Distributed Compressed Sensing

ECE Department Rice University dsp.rice.edu

Dror Baron

Marco Duarte

Shriram Sarvotham

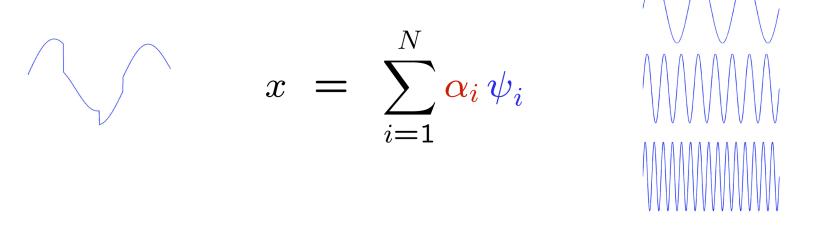
> Michael Wakin

Richard Baraniuk

Compressed Sensing

Signal Representation

- Representation (basis, frame) $\{\psi_i\}$
 - spikes, Fourier sinusoids, wavelets, etc ...



• For orthonormal Ψ , coefficient α_i = projection (inner product) of x onto basis function ψ_i

$$\alpha_i = \langle x, \psi_i \rangle$$

Sparse Signal Representations

- For maximum *efficiency*, choose representation $\{\psi_i\}$ so that coefficients $\{\alpha_i\}$ are *sparse* (most close to 0)
 - smooth signals and Fourier sinusoids
 - piecewise smooth signals and wavelets, ...
- Approximation quantize/encode coeff sizes and locations

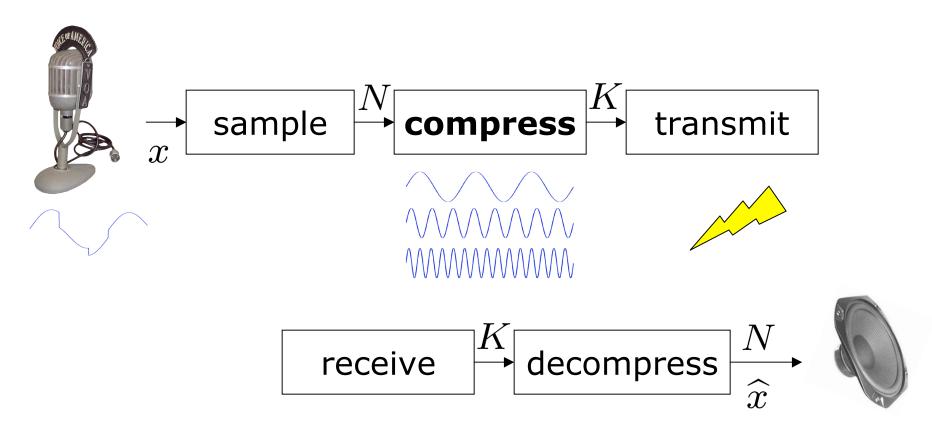
$$x = \sum_{i=1}^{N} \alpha_{i} \psi_{i}$$

$$\widehat{x} = \sum_{K \ll N \text{ largest terms}} \alpha_{i}^{q} \psi_{i}$$

• Transform coding examples: JPEG, MPEG, ...

DSP Sensing

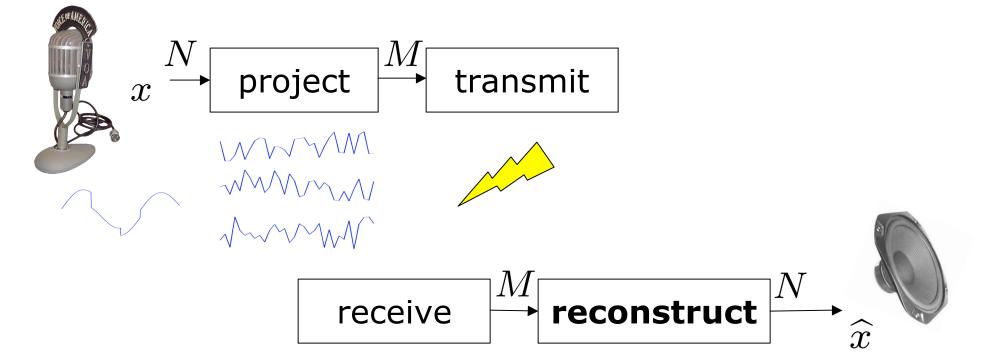
- The typical sensing/compression setup
 - compress = transform, sort coefficients, encode
 - most computation at sensor
 - lots of work to throw away >80% of the coefficients



Compressed Sensing (CS)

- Measure projections onto *incoherent* basis/frame
- Reconstruct via *optimization*
- Mild oversampling: $cK \leq M \ll N, c \approx 3$
- Highly asymmetrical (most computation at *receiver*)

[Donoho; Candes, Romberg, Tao]

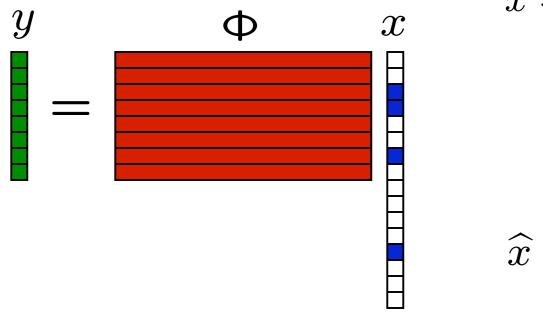


Compressed Sensing 101

- Foundation: Reconstruction from incoherent projections
- Signal has sparse representation in some basis Ψ (ex: Fourier, wavelets, etc.)
 - WLOG assume signal is sparse in time domain $\Psi=I$
- Take second, incoherent basis Φ
 - elements of Φ are *not sparse* in ψ
 - random Φ is incoherent with almost all ψ
- Measure signal via *few linear projections* $y = \Phi x$

