
Pi
}; the subsequent blocks

are partitioned similarly and ordered lexicographically. The resulting raster scanning separates the 2-D

DWT coefficients at a given scale and adjacent offsets by a distance of N entries within the coefficient

vector. Furthermore, neighboring coefficients in this raster scan either correspond to different scales or to

DWT coefficients for wavelets with offsets whose difference is equal to R = C/N . This partitioning is

similar to the linear congruential permutation of [17], except that in (4) the separation between adjacent

coefficients N must be a divisor of the length of the coefficient vector C (i.e., R = C/N ), while [17]
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requires the separation and the coefficient vector length to be relative primes. Additionally, and in a similar

fashion to the earlier random permutation, this deterministic permutation is applied in CS practice by

replacing the DGF with a second deterministic matrix obtained by permuting the DGF columns in the

prescribed fashion; note that no randomness is leveraged in this case in the sensing matrix design.

V. EXPERIMENTAL RESULTS

In this section, we provide experimental evidence to verify the conditions of the DGF null space

presented in Section III. First, we experimentally verify the presence of the aforementioned combinations

of Haar wavelets in the null space of the DGF. Second, we study the performance of CS via DGF for

clustered and non-clustered signals. Third, we study the performance of the DGF for compressive imaging

and the effects of random and deterministic permutation in performance, and contrast the improvements

against those obtained by alternative approaches from the literature.

A. Pairwise combinations of Haar wavelets in the DGF null space

To verify the conditions given in Theorem 1, our first set of experiments consists of an exhaustive

search for pairs of Haar wavelets  
s,j

1

and  

s,j

2

that result in the same measurement vector (up to

sign flipping, y
s,j

1

= ±y

s,j

2

) after projection via the DGF (m, r) for r = 1 and m = 7, 9, 11, 13. The

corresponding matrices � vary from M = 128 to 8192 rows. In each case, we identify pairs of wavelets

that provide the same measurement vector (up to sign flipping), and tabulate the pairs according to the

number of nonzeros (i.e., sparsity level) K of their difference ⌘
s,j

1

,j

2

,±(x) = �( 

s,j

1

±  

s,j

2

) 2 N (�).

Tables I to IV show the tabulation for different values of K, N = 2

m, and C. We omit data for values

of K > 2N (e.g. for values of s < log

2

C/N ), since all combinations of pairs of wavelets of the same

scale return a zero-valued measurement vector.

There are several patterns to note in the data collected in the table; we focus on Table I for simplicity

when possible.

• For K = 2N (i.e., each vector ⌘
s,j

1

,j

2

,± = y

s,j

1

±y

s,j

2

has support covering two bases �
P

1

and �

P

2

),

the number of vectors in the null space of � is equal to
�C/N

2

�
. In words, each pairwise difference of

Haar wavelets at scale s = log

2

C/N is contained in the nullspace N (�), This implies that the first

statement of Theorem 1 is valid for each value of s = log

2

(C/K) and for all pairs of DG matrices

(P

1

, P

2

) involved in the DGF �.

• In several cases, the number of vectors in the null space for K

0
< 2N is twice the number for

K = 2K

0, meaning that the second statement of Theorem 1 remains valid for each pair of DG
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K N/8 N/4 N/2 N 2N

C = 2N 0 8 4 2 1

C = 4N 0 48 24 12 6

C = 8N 0 96 112 56 28

C = 16N 0 192 480 240 120

C = 32N 256 896 1984 992 496

C = 64N 512 1792 3968 4032 2016

C = 128N 1024 7680 16128 16256 8128

TABLE I

COUNT OF VECTORS  s,j
1

±  s,j
2

IN THE NULL SPACE OF THE DGF � WITH N = 128 ROWS AND VARYING NUMBER OF

COLUMNS N . THE VECTORS ARE TABULATED BY THEIR SPARSITY K = 21�sC .

matrices (P

1

, P

2

) and for all possible values of a
s,j

, s = log

2

(C/K) + 2.

