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Abstract

Compressed sensing is an emerging field based on the revelation that a small collection of linear
projections of a sparse signal contains enough information for reconstruction. In this paper we
introduce a new theory for distributed compressed sensing (DCS) that enables new distributed
coding algorithms for multi-signal ensembles that exploit both intra- and inter-signal correlation
structures. The DCS theory rests on a new concept that we term the joint sparsity of a signal
ensemble. We study in detail three simple models for jointly sparse signals, propose algorithms
for joint recovery of multiple signals from incoherent projections, and characterize theoretically
and empirically the number of measurements per sensor required for accurate reconstruction.
We establish a parallel with the Slepian-Wolf theorem from information theory and establish
upper and lower bounds on the measurement rates required for encoding jointly sparse signals.
In two of our three models, the results are asymptotically best-possible, meaning that both
the upper and lower bounds match the performance of our practical algorithms. Moreover,
simulations indicate that the asymptotics take effect with just a moderate number of signals.
In some sense DCS is a framework for distributed compression of sources with memory, which
has remained a challenging problem for some time. DCS is immediately applicable to a range
of problems in sensor networks and arrays.

Keywords: Compressed sensing, distributed source coding, sparsity, incoherent projections, random matri-

ces, linear programming, sensor networks, array processing.

1 Introduction

A core tenet of signal processing and information theory is that signals, images, and other data often
contain some type of structure that enables intelligent representation and processing. The notion
of structure has been characterized and exploited in a variety of ways for a variety of purposes. In
this paper, we focus on exploiting signal correlations for the purpose of compression.

Current state-of-the-art compression algorithms employ a decorrelating transform such as an
exact or approximate Karhunen-Loève transform (KLT) to compact a correlated signal’s energy
into just a few essential coefficients [4–6]. Such transform coders exploit the fact that many signals
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have a sparse representation in terms of some basis, meaning that a small number K of adaptively
chosen transform coefficients can be transmitted or stored rather than N � K signal samples. For
example, smooth signals are sparse in the Fourier basis, and piecewise smooth signals are sparse
in a wavelet basis [7]; the commercial coding standards MP3 [8], JPEG [9], and JPEG2000 [10]
directly exploit this sparsity.

1.1 Distributed source coding

While the theory and practice of compression have been well developed for individual signals,
many applications involve multiple signals, for which there has been less progress. As a motivating
example, consider a sensor network, in which a potentially large number of distributed sensor nodes
can be programmed to perform a variety of data acquisition tasks as well as to network themselves
to communicate their results to a central collection point [11, 12]. In many sensor networks, and in
particular battery-powered ones, communication energy and bandwidth are scarce resources; both
factors make the reduction of communication critical.

Fortunately, since the sensors presumably observe related phenomena, the ensemble of signals
they acquire can be expected to possess some joint structure, or inter-signal correlation, in addition
to the intra-signal correlation in each individual sensor’s measurements. For example, imagine a
microphone network recording a sound field at several points in space. The time-series acquired at
a given sensor might have considerable intra-signal (temporal) correlation and might be sparsely
represented in a local Fourier basis. In addition, the ensemble of time-series acquired at all sen-
sors might have considerable inter-signal (spatial) correlation, since all microphones listen to the
same sources. In such settings, distributed source coding that exploits both intra- and inter-signal
correlations might allow the network to save on the communication costs involved in exporting the
ensemble of signals to the collection point [13–17].

A number of distributed coding algorithms have been developed that involve collaboration
amongst the sensors, including several based on predictive coding [18–20], a distributed KLT [21],
and distributed wavelet transforms [22, 23]. Three-dimensional wavelets have been proposed to
exploit both inter- and intra-signal correlations [24]. Note, however, that any collaboration involves
some amount of inter-sensor communication overhead.

In the Slepian-Wolf framework for lossless distributed coding [13–17], the availability of corre-
lated side information at the collection point / decoder enables each sensor node to communicate
losslessly at its conditional entropy rate rather than at its individual entropy rate. Slepian-Wolf
coding has the distinct advantage that the sensors need not collaborate while encoding their mea-
surements, which saves valuable communication overhead. Unfortunately, however, most existing
coding algorithms [15, 16] exploit only inter-signal correlations and not intra-signal correlations. To
date there has been only limited progress on distributed coding of so-called “sources with memory.”
(We briefly mention some limitations here and elaborate in Section 2.1.3.) The direct implementa-
tion for such sources would require huge lookup tables [13, 25]. Furthermore, approaches combining
pre- or post-processing of the data to remove intra-signal correlations combined with Slepian-Wolf
coding for the inter-signal correlations appear to have limited applicability. Finally, although a
recent paper by Uyematsu [26] provides compression of spatially correlated sources with memory,
the solution is specific to lossless distributed compression and cannot be readily extended to lossy
compression setups. We conclude that the design of constructive techniques for distributed coding
of sources with both intra- and inter-signal correlation is still an open and challenging problem
with many potential applications.
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1.2 Compressed sensing (CS)

A new framework for single-signal sensing and compression has developed recently under the rubric
of Compressed Sensing (CS). CS builds on the ground-breaking work of Candès, Romberg, and
Tao [27] and Donoho [28], who showed that if a signal has a sparse representation in one basis
then it can be recovered from a small number of projections onto a second basis that is incoherent
with the first.1 In fact, for an N -sample signal that is K-sparse,2 only K + 1 projections of
the signal onto the incoherent basis are required to reconstruct the signal with high probability
(Theorem 2). Unfortunately, this requires a combinatorial search, which is prohibitively complex.
Candès et al. [27] and Donoho [28] have recently proposed tractable recovery procedures based
on linear programming, demonstrating the remarkable property that such procedures provide the
same result as the combinatorial search as long as cK projections are used to reconstruct the signal
(typically c ≈ 3 or 4) [31–33]. Iterative greedy algorithms have also been proposed [34–36], allowing
even faster reconstruction at the expense of slightly more measurements.

The implications of CS are promising for many applications, especially sensing signals that have
a sparse representation in some basis. Instead of sampling a K-sparse signal N times, only cK
incoherent measurements suffice, where K can be orders of magnitude less than N . (For example,
Takhar et al. [37] develop a camera that dispenses with the usual N -pixel CCD or CMOS imaging
array by computing cK incoherent image projections optically using a digital micromirror device.)
Therefore, a sensor can transmit far fewer measurements to a receiver, which can reconstruct the
signal and then process it in any manner. Moreover, the cK measurements need not be manipulated
in any way before being transmitted, except possibly for some quantization. Finally, independent
and identically distributed (i.i.d.) Gaussian or Bernoulli/Rademacher (random ±1) vectors provide
a useful universal basis that is incoherent with all others.3 Hence, when using a random basis, CS is
universal in the sense that the sensor can apply the same measurement mechanism no matter what
basis the signal is sparse in (and thus the coding algorithm is independent of the sparsity-inducing
basis) [28, 29].

While powerful, the CS theory at present is designed mainly to exploit intra-signal structures
at a single sensor. To the best of our knowledge, the only work to date that applies CS in a multi-
sensor setting is Haupt and Nowak [38] (see Section 2.2.6). However, while their scheme exploits
inter-signal correlations, it ignores intra-signal correlations.

1.3 Distributed compressed sensing (DCS)

In this paper we introduce a new theory for distributed compressed sensing (DCS) that enables
new distributed coding algorithms that exploit both intra- and inter-signal correlation structures.
In a typical DCS scenario, a number of sensors measure signals (of any dimension) that are each
individually sparse in some basis and also correlated from sensor to sensor. Each sensor indepen-
dently encodes its signal by projecting it onto another, incoherent basis (such as a random one)
and then transmits just a few of the resulting coefficients to a single collection point. Under the
right conditions, a decoder at the collection point can reconstruct each of the signals precisely.

The DCS theory rests on a concept that we term the joint sparsity of a signal ensemble. We
will study in detail three simple models for jointly sparse signals, propose tractable algorithms for
joint recovery of signal ensembles from incoherent projections, and characterize theoretically and
empirically the number of measurements per sensor required for accurate reconstruction. While

1Roughly speaking, incoherence means that no element of one basis has a sparse representation in terms of the
other basis. This notion has a variety of formalizations in the CS literature [27–30].

2By K-sparse, we mean that the signal can be written as a sum of K basis functions from some known basis.
3Since the “incoherent” measurement vectors must be known for signal recovery, in practice one may use a

pseudorandom basis with a known random seed.
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the sensors operate entirely without collaboration, we will see in many cases that the measurement
rates relate directly to the signals’ conditional sparsities, in parallel with the Slepian-Wolf theory.
The joint sparsity models (JSMs) we study are as follows.

JSM-1: Sparse common component + innovations: In this model each signal consists
of a sum of two components: a common component that is present in all of the signals and an
innovations component that is unique to each signal. Both the common and innovations components
are sparsely representable in some basis. Such signals may arise in settings where large-scale
phenomena affect all sensors and local phenomena affect individual sensors; one example would be
a network of temperature sensors in a forest, where the sun has a global effect, and shade, water,
and animals have more local effects.

For JSM-1, we will show that there exists a measurement rate region analogous to the Slepian-
Wolf rate region for distributed coding [14] (see Figure 6). The notion of joint sparsity suggests
a joint reconstruction technique based on linear programming. We provide a converse bound
(Theorem 6) and an achievable bound (Theorem 7) on the measurement rate region using linear
programming techniques.

Our simulations reveal that in practice the savings in the total number of required measurements
can be substantial over separate CS encoding/decoding, especially when the common component
dominates. In one of our scenarios with just two sensors, the savings in the number of measurements
can be as large as 30% (Theorem 7). Detailed numerical results appear in Section 4.7.