Before CS - ℓ_2

- Goal: Given measurements y find signal x
- Fewer rows than columns in measurement matrix Φ
- Ill-posed: infinitely many solutions $\, \widehat{x} \,$
- Classical solution: *least squares*



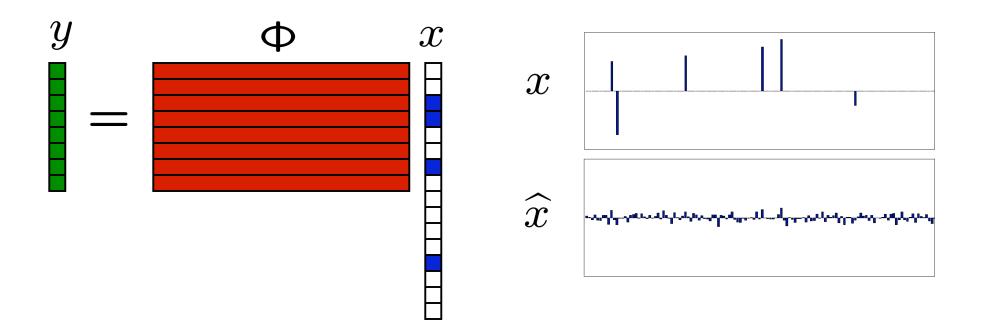
$$\widehat{x} = \arg \min_{y = \Phi x} ||x||_{2}$$

$$\sum_{i} |x_{i}|^{2}$$

$$\widehat{x} = (\Phi^{T} \Phi)^{-1} \Phi^{T} y$$

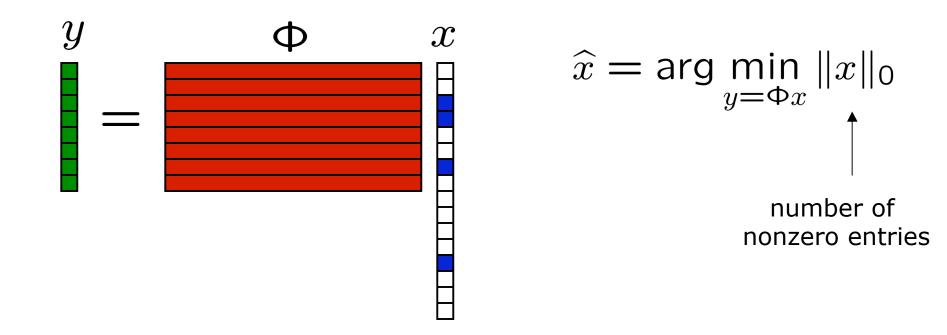
Before CS - ℓ_2

- Goal: Given measurements y find signal x
- Fewer rows than columns in measurement matrix Φ
- Ill-posed: infinitely many solutions $\, \widehat{x} \,$
- Classical solution: *least squares*
- Problem: *small L₂ doesn't imply sparsity*



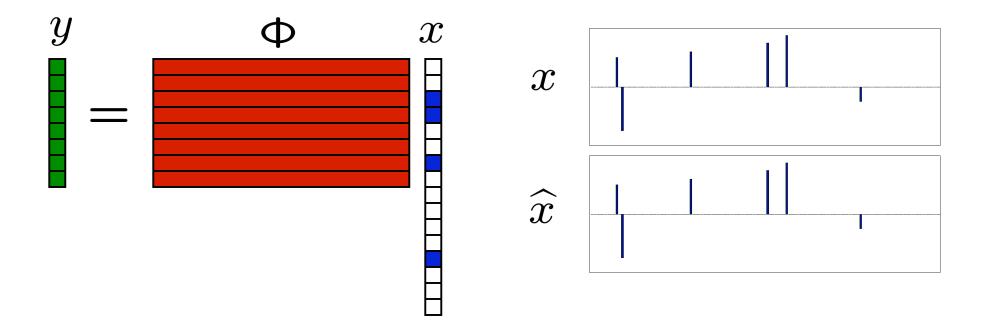
$$cs - \ell_0$$

- Modern solution: exploit sparsity of $\,x\,$
- Of the infinitely many solutions \widehat{x} seek *sparsest* one



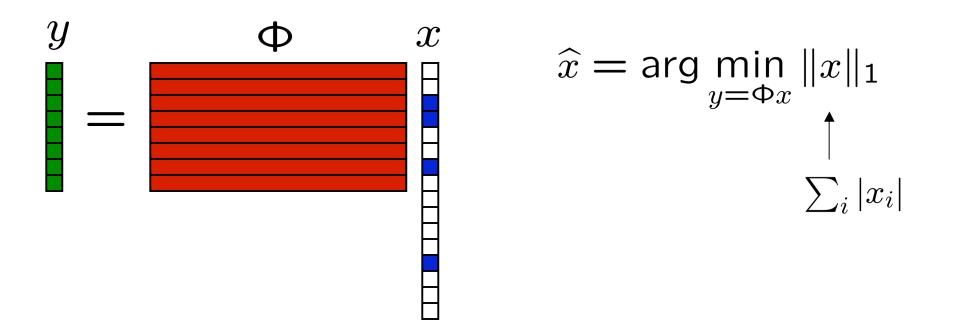
 $CS - \ell_0$

- Modern solution: exploit sparsity of $\,x\,$
- Of the infinitely many solutions \widehat{x} seek *sparsest* one
- If $M \ge K + 1$ then **perfect reconstruction** w/ high probability
- But *combinatorial* computational complexity