• For each value of N and C, this doubling relationship eventually breaks down when K is sufficiently

small (i.e., s is sufficiently large). Our conjecture here is that the condition on the pair of matrices

(P

1

, P

2

) in the second statement of Theorem 1 stops being valid for an increasing number of pairs

as the condition on the null space of the matrix difference (P

1

� P

2

) becomes more stringent. In

fact, we were not able to find any null space vectors with sparsity K < N/8 for the matrices we

tested.

• The particular choice of matrices P 2 DG(m, r) involved in the DGF � can reduce the number

of vectors ⌘
s,j

1

,j

2

,±(x) that is contained in the null space for each value of s. For example, notice

in Table I that when up to 16 DG matrices are used to build the DGF �, there are no vectors of

sparsity K = N/8 = 16 in the null space; however, when the number of DG matrices used goes to

32, there appear 256 null space vectors with sparsity K = 16. Our conjecture is that since each pair

of matrices (P

1

, P

2

) that hold the second condition of Theorem 2 would give rise to 16 null space

vector combinations, there should be 16 pairs of matrices (P

1

, P

2

) within the 32 DG matrices used

that have the aforementioned conditions. In fact, each pair of wavelets found in this case contains

one wavelet supported in the first half of the vector and another supported on the second half. The

number of null space vectors also doubles each time that C doubles as well.
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K N/4 N/2 N 2N

C = 2N 0 4 2 1

C = 4N 0 24 12 6

C = 8N 32 112 56 28

C = 16N 64 224 240 120

TABLE II

COUNT OF VECTORS  s,j
1

±  s,j
2

IN THE NULL SPACE OF THE DGF � WITH N = 512 ROWS AND VARYING NUMBER OF

COLUMNS N . THE VECTORS ARE TABULATED BY THEIR SPARSITY K = 21�sC .

K N/8 N/4 N/2 N 2N

C = 2N 16 8 4 2 1

C = 4N 32 48 24 12 6

C = 8N 64 224 112 56 28

C = 16N 128 960 480 240 120

TABLE III

DISTRIBUTION OF VECTORS ⌘s,j
1

,j
2

,± IN THE NULL SPACE OF THE DGF � WITH N = 128 ROWS AND VARYING NUMBER OF

COLUMNS N . THE VECTORS ARE TABULATED BY THEIR SPARSITY K = 21�sC .

B. Effect of clustered structure on recovery performance

The second sets of experiments studies the performance of CS recovery from DGF measurements for

clustered sparse signals. We use the `

1

-norm minimization algorithm from the `

1

-magic toolbox [24]

and test the DGF with N = 128 and several values of C and K. For each combination of parameters

we execute 100 iterations for two different sparse signal models. A standard sparse signal model selects

the support of the signal (i.e., the indices for its K nonzero values) uniformly at random from all
�
N

K

�
possibilities. In contrast, a clustered signal model selects the support of the signal via a two-stage

approach: first, we select uniformly at random one of the clustered supports for the signals of sparsity

K

S

= 32 that is contained in the null space, as identified in Section V-A; second, we select the K indices

of the nonzero uniformly at random from all the
�
KS

K

�
subsets of the support chosen in the previous step.

In both cases, the nonzero values of the signal are then drawn independently from a N (0, 1) standard

normal distribution.

We compute the average normalized recovery error for each pair of values (K, C) and for each signal

model, in order to evaluate the effect of clustering in CS performance. The results, shown in Fig. 3,
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K N/8 N/4 N/2 N 2N

C = 2N 16 8 4 2 1

C = 4N 32 48 24 12 6

C = 8N 64 224 112 56 28

TABLE IV

DISTRIBUTION OF VECTORS ⌘s,j
1

,j
2

,± IN THE NULL SPACE OF THE DGF � WITH N = 512 ROWS AND VARYING NUMBER OF

COLUMNS N . THE VECTORS ARE TABULATED BY THEIR SPARSITY K = 21�sC .
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Fig. 3. Performance of CS recovery from DGF measurements for signals with and without clustered structure for N = 128

and several values of C and K. The solid lines represent the average performance for signals drawn randomly from a standard