JSM-2: Common sparse supports: In this model, all signals are constructed from the same
sparse set of basis vectors, but with different coefficient values. Examples of JSM-2 scenarios include
MIMO communication [34] and audio signal arrays; the signals may be sparse in the Fourier domain,
for example, yet multipath resulting from differing propagation paths causes different attenuations
among the frequency components. (Note that while all sensors may be “listening” to the same
underlying signal, in applications such as localization and beamforming it can be important to
recover all of the individual signals and not just a single composite signal.)

We develop two techniques based on iterative greedy pursuit for signal ensemble reconstruc-
tion from independent, incoherent measurements. Our analysis (Theorem 9) and simulations (in
Section 5.3 and Figure 10) indicate that as the number of sensors grows, the oversampling factor
c required for exact reconstruction of all signals shrinks to c = 1. Since an “oracle” system that
knows in advance the positions of the sparse basis vectors also requires c = 1 (Theorem 9), our DCS
encoder/decoder provides the best-possible performance. From an information theoretic perspec-
tive, for JSM-2 we have tight converse and achievable measurement rate bounds. Our simulations
indicate that the asymptotics take effect with even a moderate number of signals.

JSM-3: Nonsparse common component + sparse innovations: This model extends
JSM-1 so that the common component need no longer be sparse in any basis. Since the common
component is not sparse, no individual signal contains enough structure to permit efficient com-
pression or CS; in general N measurements would be required for each individual N -sample signal.
We demonstrate, however, that the common structure shared by the signals permits a dramatic
reduction in the required measurement rates. In fact, asymptotically, the required measurement
rates relate simply to the sparsity K of the innovation components; as the number of sensors grows,
each sensor may again reduce its oversampling factor to c = 1 (Theorem 10). Again, this is best-
possible performance that could not be bettered by an oracle that knew the common nonsparse
component in advance.
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1.4 Advantages of DCS

In addition to offering substantially reduced measurement rates in multi-signal applications, the
DCS-based distributed source coding schemes we develop here share many of the attractive and
intriguing properties of CS, particularly when we employ random projections at the sensors. As
in single-signal CS, random measurement bases are universal in the sense that they can be paired
with any sparse basis. This allows exactly the same encoding strategy to be applied in a variety of
different sensing environments; knowledge of the nuances of the environment are needed only at the
decoder. Moreover, random measurements are also future-proof: if a better sparsity-inducing basis
is found for the signals, then the same random measurements can be used to reconstruct an even
more accurate view of the environment. A pseudorandom basis can be generated using a simple
algorithm according to a random seed. Such encoding effectively implements a form of encryption:
the randomized measurements will themselves resemble noise and be meaningless to an observer who
does not know the associated seed. Random coding is also robust: the randomized measurements
coming from each sensor have equal priority, unlike the Fourier or wavelet coefficients in current
coders. Thus they allow a progressively better reconstruction of the data as more measurements are
obtained; one or more measurements can also be lost without corrupting the entire reconstruction.

Two additional properties of DCS make it well-matched to distributed applications such as
sensor networks and arrays [11, 12]. First, each sensor encodes its measurements independently,
which reduces inter-sensor communication overhead to zero. Second, DCS distributes its compu-
tational complexity asymmetrically, placing most of it in the joint decoder, which will often have
more substantial computational resources than any individual sensor node. The encoders are very
simple; they merely compute incoherent projections with their signals and make no decisions.

This paper focuses primarily on the basic task of reducing the measurement rate of a signal
ensemble in order to reduce the communication cost of source coding that ensemble. In practical
settings (such as sensor networks), additional criteria may be relevant for measuring performance.
For example, the measurements will typically be real numbers that must be quantized and encoded,
which will gradually degrade the reconstruction quality as the quantization becomes coarser [39]
(see also Section 7). Characterizing DCS in light of practical considerations such as rate-distortion
tradeoffs, power consumption in sensor networks, etc., are topics of ongoing research [40].

1.5 Paper organization

Section 2 overviews the distributed source coding and single-signal CS theories and provides two
new results on CS reconstruction. While readers may be familiar with some of this material,
we include it to make the paper self-contained. Section 3 introduces our three models for joint
sparsity: JSM-1, 2, and 3. We provide our detailed analysis and simulation results for these models
in Sections 4, 5, and 6, respectively. We close the paper with a discussion and conclusions in
Section 7. Several appendices contain the proofs and other mathematical details.

2 Background

2.1 Information theory

2.1.1 Lossless source coding

In a typical lossless coding scenario, we have a sequence x = x(1), x(2), . . . , x(N) of N symbols,
n ∈ {1, 2, . . . , N}, where each symbol x(n) belongs to a finite alphabet X . Our goal is to encode x
using bits in such a way that we can reconstruct x perfectly4 at the decoder. In order to represent

4In this paper we use the terms perfect and exact interchangeably.
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the sequence x, a straightforward approach is to represent each symbol x(n) using dlog2(|X |)e bits,
where | · | denotes the cardinality of a set, log2(·) is the base-two logarithm, and d·e rounds up to
the nearest integer.

The sequence x is often modeled in a way that enables a more compact representation of the
sequence. This is called compression. To elaborate further, we now describe a standard setting for
lossless source coding. Consider a source X that generates such sequences, where the symbols of x
are i.i.d., and the probability mass function assigns each symbol x(n) ∈ X a probability p(x(n)).
The key idea in lossless compression is to represent each symbol x(n) that has probability p using
− log2(p) bits. Using this insight, the entropy H(X) is defined as

H(X) , −
∑

x(n)∈X

p(x(n)) log2(p(x(n))). (1)

Not only can sequences be compressed close to their entropy using this insight [13], but it also
turns out that the entropy provides the lowest per-symbol rate that enables lossless compression.
Various techniques such as arithmetic coding [13] can be used to compress near the entropy rate.

2.1.2 Distributed source coding

Information theory [13, 17] has also provided tools that characterize the performance of distributed
source coding. For correlated length-N sequences x1 and x2 generated by sources X1 and X2 over
discrete alphabets X1 and X2, we have entropies H(X1) and H(X2) as before in (1). The joint
entropy of X1 and X2, which is the lowest rate that enables compression of x1 and x2 together, is
defined as

H(X1,X2) , −
∑

x1(n)∈X1,x2(n)∈X2

p(x1(n), x2(n)) log2(p(x1(n), x2(n))).

The extension to more than two signals is straightforward [13].

The conditional entropy is the lowest per-symbol rate that enables lossless compression, condi-
tioned on the side information that is available at both encoder and decoder. More formally,

H(X1|X2) , −
∑

x1(n)∈X1,x2(n)∈X2

p(x1(n), x2(n)) log2(p(x1(n)|x2(n))),

and it can be shown that

H(X1) +H(X2|X1) = H(X1,X2) = H(X2) +H(X1|X2).

If the sources X1 and X2 are independent, then H(X2|X1) = H(X2) and H(X1|X2) = H(X1), and
so the joint entropy is the sum of the individual entropies H(X1) and H(X2). In this case, separate
(independent) compression of each of the sequences x1 and x2 can achieve the optimal compression
rate H(X1,X2). However, if X1 and X2 are correlated sources, then the joint entropy satisfies

H(X1,X2) < H(X1) +H(X2),

meaning that the separate encoding of each sequence is wasteful. The potential savings in the
coding rate in this setup motivated Slepian and Wolf to study the distributed coding of correlated
sources [14].

In the Slepian-Wolf framework [13–17, 25], the sequences x1 and x2 are encoded separately and
decoded jointly. The rates R1 and R2 at which we encode x1 and x2 are the normalized number of
bits used per source symbol. For Slepian-Wolf coding, there is an entire rate region of rate pairs
(R1, R2) that enable us to correctly reconstruct x1 and x2. This rate region is characterized in the
following theorem.
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Figure 1: The shaded area indicates the Slepian-Wolf achievable rate region for distributed source
coding (Theorem 1).

Theorem 1 [14] Consider sources X1 and X2 that generate length-N sequences x1 and x2. The
sequences are encoded separately using rates R1 and R2. As N increases, the sequences can be
reconstructed jointly with vanishing probability of error if and only if

R1 > H(X1|X2), (2a)

R2 > H(X2|X1), (2b)

R1 +R2 > H(X1,X2). (2c)

The surprising result is that it suffices to encode each sequence above its conditional entropy
as long as the sum rate exceeds the joint entropy. In contrast, separate encoding must encode each
source at its entropy, and the sum rate is often greater than the joint entropy.

The Slepian-Wolf rate region [13, 14, 17, 25] — shown in Figure 1 — has been completely char-
acterized: any rate pair (R1, R2) that satisfies the conditions (2a)–(2c) enables decoding of x1 and
x2 with vanishing probability of error as N increases. This characterization is accomplished by
providing converse and achievable results that are tight. The converse part of the analysis shows
that for any rate pair for which the conditions do not hold, the probability of error does not vanish.
The achievable part shows that for any rate pair that satisfies these conditions (2a)–(2c), there
exist constructive schemes that enable us to reconstruct x1 and x2 with vanishing probability of
error.

The constructive schemes usually used in these analyses are based on random binning [13, 25].
In this technique, every possible sequence x1 is assigned a bin index

i(x1) ∈
{
1, 2, . . . , 2NR1

}
,

where the probability of the bin index assigned to any x1 is uniform over all 2NR1 possible indices.
The other sequence x2 is assigned an index i(x2) in an analogous manner. The encoders for x1 and
x2 assign these indices and can thus encode x1 and x2 using NR1 and NR2 bits, respectively. The
decoders search for a pair of sequences (x̂1, x̂2) such that i(x1) = i(x̂1), i(x2) = i(x̂2), and the pair
is jointly typical. Loosely speaking, joint typicality means that the sequences x̂1 and x̂2 match the
joint statistics well. As long as the conditions (2a)–(2c) hold, the probability of error vanishes as
N increases.