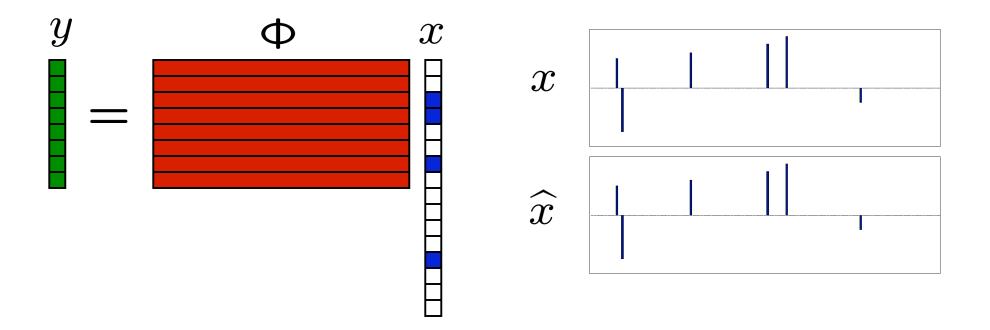
The CS Miracle – ℓ_1

- Goal: Given measurements \boldsymbol{y} find signal \boldsymbol{x}
- Fewer rows than columns in measurement matrix Φ
- Modern solution: exploit sparsity of \boldsymbol{x}
- Of the infinitely many solutions \widehat{x} seek the one with smallest ℓ_1 norm

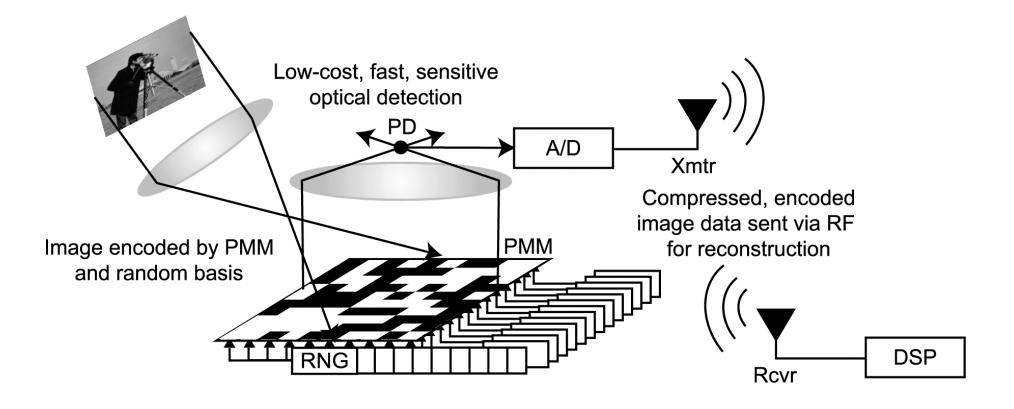


The CS Miracle – ℓ_1

- Goal: Given measurements y find signal x
- Fewer rows than columns in measurement matrix Φ
- $\exists c \approx 3$, if $M \geq cK$ then *perfect reconstruction* w/ high probability [Candes et al.; Donoho]
- *Linear programming* or other *sparse approximation* algorithms



CS Camera Architecture



joint work with Kevin Kelly, Yehia Massoud, Don Johnson, ...

CS Reconstruction for Images

256x256 = 65536 pixels

CS Reconstruction for Images

26000 incoherent projections

CS Reconstruction for Images

6500 wavelet coefficients

Compressed Sensing Vision @ Rice

- CS changes the rules of the data acquisition game
 - changes what we mean by "sampling"
 - exploits a priori signal sparsity information (that the signal is compressible in some representation)
- Next generation data acquisition

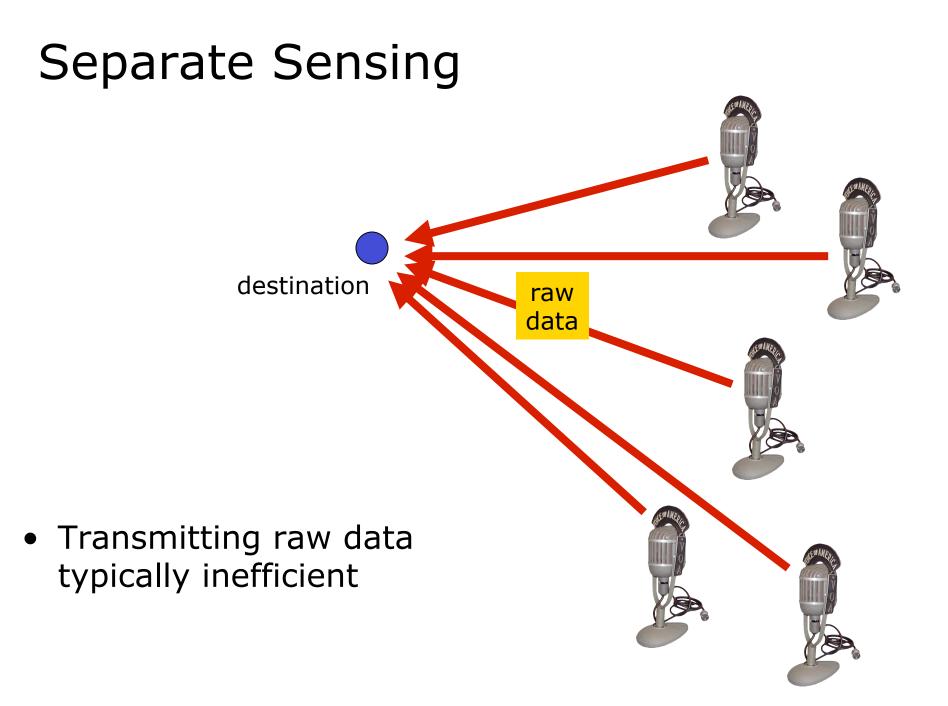
. . .