(unstructured) sparsity model, while the dashed lines represent the average performance for signals drawn randomly from a clustered

sparse model. There is a noticeable gap in performance between the two models; the gap vanishes as C increases due to the fixed

value for N , and recovery failing for all (clustered and standard) sparse signals.

display the performance gap between the two models for the same signal sparsity K. For example, in

the case where C = 512, we have accurate recovery of signals from the standard model with sparsity up

to K = 29; in contrast, signals from the clustered model must have sparsity K  13 to achieve exact

recovery. Similarly, the average normalized error for recovery of signals of sparsity K = 32 and length

N = 512 jumps from 0.04 for the standard sparse model to 0.5 for the clustered sparse model.

The gap in performance between the two sparse signal models becomes smaller as the value of C
increases; this is due to the fact that we have fixed the number of measurements of N , which reduces the

maximum sparsity K for which we can still achieve accurate recovery for the uniformly distributed support
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signal model. In contrast, the recovery performance for clustered sparse signals stays roughly constant as

N increases, signifying that the sparse signal structure, rather than the number of measurements taken,

is the core reason for the decreased recovery performance observed for the clustered signal model.

C. Compressive imaging

In our third set of experiments, we validate the improvements in performance of deterministic CI

afforded by the raster scannings proposed in Section IV-B. Our experiments use the MRI image of size

C = 512⇥ 512 used in [15]. We use the Daubechies-8 DWT to obtain compressible coefficients for the

image, and we set the number of measurements to N = 65536, providing a compression ratio of 25%.

We test basis pursuit (BP) [25] solved via `
1

-magic [24], iterative hard thresholding (IHT) [26], and the

two-step approximation (TSA) algorithm from [15] with BP for the second stage, all using the real-valued

DGF (16, 0). We also test BP and IHT under the proposed raster scannings described in Section IV-B.

In all cases, the algorithms (both BP and IHT) are set to converge once the normalized magnitude of the

residual is sufficiently small, i.e., ky � �fk
2

/kyk
2

< 10

�3; in BP, this is specified as an inequality

constraint on f . First, we compare the quality and computational cost of the different approaches,

measured by signal-to-noise ratio (SNR) of the reconstruction and computation time; these experiments

were performed in a computer with a Xeon X5680 CPU and 8GB of memory, running Matlab for Linux,

and using a single core. The results, shown in Table V, show that under similar computational cost,

the proposed matrix designs provide significant improvement in the quality of recovery. Representative

example recovered images are shown in Figure 4. We also compare the quality of recovery for the different

raster scanning approaches when independent and identically distributed Gaussian noise of variance �2

is added to the measurements for several values of �. The resulting SNRs, shown in Table VI, show once

again that the proposed raster scannings significantly improve the performance of image recovery.

To test the generality of the improvements in CI, we perform a comparison of the performance of the

DGF with and without random column permutation on a subset of the “Miscellaneous” natural image

dataset available at [27]. All images are of size 512 ⇥ 512 and we use the real-valued DGF (16, 0) to

obtain N = 65536 compressive measurements. We use the ASP solver for BP [28]; the algorithm is

set to converge once the relative magnitude of the measurement-domain error is sufficiently small, i.e.,

ky��

b
fk

2

< ky��f

K

k
2

, where f

K

denotes the optimal K-sparse approximation of the image’s wavelet

coefficients f with K = C/10. Table VII shows the performance, measured by the recovery SNR, for

the different images without and with a random permutation being applied to the columns of the DGF.

Except for a single example, all images exhibit similar or improved recovery performance when a random
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Algorithm SNR (dB) Time (s)

TSA 21.74 1008

BP + Random Raster 23.60 820

IHT + Random Raster 22.25 804

BP + Deterministic Raster 23.52 822

IHT + Deterministic Raster 20.98 813

TABLE V

PERFORMANCE AND COMPUTATIONAL COST OF SIGNAL RECOVERY ALGORITHMS. THE USE OF THE PROPOSED RASTER

SCANNINGS SIGNIFICANTLY IMPROVES IMAGE RECOVERY PERFORMANCE.