2.1.3 Challenges for distributed coding of sources with memory

One approach to distributed compression of data with both inter- and intra-signal correlations
(“sources with memory”) is to perform Slepian-Wolf coding using source models with temporal
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memory. Cover [25] showed how random binning can be applied to compress ergodic sources in
a distributed manner. Unfortunately, implementing this approach would be challenging, since it
requires maintaining lookup tables of size 2NR1 and 2NR2 at the two encoders. Practical Slepian-
Wolf encoders are based on dualities to channel coding [15, 16] and hence do not require storing
vast lookup tables.

An alternative approach would use a transform to remove intra-signal correlations. For exam-
ple, the Burrows-Wheeler Transform (BWT) permutes the symbols of a block in a manner that
removes correlation between temporal symbols and thus can be viewed as the analogue of the
Karhunen-Lòeve transform for sequences over finite alphabets. The BWT handles temporal cor-
relation efficiently in single-source lossless coding [41, 42]. For distributed coding, the BWT could
be proposed to remove temporal correlations by pre-processing the sequences prior to Slepian-Wolf
coding. Unfortunately, the BWT is input-dependent, and hence temporal correlations would be
removed only if all sequences were available at the encoders. Using a transform as a post-processor
following Slepian-Wolf coding does not seem promising either, since the distributed encoders’ out-
puts will each be i.i.d.

In short, approaches based on separating source coding into two components — distributed
coding to handle inter-signal correlations and a transform to handle intra-signal correlations —
appear to have limited applicability. In contrast, a recent paper by Uyematsu [26] proposed a
universal Slepian-Wolf scheme for correlated Markov sources. Uyematsu’s approach constructs a
sequence of universal codes such that the probability of decoding error vanishes when the coding
rates lie within the Slepian-Wolf region. Such codes can be constructed algebraically, and the
encoding/decoding complexity is O(N3). While some of the decoding schemes developed below
have similar (or lower) complexity, they have broader applicability. First, we deal with continuous
sources, whereas Uyematsu’s work considers only finite alphabet sources. Second, quantization of
the measurements will enable us to extend our schemes to lossy distributed compression, whereas
Uyematsu’s work is confined to lossless settings. Third, Uyematsu’s work only considers Markov
sources. In contrast, the use of different bases enables our approaches to process broader classes of
jointly sparse signals.

2.2 Compressed sensing

2.2.1 Transform coding

Consider a length-N , real-valued signal x of any dimension (without loss of generality, we will focus
on one dimension for notational simplicity) indexed as x(n), n ∈ {1, 2, . . . , N}. Suppose that the
basis Ψ = [ψ1, . . . , ψN ] [7] provides a K-sparse representation of x; that is

x =

N∑

n=1

θ(n)ψn =

K∑

`=1

θ(n`)ψn`
,

where x is a linear combination of K vectors chosen from Ψ, {n`} are the indices of those vectors,
and {θ(n)} are the coefficients; the concept is extendable to tight frames [7]. Alternatively, we can
write in matrix notation

x = Ψθ,

where x is an N × 1 column vector, the sparse basis matrix Ψ is N ×N with the basis vectors ψn

as columns, and θ is an N × 1 column vector with K nonzero elements. Using ‖ · ‖p to denote the
`p norm,5 we can write that ‖θ‖0 = K. Various expansions, including wavelets [7], Gabor bases [7],

5The `0 “norm” ‖θ‖0 merely counts the number of nonzero entries in the vector θ.
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curvelets [43], etc., are widely used for representation and compression of natural signals, images,
and other data.

In this paper, we will focus on exactly K-sparse signals and defer discussion of the more general
situation where the coefficients decay rapidly but not to zero (see Section 7 for additional discussion
and [40] for DCS simulations on real-world compressible signals). The standard procedure for
compressing sparse signals, known as transform coding, is to (i) acquire the full N -sample signal x;
(ii) compute the complete set of transform coefficients {θ(n)}; (iii) locate the K largest, significant
coefficients and discard the (many) small coefficients; (iv) encode the values and locations of the
largest coefficients.

This procedure has three inherent inefficiencies: First, for a high-dimensional signal, we must
start with a large number of samples N . Second, the encoder must compute all of the N transform
coefficients {θ(n)}, even though it will discard all but K of them. Third, the encoder must encode
the locations of the large coefficients, which requires increasing the coding rate since the locations
change with each signal.

2.2.2 Incoherent projections

This raises a simple question: For a given signal, is it possible to directly estimate the set of large
θ(n)’s that will not be discarded? While this seems improbable, Candès, Romberg, and Tao [27, 29]
and Donoho [28] have shown that a reduced set of projections can contain enough information to
reconstruct sparse signals. An offshoot of this work, often referred to as Compressed Sensing (CS)
[28, 29, 44–49], has emerged that builds on this principle.

In CS, we do not measure or encode the K significant θ(n) directly. Rather, we measure
and encode M < N projections y(m) = 〈x, φT

m〉 of the signal onto a second set of basis functions
{φm},m = 1, 2, . . . ,M , where φT

m denotes the transpose of φm and 〈·, ·〉 denotes the inner product.
In matrix notation, we measure

y = Φx,

where y is an M × 1 column vector and the measurement basis matrix Φ is M ×N with each row
a basis vector φm. Since M < N , recovery of the signal x from the measurements y is ill-posed in
general; however the additional assumption of signal sparsity makes recovery possible and practical.

The CS theory tells us that when certain conditions hold, namely that the basis {φm} cannot
sparsely represent the elements of the basis {ψn} (a condition known as incoherence of the two bases
[27–30]) and the number of measurements M is large enough, then it is indeed possible to recover
the set of large {θ(n)} (and thus the signal x) from a similarly sized set of measurements {y(m)}.
This incoherence property holds for many pairs of bases, including for example, delta spikes and
the sine waves of a Fourier basis, or the Fourier basis and wavelets. Significantly, this incoherence
also holds with high probability between an arbitrary fixed basis and a randomly generated one.
Signals that are sparsely represented in frames or unions of bases can be recovered from incoherent
measurements in the same fashion.

2.2.3 Signal recovery via `0 optimization

The recovery of the sparse set of significant coefficients {θ(n)} can be achieved using optimization
by searching for the signal with `0-sparsest coefficients {θ(n)} that agrees with the M observed
measurements in y (recall that M < N). Reconstruction relies on the key observation that, given
some technical conditions on Φ and Ψ, the coefficient vector θ is the solution to the `0 minimization

θ̂ = arg min ‖θ‖0 s.t. y = ΦΨθ (3)
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with overwhelming probability. (Thanks to the incoherence between the two bases, if the original
signal is sparse in the θ coefficients, then no other set of sparse signal coefficients θ′ can yield the
same projections y.) We will call the columns of ΦΨ the holographic basis.

In principle, remarkably few incoherent measurements are required to recover a K-sparse signal
via `0 minimization. Clearly, more than K measurements must be taken to avoid ambiguity; the
following theorem establishes that K + 1 random measurements will suffice. The proof appears in
Appendix A; similar results were established by Venkataramani and Bresler [50].

Theorem 2 Let Ψ be an orthonormal basis for R
N , and let 1 ≤ K < N . Then the following

statements hold:

1. Let Φ be an M×N measurement matrix with i.i.d. Gaussian entries with M ≥ 2K. Then with
probability one the following statement holds: all signals x = Ψθ having expansion coefficients
θ ∈ R

N that satisfy ‖θ‖0 = K can be recovered uniquely from the M -dimensional measurement
vector y = Φx via the `0 optimization (3).

2. Let x = Ψθ such that ‖θ‖0 = K. Let Φ be an M×N measurement matrix with i.i.d. Gaussian
entries (notably, independent of x) with M ≥ K + 1. Then with probability one the following
statement holds: x can be recovered uniquely from the M -dimensional measurement vector
y = Φx via the `0 optimization (3).

3. Let Φ be an M ×N measurement matrix, where M ≤ K. Then, aside from pathological cases
(specified in the proof), no signal x = Ψθ with ‖θ‖0 = K can be uniquely recovered from the
M -dimensional measurement vector y = Φx.

Remark 1 The second statement of the theorem differs from the first in the following respect: when
K < M < 2K, there will necessarily exist K-sparse signals x that cannot be uniquely recovered from
the M -dimensional measurement vector y = Φx. However, these signals form a set of measure
zero within the set of all K-sparse signals and can safely be avoided if Φ is randomly generated
independently of x.

The intriguing conclusion from the second and third statements of Theorem 2 is that one mea-
surement separates the achievable region, where perfect reconstruction is possible with probability
one, from the converse region, where with overwhelming probability reconstruction is impossible.
Moreover, Theorem 2 provides a strong converse measurement region in a manner analogous to the
strong channel coding converse theorems of Wolfowitz [17].

Unfortunately, solving this `0 optimization problem is prohibitively complex, requiring a com-
binatorial enumeration of the

(
N
K

)
possible sparse subspaces. In fact, the `0-recovery problem is

known to be NP-complete [31]. Yet another challenge is robustness; in the setting of Theorem 2,
the recovery may be very poorly conditioned. In fact, both of these considerations (computational
complexity and robustness) can be addressed, but at the expense of slightly more measurements.

