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Signal Representation

• Representation (basis, frame)
– spikes, Fourier sinusoids, wavelets, etc …

• For orthonormal           , coefficient      = projection (inner
product) of x onto basis function



Sparse Signal Representations

• For maximum efficiency, choose representation
so that coefficients         are sparse (most close to 0)
– smooth signals and Fourier sinusoids
– piecewise smooth signals and wavelets, …

• Approximation – quantize/encode coeff sizes and locations

• Transform coding examples: JPEG, MPEG, …



DSP Sensing
• The typical sensing/compression setup

– compress = transform, sort coefficients, encode
– most computation at sensor
– lots of work to throw away >80% of the coefficients

sample compress transmit

receive decompress



• Measure projections onto incoherent basis/frame
• Reconstruct via optimization
• Mild oversampling:
• Highly asymmetrical (most computation at receiver)

       [Donoho; Candes, Romberg, Tao]

project transmit

receive reconstruct

Compressed Sensing (CS)



Compressed Sensing 101

• Foundation: Reconstruction from incoherent 
projections

• Signal has sparse representation in some basis
(ex: Fourier, wavelets, etc.)
– WLOG assume signal is sparse in time domain

• Take second, incoherent basis
– elements of       are not sparse in
– random       is incoherent with almost all

• Measure signal via few linear projections



Before CS - L2
• Goal:  Given measurements     find signal
• Fewer rows than columns in measurement matrix
• Ill-posed: infinitely many solutions
• Classical solution:  least squares



• Goal:  Given measurements     find signal
• Fewer rows than columns in measurement matrix
• Ill-posed: infinitely many solutions
• Classical solution:  least squares
• Problem: small L2 doesn’t imply sparsity

Before CS - L2



CS – L0

• Modern solution:  exploit sparsity of
• Of the infinitely many solutions     seek sparsest one

number of 
nonzero entries



CS – L0

• Modern solution:  exploit sparsity of
• Of the infinitely many solutions     seek sparsest one
• If                    then perfect reconstruction

w/ high probability
• But combinatorial computational complexity



The CS Miracle – L1

• Goal:  Given measurements     find signal
• Fewer rows than columns in measurement matrix
• Modern solution:  exploit sparsity of
• Of the infinitely many solutions     seek the one

with smallest L1 norm



The CS Miracle – L1

• Goal:  Given measurements     find signal
• Fewer rows than columns in measurement matrix

•   9c ¼ 3, if                 then perfect reconstruction
w/ high probability [Candes et al.; Donoho]

• Linear programming or other sparse approximation
algorithms



CS Camera Architecture

joint work with Kevin Kelly, Yehia Massoud, Don Johnson, …



CS Reconstruction for Images

256x256 = 65536 pixels



26000 incoherent projections

CS Reconstruction for Images



6500 wavelet coefficients

CS Reconstruction for Images



Compressed Sensing Vision @ Rice

• CS changes the rules of the data acquisition game
– changes what we mean by “sampling”
– exploits a priori signal sparsity information

(that the signal is compressible in some representation)

• Next generation data acquisition
– new A/D converters (sub Nyquist)
– new imagers and imaging algorithms
– new distributed source coding algorithms (today!)

…
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Why Distributed?

• Networks of many sensor nodes
– sensor, microprocessor for computation,

wireless communication, networking, battery
– can be spread over large geographical area

• Must be energy efficient
– minimize communication at expense of computation
– motivates distributed compression



destination raw
data

Separate Sensing

• Transmitting raw data
typically inefficient



• Can we exploit
intra-sensor and
inter-sensor

correlation to jointly compress?
• Ongoing challenge in information

theory community
• Introduce notion of joint sparsity

Correlation



destination compressed
data

Collaborative Sensing

• Collaboration introduces
– inter-sensor

communication overhead
– complexity at sensors



destination compressed
data

Benefits:
• Distributed Source Coding:

– exploit intra- and inter-sensor
correlations

⇒ fewer measurements necessary
– zero inter-sensor

communication overhead

Distributed
Compressed Sensing 
(DCS)



destination compressed
data

Benefits:
• Compressed Sensing:

– universality (random projections)
– “future-proof”
– encryption
– robustness
– scalability
– low complexity at sensors

Distributed
Compressed Sensing 
(DCS)



destination compressed
data

• Different models for different
scenarios

• Today: two example models

Distributed
Compressed Sensing 
(DCS)



Model 1:
Common +
Innovations



Common + Innovations Model

• Motivation: sampling signals in a smooth field

• Joint sparsity model:
– length-N sequences       and

–    is length-     common component

–     ,       length-     innovation components

–    has sparsity

–     ,       have sparsity        ,

• Measurements



Measurement Rate Region with
Separate Reconstruction

separate
encoding &
recon

Decoder g1

Decoder g2

Encoder f1

Encoder f2



separate encoding &
joint recon

Goal: Measurement Rate Region with
Joint Reconstruction

Encoder f1

Decoder g

Encoder f2

D. Baron, M. F. Duarte, M. B. Wakin, S. Sarvotham and R. G. Baraniuk,
“An Information Theoretic Approach to Distributed Compressed Sensing”,

Allerton Conference on Communication, Control, and Computing 2005
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Common Sparse Supports Model

• Joint sparsity model #2 (JSM-2):
– measure J signals, each K-sparse
– signals share sparse components, different coefficients

…



Audio Signals
• Sparse in Fourier Domain
• Same frequencies received by

each node
• Different attenuations and delays

(magnitudes and phases)

Common Sparse Supports Model



Common Sparse Supports Model

…



Common Sparse Supports Model:
Reconstruction

• Orthogonal Matching Pursuit
– Estimate support of sparse signal using inner

products between     and

• Simultaneous Orthogonal Matching Pursuit
– (Tropp, Gilbert, Strauss)
– For signals with shared sparse support
– Extend greedy algorithms to signal ensembles that

share a sparse support



max
magnitude

Approximation:

Orthogonal Matching Pursuit

Simultaneous Sparse Approximation

• project y into each of the columns of 
• find projection with largest magnitude
• update coefficient estimate
• subtract coefficient contribution
• orthogonalize all column vectors against 

chosen one
• repeat m times



Approximations:

Simultaneous Orthogonal Matching Pursuit

…
+



Approximations:

Simultaneous Orthogonal Matching Pursuit

…
+

max



Approximations:

Simultaneous Orthogonal Matching Pursuit

…

max



Common Sparse Supports Model:
Reconstruction

• Performance (measurements per sensor):
–      minimization: K+1
–      minimization: cK
– SOMP: ?



SOMP ResultsK=5
N=50

Separate
Joint



Conclusions

• Theme:     compressed sensing for multiple signals

• Distributed compressed sensing
– new models for joint sparsity
– suitable for sensor network applications
– compression of sources w/ intra- and inter-sensor correlation

• More
– additional joint sparsity models
– real data
– sensor networks

dsp.rice.edu/cs
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