Algorithm � = 0.01 � = 0.05 � = 0.1

TSA 21.64 19.51 16.37

BP + Random Raster 23.41 20.71 18.18

IHT + Random Raster 22.24 20.82 17.20

TABLE VI

PERFORMANCE OF SIGNAL RECOVERY ALGORITHMS FOR NOISY MEASUREMENTS MEASURED IN SNR (DB). THE USE OF

RANDOM RASTER SCANNING SIGNIFICANTLY IMPROVES THE PERFORMANCE UNDER THE NOISY MEASUREMENT REGIME.

permutation is applied to the columns of the DGF, emphasizing the role of structure in the coefficient

vector in the performance of CS via the DGF.

VI. CONCLUSIONS AND FURTHER WORK

In this paper, we have provided analytical and empirical evidence on the structure of the null space

of the Delsarte Goethals frame (DGF). Specifically, we have shown the existence of highly-structured,

clustered sparse vectors in N (�), and demonstrated the effect of such structure in the null space on

recovery performance from DGF measurements for clustered sparse signals. We also connected our

analytical results with a previously-observed performance gap when the DGF is used in CI applications,

and showed that this gap can be closed by dissipating the clustered structure that is common on 2-D

wavelet coefficient vectors of natural images under commonly used raster scannings.

While the results we show here might at first make a case against the use of the DGF in CS, we

highlight the fact that the number of sparse signal supports for which the described behavior appears is

significantly smaller than the total number of possible supports; this in turn agrees with prior results on
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Comparison of CS recovery performance of a C = 512⇥ 512 image from N = 65536 DGF measurements. (a) Original

image. (b) Two-step approximation [15]. (c) Difference image of (a), (b). (d-e) BP and IHT with standard DGF. (f) Difference

image of (a), (d). (g-h) BP and IHT using random raster scanning. (i) Difference image of (a), (g).

the successful performance of DGF measurements in CS for the overwhelming majority of sufficiently

sparse signals [4, 5]. In a sense, this combined suitability for most sparse signals is what has rendered

the DGF of such interest to the CS community.

We have additionally proposed possible coefficient permutation techniques that dissipate the presence

of clusters, which is effectively equivalent to permuting the columns of the original DGF and provides

an alternative deterministic CS matrix for applications featuring clustering in sparse vectors. Our results

also highlight the opportunity for the design of deterministic CS matrices that may be suited to particular

types of structure. Examples include tree sparsity, clustered sparsity, and refractory sparsity [12–14, 29].

Finally, we note that while our analysis was restricted to clustered signals, it may be possible to

construct arbitrary sparse vectors in the null space of the DGF using more sophisticated methods, such

as specially-designed code indicator vectors that vanish under a carefully constructed linear projection.

Such methods have the promise of providing designs for new coding theory-inspired deterministic CS

matrices for which we can provide a complete null space characterization. This in turn would enable a
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Image Name No Perm. Rand. Perm. Improvement

Cameraman 25.80 28.93 3.13

House 33.21 41.67 8.46

Airplane (F-16) 23.95 21.59 -2.36

Sailboat on Lake 27.08 29.18 2.10

Girl (Lena) 39.78 47.18 7.40

Couple 28.04 31.64 3.60

Mandrill 17.70 18.52 0.82

Peppers 17.48 17.71 0.23

Man 31.09 45.61 14.52

Bridge 33.97 37.44 4.47

Girl (Tiffany) 12.43 12.36 -0.07

TABLE VII

PERFORMANCE OF COMPRESSIVE IMAGING VIA DGF WITH NO PERMUTATION AND RANDOM PERMUTATION OF THE

IMAGE’S WAVELET COEFFICIENTS. IN ALMOST ALL CASES, THE PERFORMANCE OF RANDOM PERMUTATION IS SIMILAR OR

IMPROVED OVER THE BASELINE APPROACH.

more precise study of recovery performance from deterministic CS measurements. We leave this line of

research for future work.