- new A/D converters (sub Nyquist)
- new imagers and imaging algorithms
- new distributed source coding algorithms (*today!*)

Distributed Compressed Sensing

Why Distributed?

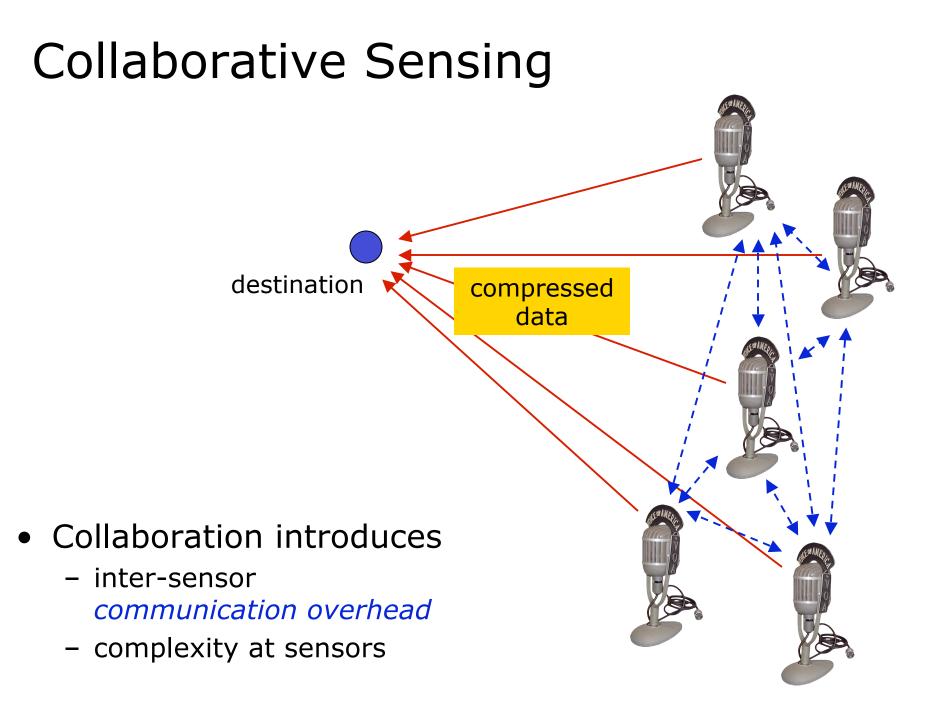
- Networks of many *sensor nodes*
 - sensor, microprocessor for computation, wireless communication, networking, battery
 - can be spread over large geographical area
- Must be *energy efficient*
 - *minimize communication* at expense of computation
 - motivates distributed compression