2.2.4 Signal recovery via `1 optimization

The practical revelation that supports the new CS theory is that it is not necessary to solve the
`0-minimization problem to recover the set of significant {θ(n)}. In fact, a much easier problem
yields an equivalent solution (thanks again to the incoherency of the bases); we need only solve for
the `1-sparsest coefficients θ that agree with the measurements y [27–29, 44–48]

θ̂ = arg min ‖θ‖1 s.t. y = ΦΨθ. (4)
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Figure 2: Performance of Basis Pursuit for single-signal Compressed Sensing (CS) reconstruction.
A signal x of normalized sparsity S = K/N = 0.1 and various lengths N is encoded in terms of a
vector y containing M = cK projections onto i.i.d. Gaussian random basis elements. The vertical
axis indicates the probability that the linear program yields the correct answer x as a function of
the oversampling factor c = M/K.

This optimization problem, also known as Basis Pursuit [51], is significantly more approachable and
can be solved with traditional linear programming techniques whose computational complexities
are polynomial in N .

There is no free lunch, however; according to the theory, more than K + 1 measurements are
required in order to recover sparse signals via Basis Pursuit. Instead, one typically requiresM ≥ cK
measurements, where c > 1 is an oversampling factor. As an example, we quote a result asymptotic
in N . For simplicity, we assume that the sparsity scales linearly with N ; that is, K = SN , where
we call S the sparsity rate.

Theorem 3 [31–33] Set K = SN with 0 < S � 1. Then there exists an oversampling factor c(S) =
O(log(1/S)), c(S) > 1, such that, for a K-sparse signal x in basis Ψ, the following statements hold:

1. The probability of recovering x via Basis Pursuit from (c(S)+ ε)K random projections, ε > 0,
converges to one as N → ∞.

2. The probability of recovering x via Basis Pursuit from (c(S)− ε)K random projections, ε > 0,
converges to zero as N → ∞.

The typical performance of Basis Pursuit-based CS signal recovery is illustrated in Figure 2.
Here, the linear program (4) attempts to recover a K-sparse signal x of length N , with the normal-
ized sparsity rate fixed at S = K/N = 0.1 (each curve corresponds to a different N). The horizontal
axis indicates the oversampling factor c, that is, the ratio between the number of measurements M
(length of y) employed in (4) and the signal sparsity K. The vertical axis indicates the probability
that the linear program yields the correct answer x. Clearly the probability increases with the
number of measurements M = cK. Moreover, the curves become closer to a step function as N
grows.

In an illuminating series of recent papers, Donoho and Tanner [32, 33] have characterized the
oversampling factor c(S) precisely. With appropriate oversampling, reconstruction via Basis Pursuit
is also provably robust to measurement noise and quantization error [27]. In our work, we have
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Figure 3: Oversampling factor for `1 reconstruction. The solid line indicates the precise oversam-
pling ratio c(S) required for `1 recovery in CS [32, 33]. The dashed line indicates our proposed rule
of thumb c(S) ≈ log2(1 + S−1).

noticed that the oversampling factor is quite similar to log2(1 + S−1). We find this expression a
useful rule of thumb to approximate the precise oversampling ratio and illustrate the similarity in
Figure 3.

Rule of Thumb The oversampling factor c(S) in Theorem 3 satisfies c(S) ≈ log2

(
1 + S−1

)
.

In the remainder of the paper, we often use the abbreviated notation c to describe the over-
sampling factor required in various settings even though c(S) depends on the sparsity K and signal
length N .

2.2.5 Signal recovery via greedy pursuit

At the expense of slightly more measurements, iterative greedy algorithms have also been developed
to recover the signal x from the measurements y. Examples include the iterative Orthogonal
Matching Pursuit (OMP) [30], matching pursuit (MP), and tree matching pursuit (TMP) [35, 36]
algorithms. OMP, for example, iteratively selects the vectors from the holographic basis ΦΨ that
contain most of the energy of the measurement vector y. The selection at each iteration is made
based on inner products between the columns of ΦΨ and a residual; the residual reflects the
component of y that is orthogonal to the previously selected columns.

OMP is guaranteed to converge within a finite number of iterations. In CS applications,
OMP requires c ≈ 2 ln(N) [30] to succeed with high probability. In the following, we will exploit
both Basis Pursuit and greedy algorithms for recovering jointly sparse signals from incoherent
measurements. We note that Tropp and Gilbert require the OMP algorithm to succeed in the first
K iterations [30]; however, in our simulations, we allow the algorithm to run up to the maximum of
M possible iterations. While this introduces a potential vulnerability to noise in the measurements,
our focus in this paper is on the noiseless case. The choice of an appropriate practical stopping
criterion (likely somewhere between K and M iterations) is a subject of current research in the CS
community.
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2.2.6 Related work

Recently, Haupt and Nowak [38] formulated a setting for CS in sensor networks that exploits
inter-signal correlations. In their approach, each sensor n ∈ {1, 2, . . . , N} simultaneously records
a single reading x(n) of some spatial field (temperature at a certain time, for example).6 Each
of the sensors generates a pseudorandom sequence rn(m),m = 1, 2, . . . ,M , and modulates the
reading as x(n)rn(m). Each sensor n then transmits its M numbers in sequence in an analog and
synchronized fashion to the collection point such that it automatically aggregates them, obtaining
M measurements y(m) =

∑N
n=1 x(n)rn(m). Thus, defining x = [x(1), x(2), . . . , x(N)]T and φm =

[r1(m), r2(m), . . . , rN (m)], the collection point automatically receives the measurement vector y =
[y(1), y(2), . . . , y(M)]T = Φx after M transmission steps. The samples x(n) of the spatial field can
then be recovered using CS provided that x has a sparse representation in a known basis. The
coherent analog transmission scheme also provides a power amplification property, thus reducing
the power cost for the data transmission by a factor of N . There are some shortcomings to this
approach, however. Sparse representations for x are straightforward when the spatial samples are
arranged in a grid, but establishing such a representation becomes much more difficult when the
spatial sampling is irregular [22]. Additionally, since this method operates at a single time instant,
it exploits only inter-signal and not intra-signal correlations; that is, it essentially assumes that the
sensor field is i.i.d. from time instant to time instant. In contrast, we will develop signal models
and algorithms that are agnostic to the spatial sampling structure and that exploit both inter- and
intra-signal correlations.

3 Joint Sparsity Models

In this section, we generalize the notion of a signal being sparse in some basis to the notion of an
ensemble of signals being jointly sparse. In total, we consider three different joint sparsity models
(JSMs) that apply in different situations. In the first two models, each signal is itself sparse, and
so we could use the CS framework from Section 2.2 to encode and decode each one separately
(independently). However, there also exists a framework wherein a joint representation for the
ensemble uses fewer total vectors. In the third model, no signal is itself sparse, yet there still exists
a joint sparsity among the signals that allows recovery from significantly fewer measurements per
sensor.

We will use the following notation for signal ensembles and our measurement model. Denote
the signals in the ensemble by xj , j ∈ {1, 2, . . . , J}, and assume that each signal xj ∈ R

N . We use
xj(n) to denote sample n in signal j, and we assume that there exists a known sparse basis Ψ for R

N

in which the xj can be sparsely represented. The coefficients of this sparse representation can take
arbitrary real values (both positive and negative). Denote by Φj the measurement matrix for signal
j; Φj is Mj ×N and, in general, the entries of Φj are different for each j. Thus, yj = Φjxj consists
of Mj < N incoherent measurements of xj.

7 We will emphasize random i.i.d. Gaussian matrices
Φj in the following, but other schemes are possible, including random ±1 Bernoulli/Rademacher
matrices, and so on.

In previous sections, we discussed signals with intra-signal correlation (within each xj) or
signals with inter-signal correlation (between xj1 and xj2). The three following models sport both
kinds of correlation simultaneously.

6Note that in this section only, N refers to the number of sensors and not the length of the signals.
7The measurements at sensor j can be obtained either indirectly by sampling the signal xj and then computing

the matrix-vector product yj = Φjxj or directly by special-purpose hardware that computes yj without first sampling
(see [37], for example).
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3.1 JSM-1: Sparse common component + innovations

In this model, all signals share a common sparse component while each individual signal contains
a sparse innovation component; that is,

xj = zC + zj , j ∈ {1, 2, . . . , J}

with
zC = ΨθC , ‖θC‖0 = KC and zj = Ψθj, ‖θj‖0 = Kj .

Thus, the signal zC is common to all of the xj and has sparsity KC in basis Ψ. The signals zj are
the unique portions of the xj and have sparsity Kj in the same basis. Denote by ΩC the support
set of the nonzero θC values and by Ωj the support set of θj.

A practical situation well-modeled by JSM-1 is a group of sensors measuring temperatures
at a number of outdoor locations throughout the day. The temperature readings xj have both
temporal (intra-signal) and spatial (inter-signal) correlations. Global factors, such as the sun
and prevailing winds, could have an effect zC that is both common to all sensors and structured
enough to permit sparse representation. More local factors, such as shade, water, or animals,
could contribute localized innovations zj that are also structured (and hence sparse). A similar
scenario could be imagined for a network of sensors recording light intensities, air pressure, or other
phenomena. All of these scenarios correspond to measuring properties of physical processes that
change smoothly in time and in space and thus are highly correlated.

3.2 JSM-2: Common sparse supports

In this model, all signals are constructed from the same sparse set of basis vectors, but with different
coefficients; that is,

xj = Ψθj, j ∈ {1, 2, . . . , J}, (5)

where each θj is nonzero only on the common coefficient set Ω ⊂ {1, 2, . . . , N} with |Ω| = K.
Hence, all signals have `0 sparsity of K, and all are constructed from the same K basis elements
but with arbitrarily different coefficients.

A practical situation well-modeled by JSM-2 is where multiple sensors acquire replicas of the
same Fourier-sparse signal but with phase shifts and attenuations caused by signal propagation.
In many cases it is critical to recover each one of the sensed signals, such as in many acoustic
localization and array processing algorithms. Another useful application for JSM-2 is MIMO com-
munication [34].