APPENDIX A

PROOF OF THEOREM 1

A. Dyadic Column Sums of the DGF

We begin by considering the projections of an individual Haar wavelet y
s,j

= � 

s,j

, which can be

rewritten using (2) as

y

s,j

(x) =

p
2

s+1

/C
0

@
X

(P,b)2Ss+1,2j

�

P,b

(x)

�
X

(P,b)2Ss+1,2j+1

�

P,b

(x)

1

A
. (5)

Thus, we focus on the sums of columns of the DGF � over dyadic column intervals, which we term

dyadic sum and denote as

S

s,j

(x) :=

X

(P,b)2Ss,j

�

P,b

(x). (6)



19

This new notation simplifies (5) to

y

s,j

(x) =

p
2

s+1

/C(S
s+1,2j

(x)� S

s+1,2j+1

(x)).

We begin by stating some properties of these subsets S
s,j

.

Proposition 2. If s > log

2

(C/N) = log

2

R, then S
s,j

= {P
s,j

} ⇥ F
s,j

, where P

s,j

is a fixed matrix in

DG(m, r), and F
s,j

= a

s,j

� Flog

2

C�s

2

, with a

s,j

2 Fs�log

2

R

2

.

In words, F
s,j

is a subset (and a subgroup) of Fm

2

whose elements share the s� log

2

R most significant

bits; fluctuations on later bits span the subset. Thus, for s � log

2

(C/N) = log

2

R, the subset S
s,j

is

defined by the matrix P

s,j

and the “header” a

s,j

containing the fixed most significant bits of b over S
s,j

.

Proposition 3. If s  log

2

(C/N) = log

2

R, then S
s,j

= P
s,j

⇥ Fm

2

, where P
s,j

is a subset of DG(m, r)

containing 2

�sC +matrices.

Proof sketch. Since the offset and size of the interval S
s,j

is a multiple of N = 2

m, the selected

columns include the set of bases �

P

for a subset of matrices P used in the construction of the DGF (as

defined in Section II-A).

Armed with this properties, we can prove the following results on S

s,j

(x). The first lemma states that

almost all dyadic sums at coarse scales vanish.

Lemma 1. For s  log

2

(C/N),

S

s,j

(x) =

8
<

:
|S

s,j

| x = 0,

0 x 6= 0.

Proof. We write

S

s,j

(x) =

X

(P,b)2Ss,j

�

P,b

(x) =

X

P2Ps,j

X

b2Fm
2

i

xPx

>
+2bx

>

=

X

P2Ps,j

i

xPx

> X

b2Fm
2

i

2bx

>
.

For x 6= 0 the second sum is equal to zero, rendering S

s,j

(x) = 0. When x = 0, the second sum is

equal to N and the first sum is equal to |P
s,j

|, and so we have S

s,j

(x) = |P
s,j

|N = |S
s,j

|, proving the

lemma.

The next lemma states that for finer scales many dyadic sums vanish and the nonzero sums have a

fixed magnitude.
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Lemma 2. For s � log

2

(C/N), S
s,j

(x) can only take one of these values: {0, 2�sC,�2

�sC}.

Proof. We write

S

s,j

(x) =

X

(P,b)2Ss,j

�

P,b

(x) =

X

b2Fs,j

i

xPs,jx
>
+2bx

>

= i

xPs,jx
> X

b2Flog

2

C�s
2

i

2as,jxh,s�log

2

R+2bx

>
f,log

2

C�s (7)

= i

xPs,jx
>
+2as,jx

>
h,s�log

2

R

X

b2Flog

2

C�s
2

i

2bx

>
f,log

2

C�s
. (8)

In (7) we partitioned the vector x into its first s � log

2

R bits and its last log

2

C � s bits so that we

can factor out the component corresponding to the “header” a

s,j

; note that s � log

2

R + log

2

C � s =

log

2

C � log

2

(C/N) = log

2

N = m so that all bits are used. For x
f,log

2

C�s

6= 0, the sum in (8) is equal

to zero, rendering S

s,j

(x) = 0. When x

f,log

2

C�s

= 0, the sum is equal to 2

�sC. Finally, note that the

exponent on the first term is even and yields ±1, proving the lemma.