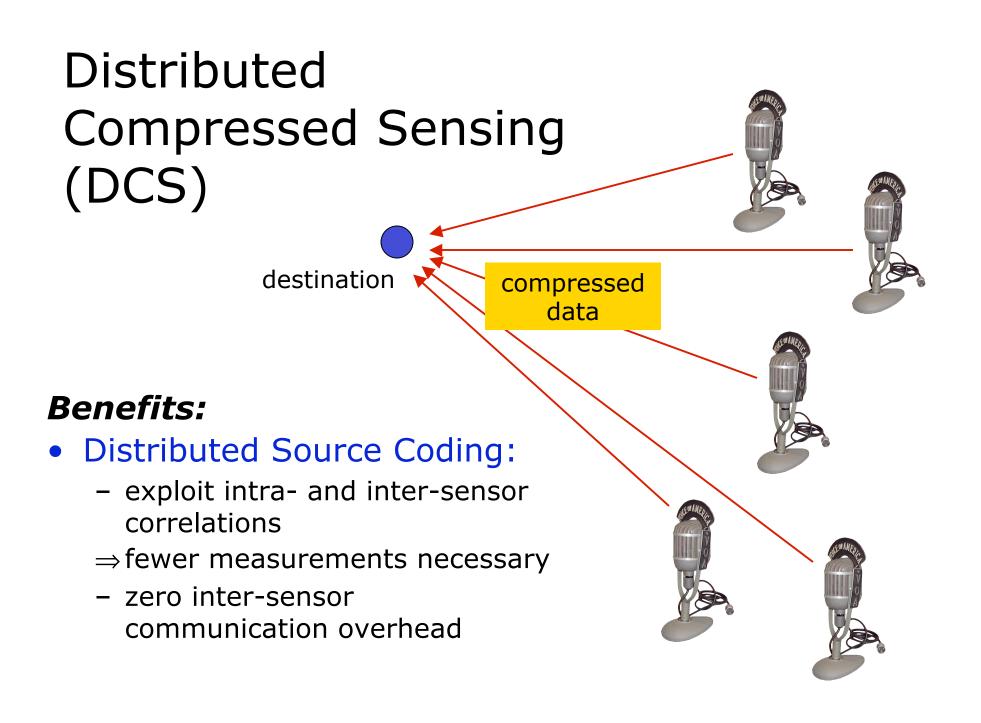


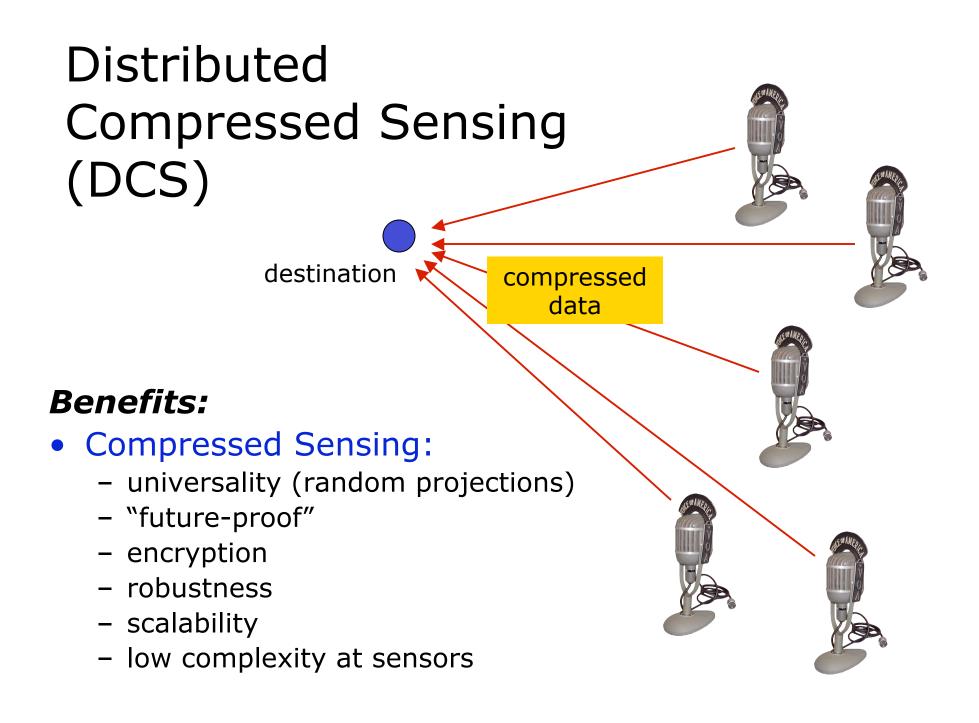
Correlation

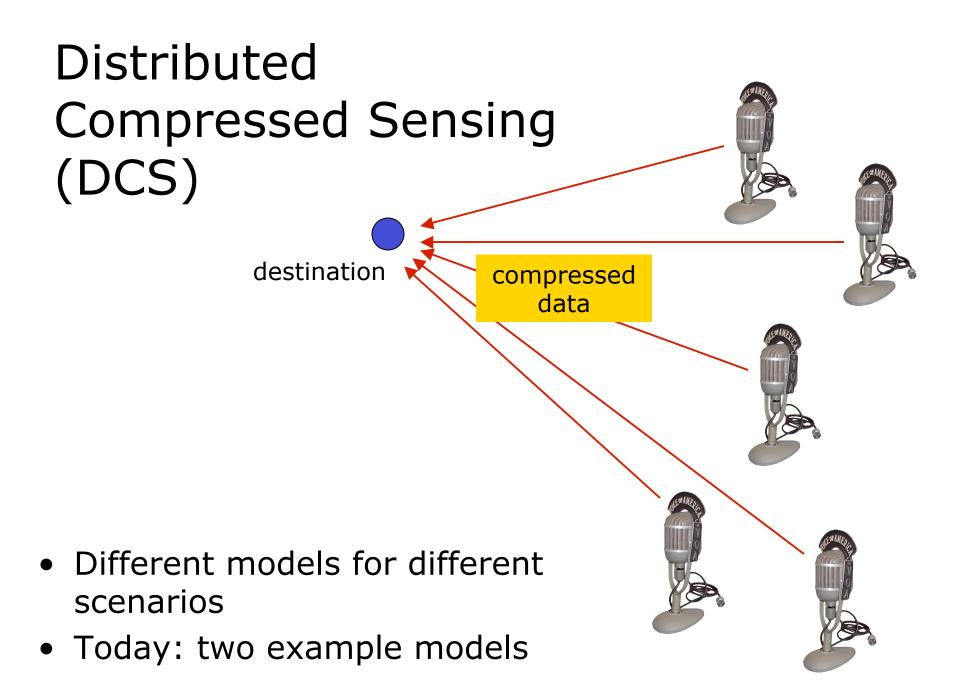
- Can we exploit

 intra-sensor and
 inter-sensor correlation to *jointly compress?*
- Ongoing challenge in information theory community
- Introduce notion of *joint sparsity*