Similar signal models have been considered by different authors in the area of simultaneous
sparse approximation [34, 52, 53]. In this setting, a collection of sparse signals share the same
expansion vectors from a redundant dictionary. The sparse approximation can be recovered via
greedy algorithms such as Simultaneous Orthogonal Matching Pursuit (SOMP) [34, 52] or MMV
Order Recursive Matching Pursuit (M-ORMP) [53]. We use the SOMP algorithm in our setting
(see Section 5) to recover from incoherent measurements an ensemble of signals sharing a common
sparse structure.

3.3 JSM-3: Nonsparse common component + sparse innovations

This model extends JSM-1 so that the common component need no longer be sparse in any basis;
that is,

xj = zC + zj , j ∈ {1, 2, . . . , J}

with
zC = ΨθC and zj = Ψθj, ‖θj‖0 = Kj ,
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but zC is not necessarily sparse in the basis Ψ. We also consider the case where the supports of the
innovations are shared for all signals, which extends JSM-2. Note that separate CS reconstruction
cannot be applied under JSM-3, since the common component is not sparse.

A practical situation well-modeled by JSM-3 is where several sources are recorded by different
sensors together with a background signal that is not sparse in any basis. Consider, for example, an
idealized computer vision-based verification system in a device production plant. Cameras acquire
snapshots of components in the production line; a computer system then checks for failures in
the devices for quality control purposes. While each image could be extremely complicated, the
ensemble of images will be highly correlated, since each camera is observing the same device with
minor (sparse) variations.

JSM-3 could also be useful in some non-distributed scenarios. For example, it motivates the
compression of data such as video, where the innovations or differences between video frames may
be sparse, even though a single frame may not be very sparse. In this case, JSM-3 suggests that we
encode each video frame independently using CS and then decode all frames of the video sequence
jointly. This has the advantage of moving the bulk of the computational complexity to the video
decoder. Puri and Ramchandran have proposed a similar scheme based on Wyner-Ziv distributed
encoding in their PRISM system [54]. In general, JSM-3 may be invoked for ensembles with
significant inter-signal correlations but insignificant intra-signal correlations.

3.4 Refinements and extensions

Each of the JSMs proposes a basic framework for joint sparsity among an ensemble of signals. These
models are intentionally generic; we have not, for example, mentioned the processes by which the
index sets and coefficients are assigned. In subsequent sections, to give ourselves a firm footing
for analysis, we will often consider specific stochastic generative models, in which (for example)
the nonzero indices are distributed uniformly at random and the nonzero coefficients are drawn
from a random Gaussian distribution. While some of our specific analytical results rely on these
assumptions, the basic algorithms we propose should generalize to a wide variety of settings that
resemble the JSM-1, 2, and 3 models.

It should also be clear that there are many possible joint sparsity models beyond the three we
have introduced. One immediate extension is a combination of JSM-1 and JSM-2, where the signals
share a common set of sparse basis vectors but with different expansion coefficients (as in JSM-2)
plus additional innovation components (as in JSM-1). For example, consider a number of sensors
acquiring different delayed versions of a signal that has a sparse representation in a multiscale basis
such as a wavelet basis. The acquired signals will share the same wavelet coefficient support at coarse
scales with different values, while the supports at each sensor will be different for coefficients at
finer scales. Thus, the coarse scale coefficients can be modeled as the common support component,
and the fine scale coefficients can be modeled as the innovation components.

Further work in this area will yield new JSMs suitable for other application scenarios. Appli-
cations that could benefit include multiple cameras taking digital photos of a common scene from
various angles [55]. Additional extensions are discussed in Section 7.

4 Recovery Strategies for Sparse Common Component
+ Innovations (JSM-1)

In Section 2.1.2, Theorem 1 specified an entire region of rate pairs where distributed source coding
is feasible (recall Figure 1). Our goal is to provide a similar characterization for measurement rates
in DCS. In this section, we characterize the sparse common signal and innovations model (JSM-1);
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we study JSMs 2 and 3 in Sections 5 and 6, respectively.

We begin this section by presenting a stochastic model for signals in JSM-1 in Section 4.1,
and then present an information-theoretic framework where we scale the size of our reconstruction
problem in Section 4.2. We study the set of viable representations for JSM-1 signals in Section 4.3.
After defining our notion of a measurement rate region in Section 4.4, we present bounds on the
measurement rate region using `0 and `1 reconstructions in Sections 4.5 and 4.6, respectively. We
conclude with numerical examples in Section 4.7.

4.1 Stochastic signal model for JSM-1

To give ourselves a firm footing for analysis, we consider in this section a specific stochastic gener-
ative model for jointly sparse signals in JSM-1. Though our theorems and experiments are specific
to this context, the basic ideas, algorithms, and results can be expected to generalize to other,
similar scenarios.

For our model, we assume without loss of generality that Ψ = IN , where IN is the N × N
identity matrix.8 Although the extension to arbitrary bases is straightforward, this assumption
simplifies the presentation because we have x1(n) = zC(n) + z1(n) = θC(n) + θ1(n) and x2(n) =
zC(n)+z2(n) = θC(n)+θ2(n). We generate the common and innovation components in the following
manner. For n ∈ {1, 2, ..., N} the decision whether zC(n) is zero or not is an i.i.d. process, where
the probability of a nonzero value is given by a parameter denoted SC . The values of the nonzero
coefficients are then generated from an i.i.d. Gaussian distribution. In a similar fashion we pick
the Kj indices that correspond to the nonzero indices of zj independently, where the probability of
a nonzero value is given by a parameter Sj. The values of the nonzero innovation coefficients are
then generated from an i.i.d. Gaussian distribution.

The outcome of this process is that each component zj has an operational sparsity of Kj , where
Kj has a Binomial distribution with mean NSj , that is, Kj ∼ Binomial(N,Sj). A similar statement
holds for zC , KC , and SC . Thus, the parameters Sj and SC can be thought of as sparsity rates
controlling the random generation of each signal.

4.2 Information theoretic framework and notion of sparsity rate

In order to glean some theoretic insights, consider the simplest case where a single joint encoder
processes J = 2 signals. By employing the CS machinery, we might expect that (i) (KC + K1)c
measurements suffice to reconstruct x1, (ii) (KC + K2)c measurements suffice to reconstruct x2,
and (iii) (KC +K1 +K2)c measurements suffice to reconstruct both x1 and x2, because we have
KC +K1 +K2 nonzero elements in x1 and x2.

9 Next, consider the case where the two signals are
processed by separate encoders. Given the (KC + K1)c measurements for x1 as side information
and assuming that the partitioning of x1 into zC and z1 is known, cK2 measurements that describe
z2 should allow reconstruction of x2. Similarly, conditioned on x2, we should need only cK1

measurements to reconstruct x1.

These observations seem related to various types of entropy from information theory; we thus
expand our notions of sparsity to draw such analogies. As a motivating example, suppose that the
signals xj , j ∈ {1, 2, . . . , J} are generated by sources Xj , j ∈ {1, 2, . . . , J} using our stochastic
model. As the signal length N is incremented one by one, the sources provide new values for zC(N)
and zj(N), and the operational sparsity levels increase roughly linearly in the signal length. We
thus define the sparsity rate of Xj as the limit of the proportion of coefficients that need to be

8If the measurement basis Φ is i.i.d. random Gaussian, then the matrix ΦΨ remains i.i.d. Gaussian no matter
what (orthonormal) sparse basis Ψ we choose.

9With a slight abuse of notation, we denote the oversampling factors for coding x1, x2, or both signals by c.
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specified in order to reconstruct the signal xj given its support set Ωj; that is,

S(Xj) , lim
N→∞

KC +Kj

N
, j ∈ {1, 2, . . . , J}.

We also define the joint sparsity S(Xj1 ,Xj2) of xj1 and xj2 as the proportion of coefficients that
need to be specified in order to reconstruct both signals given the support sets Ωj1, Ωj2 of both
signals. More formally,

S(Xj1 ,Xj2) , lim
N→∞

KC +Kj1 +Kj2

N
, j1, j2 ∈ {1, 2, . . . , J}.

Finally, the conditional sparsity of xj1 given xj2 is the proportion of coefficients that need to be
specified in order to reconstruct xj1 , where xj2 and Ωj1 are available

S(Xj1 |Xj2) , lim
N→∞

Kj1

N
, j1, j2 ∈ {1, 2, . . . , J}.

The joint and conditional sparsities extend naturally to groups of more than two signals.

The sparsity rate of the common source ZC can be analyzed in a manner analogous to the
mutual information [13] of traditional information theory; that is, SC = I(X1;X2) = S(X1) +
S(X2) − S(X1,X2). While our specific stochastic model is somewhat simple, we emphasize that
these notions can be extended to additional models in the class of stationary ergodic sources. These
definitions offer a framework for joint sparsity with notions similar to the entropy, conditional
entropy, and joint entropy of information theory.

4.3 Ambiguous representations for signal ensembles

As one might expect, the basic quantities that determine the measurement rates for a JSM-1 ensem-
ble will be the sparsities KC and Kj of the components zC and zj , j = 1, 2, . . . , J . However we must
account for an interesting side effect of our generative model. The representation (zC , z1, . . . , zJ )
for a given signal ensemble {xj} is not unique; in fact many sets of components (zC , z1, . . . , zJ )
(with different sparsities KC and Kj) could give rise to the same signals {xj}. We refer to any rep-
resentation (zC , z1, . . . , zJ) for which xj = zC + zj for all j as a viable representation for the signals
{xj}. The sparsities of these viable representations will play a significant role in our analysis.