We are finally ready to prove Theorem 1. We begin by writing

⌘

s,j

1

,j

2

,±(x) = y

s,j

1

± y

s,j

2

=

r
2

s+1

C [(S

s+1,2j

1

(x)� S

s+1,2j

1

+1

(x))

±(S

s+1,2j

2

(x)� S

s+1,2j

2

+1

(x))] . (9)

Lemmas 1 and 2 show that the value of a dyadic sum of a given scale can take only two or five

distinct values, respectively, depending on the scale s used. When s < log

2

(C/N), Lemma 1 provides

⌘

s,j

1

,j

2

,±(x) = 0 for all j

1

, j

2

, and x 2 Fm

2

; this gives the first condition in the theorem. When s �
log

2

(C/N), the sums from (8) involved in (9) vanish for all x with x

f,log

2

C�s

6= 0, and so we have

⌘

s,j

1

,j

2

,±(x) = 0 if x
f,log

2

C�s

6= 0.

If x
f,log

2

C�s�1

= 0, all terms inside the sum in (8) for each of the four sums S involved in (9) are equal

to one and so each of the sums in (8) are equal to 2

�s�1C. With this information, denoting bit b of x

by x

b

, plugging (8) in (9), and factoring out all common bits from the two headers a

s+1,2ji , as+1,2ji+1
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for i = 1, 2, we obtain

⌘

s,j

1

,j

2

,±(x) =
p
2

�s�1C
h
i

xPs,j
1

x

>
+2as,j

1

x

>
h,s�log

2

R
�
(�1)

0·xs�log

2

R+1 � (�1)

1·xs�log

2

R+1

�

±i

xPs,j
2

x

>
+2as,j

2

x

>
h,s�log

2

R
�
(�1)

0·xs�log

2

R+1 � (�1)

1·xs�log

2

R+1

�i

=

8
<

:

p
2

�s+1C
h
i

xPs,j
1

x

>
+2as,j

1

x

>
h,s�log

2

R ± i

xPs,j
2

x

>
+2as,j

2

x

>
h,s�log

2

R

i
if x

s�log

2

R+1

= 1,

0 if x
s�log

2

R+1

= 0.

(10)

We then have that ⌘
s,j

1

,j

2

,�(x) = 0 for all x 2 Fm

2

if for every x 2 Fm

2

such that x
f,log

2

C�s

= 100 . . . 0

we have

xP

s,j

1

x

>
+ 2a

s,j

1

x

>
h,s�log

2

R

= 2a

s,j

2

x

>
h,s�log

2

R

(11)

+xP

s,j

2

x

>
(mod 4)

(so that the two terms in (10) cancel out). Similarly, we have that ⌘
s,j

1

,j

2

,+

(x) = 0 for all x 2 Fm

2

if for

all x 2 Fm

2

such that x
f,log

2

C�s

= 100 . . . 0 we have

xP

s,j

1

x

>
+ 2a

s,j

1

x

>
h,s�log

2

R

= xP

s,j

2

x

>

+2a

s,j

2

x

>
h,s�log

2

R

+2 (mod 4). (12)

These conditions match the third case stated in the theorem. We now focus on ⌘
s,j

1

,j

2

,�(x) and study a

couple of special cases for (11).

• If P
s,j

1

= P

s,j

2

, then condition (11) requires 2a

s,j

1

x̄

>
= 2a

s,j

2

x̄

> for all x̄ 2 Fs�log

2

R

2

. This is only

possible if a
s,j

1

= a

s,j

2

, which is a contradiction with j

1

6= j

2

and P

s,j

1

= P

s,j

2

.

• If P
s,j

1

6= P

s,j

2

and a

s,j

1

= a

s,j

2

, then condition (11) requires

xP

s,j

1

x

>
= xP

s,j

2

x

>
.

This implies that for ⌘
s,j

1

,j

2

,± to be part of the null space of �, we must have (P

s,j

1

+ P

s,j

2

) with

rank at most m � s + log

2

(C/N). Since the DGF class of matrices forces this rank to be at least

m� 2r, we may have ⌘
s,j

1

,j

2

,± = 0 (i.e., sums of wavelets at scale s are in the null space) only if

s  log

2

(C/N) + 2r.