Model 1: Common + Innovations

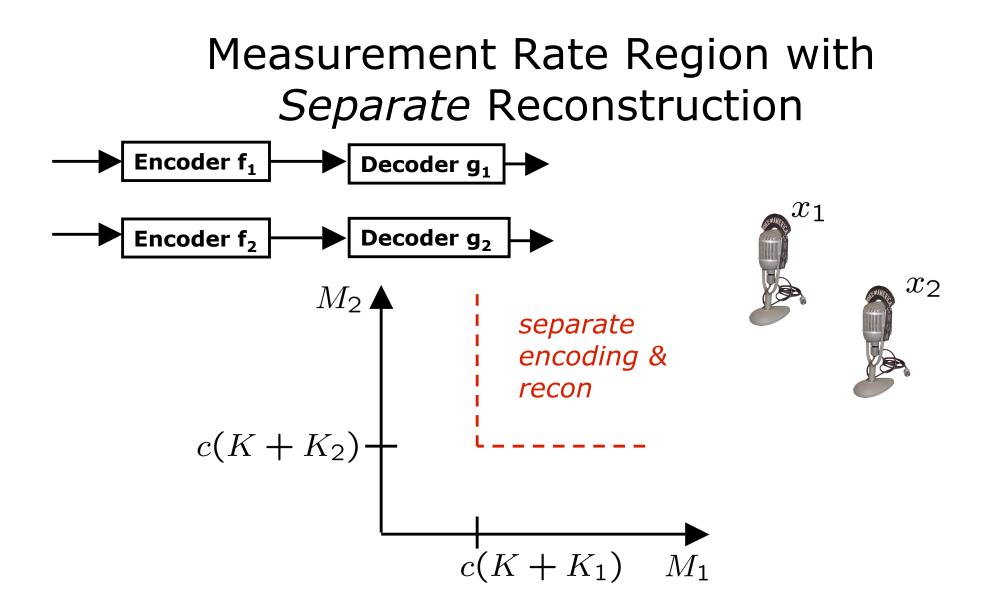
Common + Innovations Model

- Motivation: sampling signals in a smooth field
- Joint sparsity model:
 - length-N sequences x_1 and x_2

 $\begin{array}{rcl} x_1 &=& z+z_1 \\ x_2 &=& z+z_2 \end{array}$

- z is length-N common component
- z_1 , z_2 length-N*innovation* components
- z has sparsity K
- z_1 , z_2 have sparsity K_1 , K_2
- Measurements

$$y_1 = \Phi_1 x_1$$
$$y_2 = \Phi_2 x_2$$



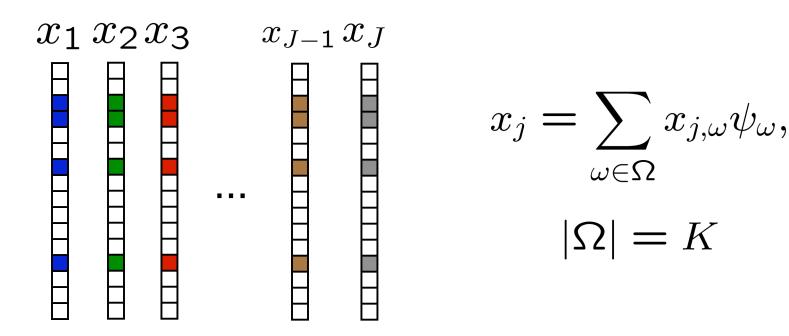
Goal: Measurement Rate Region with Joint Reconstruction **Encoder** f₁ Decoder g x_1 Encoder f₂ x_2 M_2 $c(K + K_2)$ separate encoding & cK_2 joint recon $cK_1 c(K + K_1)$ M_1

D. Baron, M. F. Duarte, M. B. Wakin, S. Sarvotham and R. G. Baraniuk, "An Information Theoretic Approach to Distributed Compressed Sensing", Allerton Conference on Communication, Control, and Computing 2005

Model 2: Common Sparse Supports

Common Sparse Supports Model

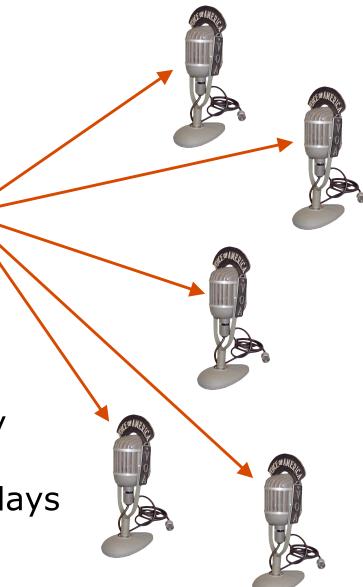
- Joint sparsity model #2 (JSM-2):
 - measure J signals, each K-sparse
 - signals share sparse components, different coefficients



Common Sparse Supports Model

Audio Signals

- Sparse in Fourier Domain
- Same frequencies received by each node
- Different attenuations and delays (magnitudes and phases)