To study JSM-1 viability, we confine our attention to J = 2 signals. Consider the n-th co-
efficient zC(n) of the common component zC and the corresponding innovation coefficients z1(n)
and z2(n). Suppose that these three coefficients are all nonzero. Clearly, the same signals x1 and
x2 could have been generated using at most two nonzero values among the three, for example by
adding the value zC(n) to z1(n) and z2(n) (and then setting zC(n) to zero). Indeed, when all three
coefficients are nonzero, we can represent them equivalently by any subset of two coefficients. Thus,
there exists a sparser representation than we might expect given KC , K1, and K2. We call this
process sparsity reduction.

Likelihood of sparsity reduction: Having realized that sparsity reduction might be possible,
we now characterize when it can happen and how likely it is. Consider the modification of zC(n)
to some fixed zC(n). If z1(n) and z2(n) are modified to

z1(n) , z1(n) + zC(n) − zC(n) and z2(n) , z2(n) + zC(n) − zC(n),

then zC(n), z1(n), and z2(n) form a viable representation for x1(n) and x2(n). For example, if
zC(n), z1(n), and z2(n) are nonzero, then

zC(n) = 0, z1(n) = z1(n) + zC(n) and z2(n) = z2(n) + zC(n)
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form a viable representation with reduced sparsity. Certainly, if all three original coefficients zC(n),
z1(n), and z2(n) are nonzero, then the `0 sparsity of the n-th component can be reduced to two.
However, once the sparsity has been reduced to two, it can only be reduced further if multiple
original nonzero coefficient values were equal. Since we have assumed independent Gaussian coeffi-
cient amplitudes (see Section 4.1), further sparsity reduction is possible only with probability zero.
Similarly, if two or fewer original coefficients are nonzero, then the probability that the sparsity
can be reduced is zero. We conclude that sparsity reduction is possible with positive probability only
in the case where three original nonzero coefficients have an equivalent representation using two
nonzero coefficients.

Since the locations of the nonzero coefficients are uniform (Section 4.1), the probability that
for one index n all three coefficients are nonzero is

Pr(sparsity reduction) =
KC

N

K1

N

K2

N
. (6)

We denote the number of indices n for which zC(n), z1(n), and z2(n) are all nonzero by KC12.
Similarly, we denote the number of indices n for which both zC(n) and z1(n) are nonzero by KC1,
and so on. Asymptotically, the probability that all three elements are nonzero is

SC12 , Pr(sparsity reduction) = SCS1S2.

Similarly, we denote the probability that both zC(n) and z1(n) are nonzero by SC1 = SCS1, and
so on.

The previous arguments indicate that with probability one the total number of nonzero coef-
ficients KC +K1 +K2 can be reduced by KC12 but not more.10 Consider a viable representation
with minimal number of nonzero coefficients. We call this a minimal sparsity representation. Let
the sparsity of the viable common component zC be KC , and similarly let the number of nonzero
coefficients of the viable j-th innovation component zj be Kj . The previous arguments indicate
that with probability one a minimal sparsity representation satisfies

KC +K1 +K2 = KC +K1 +K2 −KC12. (7)

One can view
(
KC ,K1,K2

)
as operational sparsities that represent the sparsest way to express the

signals at hand.

Sparsity swapping: When the three signal coefficients zC(n), z1(n), z2(n) are nonzero, an
alternative viable representation exists in which any one of them is zeroed out through sparsity
reduction. Similarly, if any two of the coefficients are nonzero, then with probability one the
corresponding signal values x1(n) and x2(n) are nonzero and differ. Again, any two of the three
coefficients suffice to represent both values, and we can “zero out” any of the coefficients that are
currently nonzero at the expense of the third coefficient, which is currently zero. This sparsity
swapping provides numerous equivalent representations for the signals x1 and x2. To characterize
sparsity swapping, we denote the number of indices for which at least two original coefficients are
nonzero by

K∩ , KC1 +KC2 +K12 − 2KC12;

this definition is easily extendable to J > 2 signals. As before, we use the generic notation Ω to
denote the coefficient support set. Since Ψ = IN , the coefficient vectors θC , θ1, and θ2 correspond
to the signal components zC , z1, and z2, which have support sets ΩC , Ω1, and Ω2, respectively.

10Since N is finite, the expected number of indices n for which further sparsity reduction is possible is zero.
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Figure 4: Minimal sparsity representation region illustrating the overlap between the supports
(denoted by Ω) of zC , z1, and z2. The outer rectangle represents the set {1, 2, ..., N} of which ΩC ,
Ω1, and Ω2 are subsets. Due to independence, the sparsity of the overlap between multiple sets can
be computed as the product of the individual sparsities.

The intersections between the different support sets are illustrated in Figure 4. In an asymptotic
setting, the probability of intersection satisfies

S∩ , SC1 + SC2 + S12 − 2SC12. (8)

We call K∩ the intersection sparsity and S∩ the intersection sparsity rate. In addition to satisfying
(7), a minimal sparsity representation must also obey

K∩ = K∩, (9)

since for every index n where two or more coefficients intersect, x1(n) and x2(n) will differ and be
nonzero with probability one, and so will be represented by two nonzero coefficients in any minimal
sparsity representation. Furthermore, for any index n where two nonzero coefficients intersect, any
of the three coefficients zC(n), z1(n), and z2(n) can be “zeroed out.” Therefore, the set of minimal
representations lies in a cube with sidelength K∩.

We now ask where this cube lies. Clearly, no matter what sparsity reduction and swapping we
perform, the potential for reducing KC is no greater than KC1 + KC2 − KC12. (Again, Figure 4
illustrates these concepts.) We denote the minimal sparsity that zC , z1, and z2 may obtain by K ′

C ,
K ′

1, and K ′
2, respectively. We have

KC ≥ K ′
C , KC −KC1 −KC2 +KC12, (10a)

K1 ≥ K ′
1 , K1 −KC1 −K12 +KC12, (10b)

K2 ≥ K ′
2 , K2 −KC2 −K12 +KC12. (10c)

Therefore, the minimal sparsity representations lie in the cube [K ′
C ,K

′
C +K∩] × [K ′

1,K
′
1 +K∩] ×

[K ′
2,K

′
2+K∩]. We now summarize the discussion with a result on sparsity levels of minimal sparsity

representations.

Lemma 1 With probability one, the sparsity levels KC , K1, and K2 of a minimal sparsity repre-
sentation satisfy

K ′
C ≤ KC ≤ K ′

C +K∩, (11a)

K ′
1 ≤ K1 ≤ K ′

1 +K∩, (11b)

K ′
2 ≤ K2 ≤ K ′

2 +K∩, (11c)

KC +K1 +K2 = K ′
C +K ′

1 +K ′
2 + 2K∩. (11d)
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Figure 5: Sparsity reduction and swapping. For J = 2 and a given KC , K1, and K2, the possibility
of overlap between signal components allows us to find a minimal sparsity representation with
sparsity KC , K1 and K2. The shaded section of the triangle gives the set of minimal sparsity
representations. The triangle lies on a hyperplane described by (7). The cube is described in
Lemma 1. The ε-point, which essentially describes the measurement rates required for joint `0
reconstruction, lies on a corner of the triangle.

Remark 2 Equation (11d) is obtained by combining (7) with the useful identity

KC +K1 +K2 −KC12 = K ′
C +K ′

1 +K ′
2 + 2K∩.

Combining these observations, among minimal sparsity representations, the values
(
KC ,K1,K2

)

lie on the intersection of a plane (7) with a cube. This intersection forms a triangle, as illustrated
in Figure 5.

ε-point: Among all minimal sparsity representations (zC , z1, z2) there is one of particular inter-
est because it determines the minimal measurement rates necessary to recover the signal ensemble
{xj}. The fact is that one cannot exploit any minimal sparsity representation for reconstruction.
Consider, for example, the situation where the supports of zC , z1, and z2 are identical. Using spar-
sity swapping and reduction, one might conclude that a representation where zC = z2, z1 = z1−z2,
and z2 = 0 could be used to reconstruct the signal, in which case there is no apparent need to
measure x2 at all. Of course, since x1 and x2 differ and are both nonzero, it seems implausible that
one could reconstruct x2 without measuring it at all.

Theorems 4 and 5 suggest that the representation of particular interest is the one that places
as few entries in the common component zC as possible. As shown in Figure 5, there is a unique
minimal sparsity representation that satisfies this condition. We call this representation the ε-point
(for reasons that will be more clear in Section 4.5.2), and we denote its components by zε

C , zε
1, and

zε
2. The sparsities of these components satisfy

Kε
C = K ′

C , (12a)

Kε
1 = K ′

1 +K∩, (12b)

Kε
2 = K ′

2 +K∩. (12c)

We also define the sparsity rates Sε
C , Sε

1, and Sε
2 in an analogous manner.
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4.4 Measurement rate region

To characterize DCS performance, we introduce a measurement rate region. Let M1 and M2 be
the number of measurements taken of x1 and x2, respectively. We define the measurement rates
R1 and R2 in an asymptotic manner as

R1 , lim
N→∞

M1

N
and R2 , lim

N→∞

M2

N
.

For a measurement rate pair (R1, R2) and sources X1 and X2, we wish to see whether we can
reconstruct the signals with vanishing probability as N increases. In this case, we say that the
measurement rate pair is achievable.

For signals that are jointly sparse under JSM-1, the individual sparsity rate of signal xj is
S(Xj) = SC +Sj −SCSj. Separate recovery via `0 minimization would require a measurement rate
Rj = S(Xj). Separate recovery via `1 minimization would require an oversampling factor c(S(Xj)),
and thus the measurement rate would become S(Xj) · c(S(Xj)). To improve upon these figures, we
adapt the standard machinery of CS to the joint recovery problem.

