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Signal Representation

* Representation (basis, frame) {4 }
— spikes, Fourier sinusoids, wavelets, etc ...

VN
I

e For orthonormal \JJ, coefficient o; = projection (inner
product) of x onto basis function ;

Qj = <£U, ¢z>



Sparse Signal Representations

e For maximum efficiency, choose representation {1}
so that coefficients {o:} are sparse (most close to 0)

— smooth signals and Fourier sinusoids
— piecewise smooth signals and wavelets, ...

e Approximation — quantize/encode coeff sizes and locations

N
2 = Sa
i=1
= Y aw

K<KN largest terms

e Transform coding examples: JPEG, MPEG, ...



DSP Sensing

e The typical sensing/compression setup
— compress = transform, sort coefficients, encode
— most computation at sensor
— lots of work to throw away >80% of the coefficients

sample [—compress — transmit
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Compressed Sensing (CS)

e Measure projections onto incoherent basis/frame
e Reconstruct via optimization

e Mild oversampling: cK < M K N, c=~3

e Highly asymmetrical (most computation at receiver)

[Donoho; Candes, Romberg, Tao]

project —* transmit

receive [— reconstruct




Compressed Sensing 101

Foundation: Reconstruction from incoherent
projections

Signal has sparse representation in some basis U
(ex: Fourier, wavelets, etc.)
- WLOG assume signal is sparse in time domain I/ — [

Take second, incoherent basis
- elements of @ are not sparse in \|J
- random  is incoherent with almost all \|J

Measure signal via few linear projections

y = dx
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Before CS - ¥5

Goal: Given measurements Yy find signal x

Fewer rows than columns in measurement matrix @
Ill-posed: infinitely many solutions 7

Classical solution: least squares

T = arg min [|x]|2
=

y—x,\
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Before CS - ¢5

Goal: Given measurements Yy find signal x

Fewer rows than columns in measurement matrix @
Ill-posed: infinitely many solutions 7

Classical solution: least squares

Problem: small L, doesn’t imply sparsity
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CS - ¥p

e Modern solution: exploit sparsity of &
e Of the infinitely many solutions I seek sparsest one

T = arg min [|x]|o
y=>x I

number of
nonzero entries
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CS - ¥p

Modern solution: exploit sparsity of &

Of the infinitely many solutions T seek sparsest one
If M > K + 1 then perfect reconstruction

w/ high probability

But combinatorial computational complexity

>
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The CS Miracle - £4

Goal: Given measurements Yy find signal x
Fewer rows than columns in measurement matrix @
Modern solution: exploit sparsity of &

Of the infinitely many solutions I seek the one
with smallest /1 norm

>

T = arg min ||z||1
y=>x T
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The CS Miracle - £4

Goal: Given measurements Yy find signal x

Fewer rows than columns in measurement matrix @
dc = 3, if M > cK then perfect reconstruction
w/ high probability [Candes et al.; Donoho]

Linear programming or other sparse approximation
algorithms
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CS Camera Architecture

Low-cost, fast, sensitive
optical detection

Image encoded by PMM
and random basis

A/D

Compressed, encoded
image data sent via RF
for reconstruction

joint work with Kevin Kelly, Yehia Massoud, Don Johnson, ...
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CS Reconstruction for Images

256x256 = 65536 pixels



CS Reconstruction for Images

26000 incoherent projections



CS Reconstruction for Images

6500 wavelet coefficients



Compressed Sensing Vision @ Rice

e CS changes the rules of the data acquisition game
— changes what we mean by “sampling”

— exploits a priori signal sparsity information
(that the signal is compressible in some representation)

e Next generation data acquisition
- new A/D converters (sub Nyquist)
— new imagers and imaging algorithms
- new distributed source coding algorithms (today!)
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Why Distributed?

e Networks of many sensor nodes

— sensor, microprocessor for computation,
wireless communication, networking, battery

— can be spread over large geographical area
e Must be energy efficient

- minimize communication at expense of computation
— motivates distributed compression

RENINSUL DE




Separate Sensing

destination

e Transmitting raw data
typically inefficient



Correlation

e Can we exploit
intra-sensor and
inter-sensor

correlation to jointly compress?

e Ongoing challenge in information
theory community

e Introduce notion of joint sparsity




Collaborative Sensing

destination compressed

data

e Collaboration introduces

— inter-sensor
communication overhead

— complexity at sensors
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Benefits:

e Distributed Source Coding:

— exploit intra- and inter-sensor
correlations

= fewer measurements necessary

— zero inter-sensor
communication overhead
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Benefits:

e Compressed Sensing:
— universality (random projections)
— “future-proof”
— encryption
— robustness
— scalability
- low complexity at sensors
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e Different models for different
scenarios

e Today: two example models
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Common + Innovations Model

e Motivation: sampling signals in a smooth field

o Joint sparsity model:
- length-N sequences i1and X2

T1 z + z1

o = ZzZ -+ 2o

— z is length-IN common component

— 21, 22 length- N innovation components
- 2 has sparsity K

— Z1, 22 have sparsity K1, Ko

e Measurements
Y1
Y2

P11

Poxo



Measurement Rate Region with
Separate Reconstruction

Encoder f, »| Decoder g, >
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Goal: Measurement Rate Region with
Joint Reconstruction
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Decoder g
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D. Baron, M. F. Duarte, M. B. Wakin, S. Sarvotham and R. G. Baraniuk,
“An Information Theoretic Approach to Distributed Compressed Sensing”,
Allerton Conference on Communication, Control, and Computing 2005
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Common Sparse Supports Model

e Joint sparsity model #2 (JSM-2):
— measure J signals, each K-sparse
— signals share sparse components, different coefficients

L1 L2X3 Tj-1TJ
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Common Sparse Supports Model

Audio Signals
e Sparse in Fourier Domain

e Same frequencies received by
each node

o Different attenuations and delays
(magnitudes and phases)




Common Sparse Supports Model
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Common Sparse Supports Model:

Reconstruction

e Orthogonal Matching Pursuit

— Estimate support of sparse signal using inner
products between ¥y; and P,

e Simultaneous Orthogonal Matching Pursuit
— (Tropp, Gilbert, Strauss)
— For signals with shared sparse support

— Extend greedy algorithms to signal ensembles that
share a sparse support



Simultaneous Sparse Approximation

Orthogonal Matching Pursuit
Approximation: Y = dx

p yl b

max
magnitude

project y into each of the columns of
find projection with largest magnitude
update coefficient estimate

subtract coefficient contribution
orthogonalize all column vectors against
chosen one

e repeat
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Simultaneous Orthogonal Matching Pursuit
Approximations: Y; — ijfj
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Simultaneous Orthogonal Matching Pursuit
Approximations: Y; — ijfj
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Simultaneous Orthogonal Matching Pursuit

P1

A

L1

Approximations: Y; — ij/x\]

OO I I«

p2

Y

L2
(I ITIITITITT] ¢

PJ

AN

LJ

IIII.IIIIIIIIIII<




Common Sparse Supports Model:
Reconstruction

e Performance (measurements per sensor):
- Yo minimization: K+1
—~ 51 minimization: cK
- SOMP: ?
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Conclusions

e Theme: compressed sensing for multiple signals

e Distributed compressed sensing
- new models for joint sparsity
— suitable for sensor network applications
— compression of sources w/ intra- and inter-sensor correlation

e More
— additional joint sparsity models
— real data
— sensor networks

dsp.rice.edu/cs
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