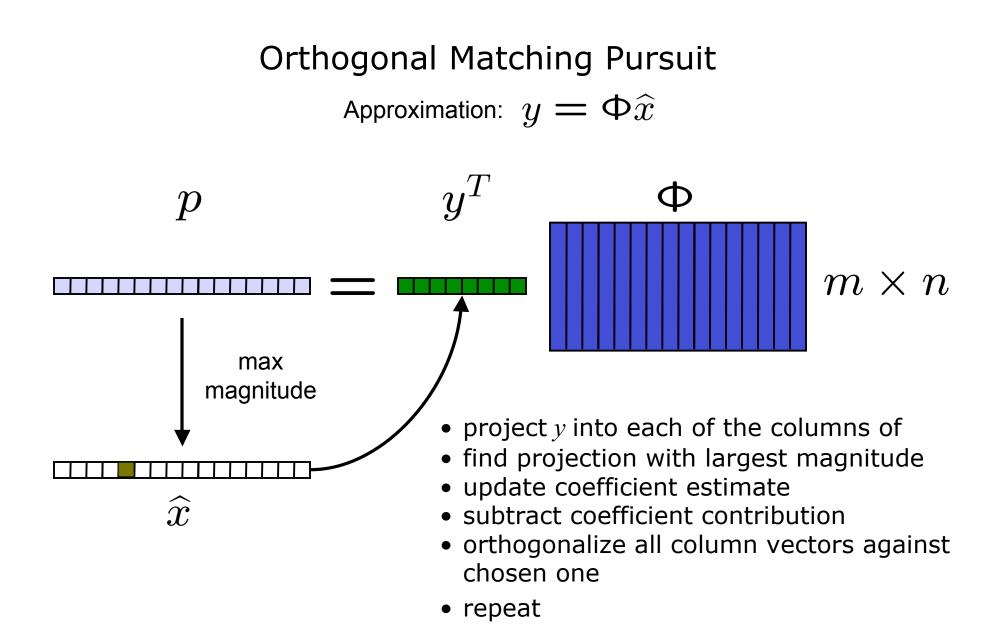


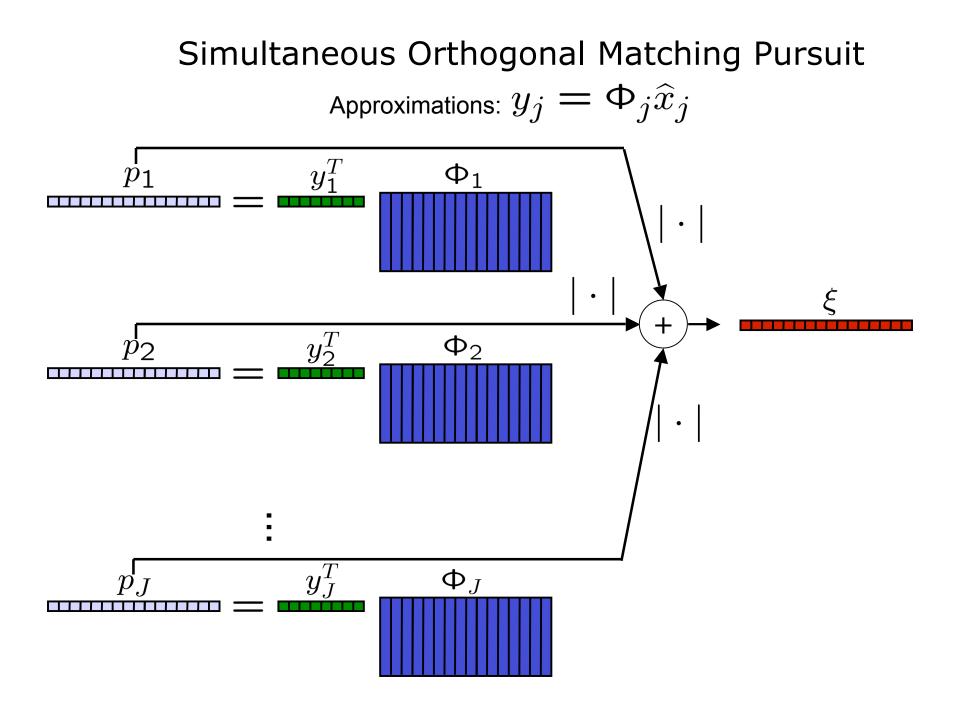
Common Sparse Supports Model Φ_2 y_1 Φ_1 y_2 x_1 x_2 Φ_3 Φ_J y_{3} x_3 y_J x_J . . .

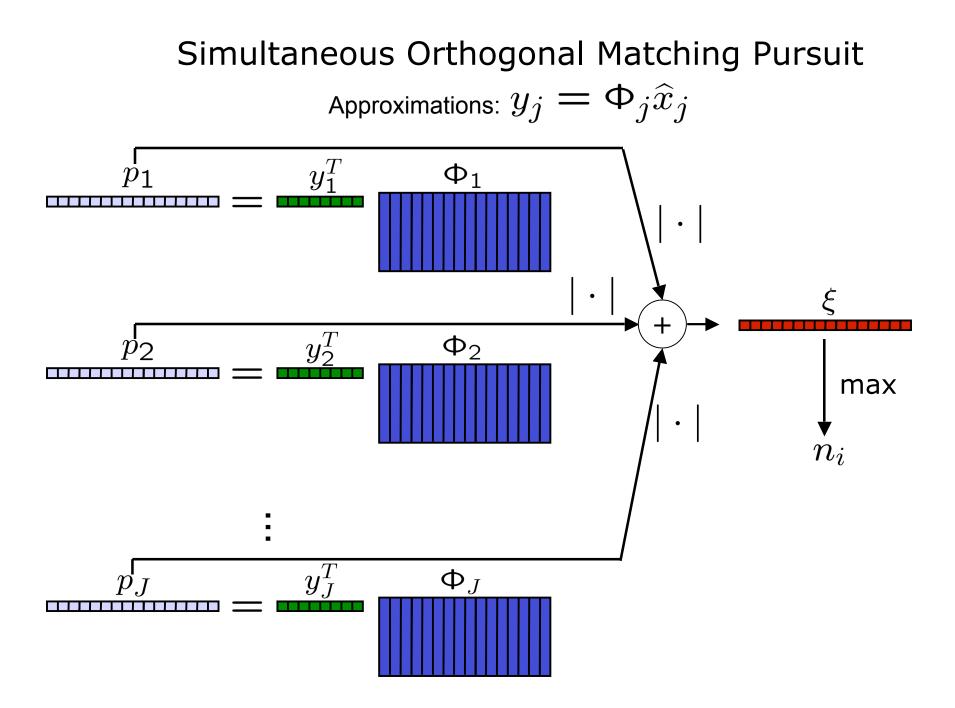
Common Sparse Supports Model: Reconstruction