4.5 Joint recovery via `0 minimization

In this section, we begin to characterize the theoretical measurement rates required for joint re-
construction. We provide a lower bound for all joint reconstruction techniques, and we propose a
reconstruction scheme based on `0 minimization that approaches this bound but has high complex-
ity. In the Section 4.6 we pursue more efficient approaches.

4.5.1 Lower bound

For simplicity but without loss of generality we again consider the case of J = 2 received signals
and sparsity basis Ψ = IN . We can formulate the recovery problem using matrices and vectors as

z ,



zC
z1
z2


 , x ,

[
x1

x2

]
, y ,

[
y1

y2

]
, Φ ,

[
Φ1 0
0 Φ2

]
. (13)

Since Ψ = IN , we can define

Ψ̃ ,

[
Ψ Ψ 0
Ψ 0 Ψ

]
(14)

and write x = Ψ̃z. We measure the sparsity of a representation z by its total `0 sparsity

‖z‖0 = ‖zC‖0 + ‖z1‖0 + ‖z2‖0.

We assume that any two representations z and ẑ for which y = ΦΨ̃z = ΦΨ̃ẑ and ‖z‖0 = ‖ẑ‖0 are
indistinguishable to any recovery algorithm.

The following theorem is proved in Appendix B. It essentially incorporates the lower bound
of Theorem 2 for single signal CS into every measurement component of the representation region
described in Lemma 1.

Theorem 4 Assume the measurement matrices Φj contain i.i.d. Gaussian entries. The following
conditions are necessary to enable recovery of all signals in the ensemble {xj}:

Mj ≥ K ′
j +K∩ + 1, j = 1, 2, . . . , J, (15a)

∑

j

Mj ≥ K ′
C +

∑

j

K ′
j + J ·K∩ + 1. (15b)
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The measurement rates required in Theorem 4 are somewhat similar to those in the Slepian-
Wolf theorem [14], where each signal must be encoded above its conditional entropy rate, and
the entire collection must be coded above the joint entropy rate. In particular, we see that the
measurement rate bounds reflect the sparsities of the ε-point defined in (12a)–(12c). We note also
that this theorem is easily generalized beyond the stochastic model of Section 4.1 to other JSM-1
scenarios.

4.5.2 Constructive algorithm

We now demonstrate an achievable result, tight with the converse bounds, by considering a specific
algorithm for signal recovery. As suggested by Theorem 2, to approach the theoretical bounds we
must employ `0 minimization. We solve

ẑ = arg min ‖zC‖0 + ‖z1‖0 + ‖z2‖0 s.t. y = ΦΨ̃z. (16)

The following theorem is proved in Appendix C.

Theorem 5 Assume the measurement matrices Φj contain i.i.d. Gaussian entries. Then the `0
optimization program (16) recovers all signals in the ensemble {xj} almost surely if the following
conditions hold:

Mj ≥ K ′
j +K∩ + 1, j = 1, 2, . . . , J, (17a)

∑

j

Mj ≥ K ′
C +

∑

j

K ′
j + J ·K∩ + 1. (17b)

As before, one measurement separates the achievable region of Theorem 5, where perfect re-
construction is possible with probability one, from the converse region of Theorem 4. These results
again provide a strong converse measurement rate region in a manner analogous to the results by
Wolfowitz [17]. Our joint recovery scheme provides a significant savings in measurements, because
the common component can be measured as part of all J signals.

We note that when it succeeds, the `0 optimization program (16) could recover any of the
minimal sparsity representations (each has the same sparsity ‖z‖0 and each provides a valid recon-
struction of x). If one were so inclined, this program could be modified to provide a unique solution
(the ε-point) by replacing the optimization program (16) with

ẑ = arg min (1 + ε)‖zC‖0 + ‖z1‖0 + ‖z2‖0 s.t. y = ΦΨ̃z, (18)

for small ε > 0. This slight ε-modification to a minimization problem of the form arg min ‖z‖0 (16)
prioritizes the innovations components in cases where sparsity swapping is possible. It is from this
formulation that the ε-point draws its name.

Despite the elegance of Theorem 5, it is of limited utility, since in practice we do not know how
much sparsity reduction and swapping can be performed. However, if we fix the common sparsity
rate SC and innovation sparsity rates S1, S2, . . . , SJ and increase N , then

lim
N→∞

KC12

N
= SC12.

Using (7), the minimal sparsity representation satisfies

lim
N→∞

K +
∑

j Kj

N
= SC +

∑

j

Sj − SC12 = S′
C +

∑

j

S′
j + J · S∩, (19)
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and the sparsity rates of the ε-point satisfy

Sε
C , lim

N→∞

Kε
C

N
= S′

C ,

Sε
j , lim

N→∞

Kε
j

N
= S′

j + S∩,

where the minimal sparsity rates S′
C , S′

1, and S′
2 are derived from (10a)–(10c):

S′
C , SC − SC1 − SC2 + SC12, (20a)

S′
1 , S1 − SC1 − S12 + SC12, (20b)

S′
2 , S2 − SC2 − S12 + SC12. (20c)

We incorporate these results to characterize the measurement rate region in the following corollary.

Corollary 1 Assume the measurement matrices Φj contain i.i.d. Gaussian entries. Then as N
increases, the `0 optimization program (16) recovers all signals in the ensemble {xj} almost surely
if the following conditions hold:

Rj > S′
j + S∩, j = 1, 2, . . . , J,

∑

j

Rj > S′
C +

∑

j

S′
j + J · S∩.

4.6 Joint recovery via `1 minimization

We again confine our attention to J = 2 signals with Ψ = IN . We also assume that the innovation
sparsity rates are equal and dub them SI , S(Z1) = S(Z2).

4.6.1 Formulation

As discussed in Section 2.2.3, solving an `0 optimization problem is NP-complete, and so in practice
we must relax our `0 criterion in order to make the solution tractable. In regular (non-distributed)
CS (Section 2.2.3), `1 minimization can be implemented via linear programming but requires an
oversampling factor of c(S) (Theorem 3). In contrast, `0 reconstruction only requires one measure-
ment above the sparsity level K, both for regular and distributed compressed sensing (Theorems 2,
4, and 5). We now wish to understand what penalty must be paid for `1 reconstruction of jointly
sparse signals.

Using the frame Ψ̃, as shown in (14), we can represent the data vector x sparsely using the
coefficient vector z, which contains KC + K1 + K2 nonzero coefficients, to obtain x = Ψ̃z. The
concatenated measurement vector y is computed from separate measurements of the signals xj ,

where the joint measurement basis is Φ and the joint holographic basis is then V = ΦΨ̃. With
sufficient oversampling, we can recover a vector ẑ, which is a viable representation for x, by solving
the linear program

ẑ = arg min ‖z‖1 s.t. y = ΦΨ̃z. (21)

The vector z enables the reconstruction of the original signals x1 and x2.

We find it helpful to modify the Basis Pursuit algorithm to account for the special structure
of JSM-1 recovery. In the linear program (21), we replace the `1 performance metric

||z||1 = ||zC ||1 + ||z1||1 + ||z2||1
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with the modified `1 metric
γC ||zC ||1 + γ1||z1||1 + γ2||z2||1, (22)

where γC , γ1, γ2 ≥ 0. We call this the γ-weighted `1 formulation. If K1 = K2 and M1 = M2, then
we set γ1 = γ2. In this scenario, without loss of generality, we set γ1 = γ2 = 1 and optimize γC .
We discuss the asymmetric case with K1 = K2 and M1 6= M2 below in Section 4.6.3.

In Section 4.6.2 we study the γ-weighted `1 formulation (22) and provide converse bounds on
its reconstruction performance. This technique relies on the γ values; we discuss these effects in
Section 4.6.3. While we have not as yet been able to provide theoretical achievable bounds for
this method, Section 4.6.4 describes another `1-based reconstruction algorithm whose performance
is more amenable to analysis. Numerical results in Section 4.7 indicate that the γ-weighted `1
formulation can offer favorable performance.

4.6.2 Converse bounds on performance of γ-weighted `1 signal recovery

We now provide several converse bounds that describe what measurement rate pairs cannot be
achieved via `1 recovery. Before proceeding, we shed some light on the notion of a converse region
in this computational scenario. We focus on the setup where each signal xj is measured via
multiplication by the Mj by N matrix Φj and joint reconstruction of the J signals is performed via
our γ-weighted `1 formulation (22). Within this setup, a converse region is a set of measurement
rates for which the reconstruction techniques fail with overwhelming probability as N increases.

We now present our bounds, assuming J = 2 sources with innovation sparsity rates satisfying
S1 = S2 = SI . For brevity we define the measurement function

c′(S) , S · c(S)

based on Donoho and Tanner’s oversampling factor c (Theorem 3 [31–33]). We begin with a result,
proved in Appendix D, that provides necessary conditions to reconstruct the viable components
zC , z1, and z2 for x1 and x2.

Lemma 2 Consider any γC , γ1, and γ2 in the γ-weighted `1 formulation (22). The components
zC , z1, and z2 can be recovered using measurement matrices Φ1 and Φ2 only if (i) z1 can be
recovered via `1 CS reconstruction (4) using Φ1 and measurements Φ1z1; (ii) z2 can be recovered
via `1 CS reconstruction using Φ2 and measurements Φ2z2; and (iii) zC can be recovered via `1 CS
reconstruction using the joint matrix [ΦT

1 ΦT
2 ]T and measurements [ΦT

1 ΦT
2 ]T zC .

Remark 3 This result provides deterministic necessary conditions for correct reconstruction using
the γ-weighted `1 formulation (22).