This gives the second condition in the theorem; the conditions for ⌘
s,j

1

,j

2

,+

(x) follow similarly from

(12).
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l g(l)

1 [1 1]

i [1 � 1]

�1 [�1 � 1]

�i [�1 1]

TABLE VIII

GRAY MAP TABLE.

APPENDIX B

REAL-VALUED VERSIONS OF THE DGF

In certain cases, we desire a CS matrix with real-valued entries; there are two possible approaches to

adapt the DGF to a real-valued CS matrix. We now show that for each one of these options, the argument

in the proof of Theorem 1 can be easily adapted, and therefore the same vectors are in the null space of

the real-valued versions of the DGF.

First, one can restrict the matrices P 2 DG(m, r) to the subset of the DG set of matrices with zero-

valued diagonal entries. With such a restriction, the term xPx

>
= 2

P
0i<j<2

m x

i

x

j

P

i,j

is an even

number, rendering the entries of � real-valued. In this case, Theorem 1 can be applied without change,

since the result is not dependent on the particular choice of matrices P .

Alternatively, one can create a CS matrix having twice as many rows as the DGF by applying the

Gray map g : {1,�1, i,�i} ! {�1, 1}2 to the entries of �, given in Table VIII. The Gray map has

the property that the norm of the difference between any two powers of i is equal to the norm of the

difference of their Gray map image vectors. The new Gray-mapped CS matrix, which we denote by

�

G, has 2

m+1 rows and 2

m(r+1) columns indexed by (h, x) 2 F
2

⇥ Fm

2

and (P, b) 2 DG(m, r) ⇥ Fm

2

,

respectively. By defining the equivalence P = P

0
+ d

P

, where d

P

is the extracted diagonal of P and P

0

is the remainder of P , the entries of �G can be written as follows:

�

G

P,b

(h, x) = i

xP

0
x

>
+2bx

>
+dPx

>
+(2h�1)✏(dPx

>
)

,

where ✏(l) = l mod 2, i.e., ✏
1

extracts the least significant bit of the binary representation of l. Thus we

have replaced xPx

> from the definition of the complex DGF with xP

0
x

>
+d

P

x

>
+(2h�1)✏(d

P

x

>
) for

the real-valued DGF. Since the dependence of �

G

P,b

(h, x) on b is the same as that of �

P,b

(x), it is easy

to see that the proof of Theorem 1 is extendable to dyadic sums of the Gray-mapped DGF, as follows.
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Corollary 2. Let �G denote the real-valued Gray mapped version of the DGF (m, r) and write x

h,l

and

x

f,l

for the first and last l entries of the vector x 2 Fm

2

, 1  l  m, respectively. For 0  s < log

2

C
and 0  j

1

, j

2

< 2

s, j
1

6= j

2

, we have  
s,j

1

+  

s,j

2

2 N (�

G) if

• s < log

2

R (for all j
1

, j
2

);

• log

2

R  s  log

2

R+ 2r, a
s,j

1

= a

s,j

2

, x(P 0
s,j

1

� P

0
s,j

2

)x

>
+ (d

P

0
s,j

1

� d

P

0
s,j

2

)x

>
= 0(mod 4), and

(d

P

0
s,j

1

� d

P

0
s,j

2

)x

>
= 0(mod 2) for all x 2 Fm

2

such that x
f,log

2

C�s

= 100 . . . 0; or

• s � log

2

R and x(P

0
s,j

1

� P

0
s,j

2

)x

>
+ (d

P

0
s,j

1

� d

P

0
s,j

2

)x

>
= 2(a

s,j

2

� a

s,j

1

)x

>
h,s�log

2

R

(mod 4), and

(d

P

0
s,j

1

� d

P

0
s,j

2

)x

>
= 0(mod 2) for all x 2 Fm

2

such that x
f,log

2

C�s

= 100 . . . 0.

The conditions also hold for ⌘
s,j

1

,j

2

,� = 0 by adding a term of 2 in the equalities (mod 4) involving x.
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