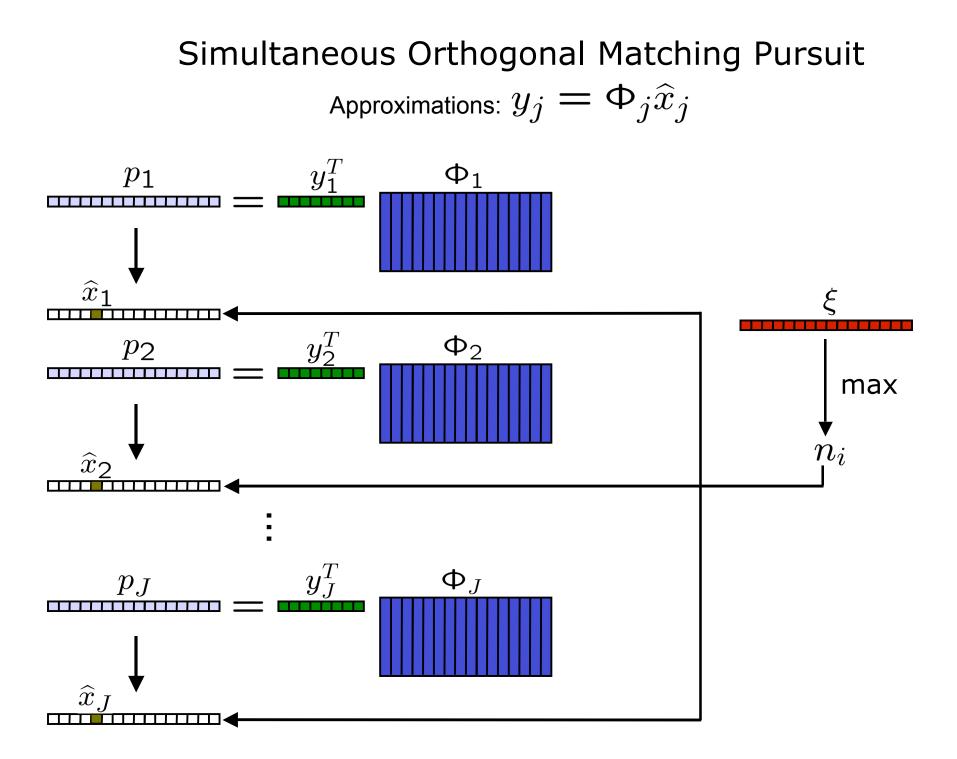
- Orthogonal Matching Pursuit
 - Estimate support of sparse signal using inner products between y_i and Φ_i
- Simultaneous Orthogonal Matching Pursuit
 - (Tropp, Gilbert, Strauss)
 - For signals with shared sparse support
 - Extend greedy algorithms to signal ensembles that share a sparse support

Simultaneous Sparse Approximation



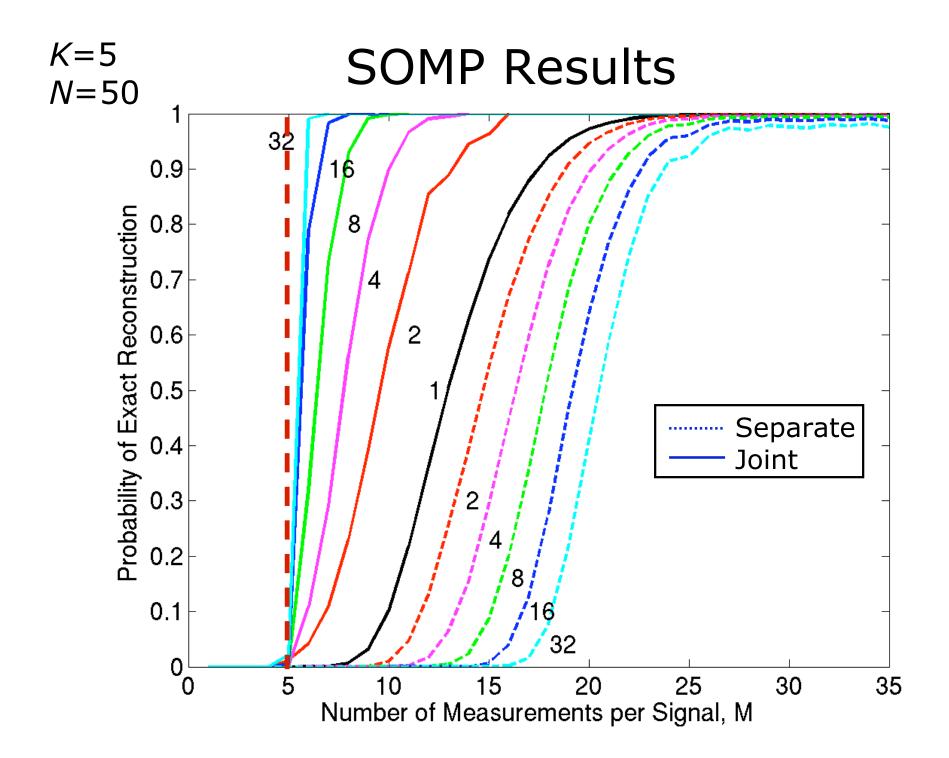






Common Sparse Supports Model: Reconstruction

- Performance (measurements per sensor):
 - ℓ_0 minimization: *K*+1
 - ℓ_1 minimization: cK
 - SOMP: ?



Conclusions

- <u>Theme:</u> compressed sensing for multiple signals
- Distributed compressed sensing
 - new models for *joint sparsity*
 - suitable for sensor network applications
 - compression of sources w/ intra- and inter-sensor correlation
- More
 - additional joint sparsity *models*
 - real data
 - sensor networks

dsp.rice.edu/cs

Thanks

- Emmanuel Candès
- Justin Romberg
- Dave Donoho
- Jared Tanner
- Anna Gilbert
- Joel Tropp