Lemma 2 can be interpreted as follows. If M1 and M2 are not large enough individually, then
the innovation components z1 and z2 cannot be reconstructed. This implies converse bounds on
the individual measurement rates R1 and R2. Similarly, combining Lemma 2 with the converse
bound of Theorem 3 for standard `1 reconstruction of the common component zC yields a lower
bound on the sum measurement rate R1 + R2. We have incorporated these insights to prove the
following result in Appendix E.

Theorem 6 Let J = 2 and fix the sparsity rate of the common part to S(ZC) = SC and the inno-
vation sparsity rates to S(Z1) = S(Z2) = SI . Then the following conditions on the measurement
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rates are necessary to enable reconstruction using the γ-weighted `1 formulation (22) with vanishing
probability of error:

R1 ≥ c′(S′
I),

R2 ≥ c′(S′
I),

R1 +R2 ≥ c′(S′
C).

The theorem provides a converse region such that, if (R1, R2) violate these conditions and we
perform M1 = d(R1 − ε)Ne measurements for x1 or M2 = d(R2 − ε)Ne measurements for x2, then
the probability of incorrect reconstruction will converge to one as N increases.

Anticipated converse: Recall the ε-point from the `0 formulation (12a)–(12c). As mentioned
earlier, we speculate that for indices n such that x1(n) and x2(n) differ and are nonzero, each
sensor must take measurements to account for one of the two coefficients. The sum sparsity rate
is S′

C + S′
1 + S′

2 + 2S∩ and, in the simplified case where S1 = S2 = SI , the sum sparsity becomes
S′

C + 2S′
I + 2S∩. It can be shown that the oversampling factor c′(·) is concave, and so it is best

to “explain” as many of the sparse coefficients in one of the signals and as few as possible in the
other. For the ε-point, we have

Sε
1 = Sε

2 = S′
I + S∩.

Consequently, one of the signals must “explain” this sparsity rate, whereas the other signal must
explain the rest

[S′
C + 2S′

I + 2S∩] − [S′
I + S∩] = S′

C + S′
I + S∩.

We conclude with the following conjecture.

Conjecture 1 Let J = 2 and fix the sparsity rate of the common part S(ZC) = SC and the
innovation sparsity rates S(Z1) = S(Z2) = SI . Then the following conditions on the measurement
rates are necessary to enable reconstruction with vanishing probability of error

R1 ≥ c′
(
S′

I + S∩
)
,

R2 ≥ c′
(
S′

I + S∩
)
,

R1 +R2 ≥ c′
(
S′

I + S∩
)

+ c′
(
S′

C + S′
I + S∩

)
.

Remark 4 In the rigorous converse Theorem 6, the individual and sum rate bounds are c′(S′
I) and

c′(S′
C), whereas in Conjecture 1 the bounds are c′(S′

I + S∩) and c′(S′
I + S∩) + c′(S′

C + S′
I + S∩),

respectively. Therefore, the differences in the bounds are that (i) the sparsity rate of the ε-point
adds S∩ terms and (ii) the sum rate bound of Lemma 2 proves that the sum rate must suffice to
describe the common component, whereas in our conjecture we speculate that a total sparsity rate
of S′

C + 2S′
I + 2S∩ must somehow be accounted for. Note also that the terms in our bounds are

analogous to notions of joint entropy, conditional entropy, and mutual information.

4.6.3 Optimal γ values

In our `1 reconstruction (22), the optimal choice of γC , γ1, and γ2 depends on the relative sparsities
KC , K1, and K2. At this stage we have not been able to determine the optimal values analytically.
Instead, we rely on a numerical optimization, which is computationally intense. In this section we
offer our intuition behind the choice of the optimal γ (confirmed with numerical simulations).
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When the number of signals J is small and the measurement matrices Φj are different, and in
any case when

∑
j Mj < N , it is possible to construct a common signal zC that explains all the

measurements without the need for any innovation signals. (This is accomplished by concatenating
all the measurements and using a pseudoinverse.) However, such a zC will presumably not be
sparse. Therefore, when using different Φj matrices and jointly reconstructing, it may be important
to penalize the sparsity of zC , and the tradeoff is biased in favor of larger γC . This is especially
important when

∑
j Kj � KC .

An entirely different behavior occurs if identical measurement matrices Φj are used. In this
case, we cannot “hide” all the measurements in zC , and so it may be less important to penalize
the sparsity of zC via γC , and the bias to increase γC is reduced. However, in the setup where we
try to recover (zC , z1, . . . , zJ ) jointly, the measurement matrix Φ has worse incoherency with the
sparsity matrix Ψ̃ when all Φj are the same. The biggest problem comes in the first N columns of

Ψ̃ — those that are measuring zC . Hence the incoherency is most challenging when KC �
∑

j Kj .

When J is large, we have abundant information for recovering the common component. Using
identical Φj matrices, we can average our (many) observations to obtain a good approximation
of ΦzC from which we can recover zC via single-signal CS. Using different Φj, we could use a
pseudoinverse to recover zC , completely ignoring the fact that it may be sparse (a similar procedure
is applied to recover zC in JSM-3; see Section 6). Both methods may provide somewhat noisy
reconstructions, but that noise should decrease as J becomes larger. In any case, as J increases
the bias is to increase γC , since the abundant information to reconstruct the common component
must be offset by a penalty that increases the `1 term.

Finally, γC must be modified when asymmetric measurement rates are used. Consider as a
simple example the case where J = 2 and K1 = K2. Suppose also that we use the convention
where a single γC is used for the common component (instead of weighting z1 and z2 differently in
the reconstruction), and M1 +M2 = M is fixed. If M1 is increased, then fewer measurements are
available to reconstruct z2; hence γC must be increased. Unfortunately, this causes a degradation in
performance, as illustrated in Figure 6, where M must be increased to provide the same probability
of correct reconstruction. We also evaluated the case where z1 and z2 are weighted differently
by choosing γC = 1 and optimizing γ1 and γ2 numerically. Our preliminary results indicate an
insignificant performance enhancement.

4.6.4 Achievable bounds on performance of `1 signal recovery

Now that we have ruled out part of the measurement region, we wish to specify regions where
joint reconstruction can succeed. Unfortunately, we have not been able to characterize the per-
formance of our γ-weighted `1 formulation (22) analytically. Instead, Theorem 7 below, proved in
Appendix F, uses an alternative `1-based reconstruction technique. The proof describes a construc-
tive reconstruction algorithm that is very insightful. We construct measurement matrices Φ1 and
Φ2 which each consist of two parts. The first parts of the matrices are identical and reconstructs
x1 −x2. The second parts of the matrices are different and enable the reconstruction of 1

2x1 + 1
2x2.

Once these two components have been reconstructed, the computation of x1 and x2 is straightfor-
ward. The measurement rate can be computed by considering both common and different parts of
the measurement matrices.

Theorem 7 Let J = 2 and fix the sparsity rate of the common part S(ZC) = SC and the innovation
sparsity rates S(Z1) = S(Z2) = SI . Then there exists an `1 reconstruction technique (along with a
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Figure 6: Rate region for Joint Sparsity Model 1. We chose a common sparsity rate SC = 0.2
and innovation sparsity rates SI = S1 = S2 = 0.05. Our simulation results use the γ-weighted
`1-formulation on signals of length N = 1000. Note that the anticipated converse of Conjecture 1
is significantly closer to our achievable from Theorem 7 than our converse from Theorem 6.

measurement strategy) if the measurement rates satisfy the following conditions

R1 ≥ c′(2SI − (SI)
2), (23a)

R2 ≥ c′(2SI − (SI)
2), (23b)

R1 +R2 ≥ c′(2SI − (SI)
2) + c′(SC + 2SI − 2SCSI − (SI)

2 + SC(SI)
2). (23c)

Furthermore, as SI → 0 the sum measurement rate approaches c′(SC).

This reconstruction is based on linear programming. It can be extended from J = 2 to an
arbitrary number of signals by reconstructing all signal differences of the form xj1 − xj2 in the
first stage of the algorithm and then reconstructing 1

J

∑
j xj in the second stage. Despite these

advantages, the achievable measurement rate region of Theorem 7 is loose with respect to the
region of the converse Theorem 6, as shown in Figure 6. Note, however, that the achievable region
is significantly closer to the anticipated converse bound of Conjecture 1. Ultimately, we aim to
provide a tight measurement rate region for reconstruction techniques with moderate (polynomial)
computational requirements; we leave this for future work.

Comparison to γ-weighted `1 formulation (22): The achievable approach of Theorem 7
offers a computational advantage with respect to our γ-weighted `1 formulation (22). In our previous
reconstruction approach (22), the linear program must reconstruct the J + 1 vectors zC , z1, . . . , zJ .
Since the complexity of linear programming is roughly cubic, the computational burden scales with
J3. In contrast, the achievable approach of Theorem 7 reconstructs J(J − 1)/2 pairs of the form
xj1 − xj2 and one additional average part, but each such reconstruction is only for a length-N
signal. Therefore the computational load is lighter by an O(J) factor. However, our γ-weighted
`1 formulation also offers some advantages. Although we have not been able to characterize its
achievable performance theoretically, our simulation tests indicate that it can reconstruct using
fewer measurements than the approach of Theorem 7.
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Figure 7: Comparison of joint decoding and separate decoding for JSM-1. The advantage of joint
over separate decoding depends on the common sparsity.

4.7 Simulations for JSM-1

We now present simulation results for several different JSM-1 setups. We used the γ-weighted `1
formulation (22) throughout.

Reconstructing two signals with symmetric measurement rates: Our simulation setup
is as follows. We consider two correlated signals x1 and x2 that satisfy our conditions for joint
sparsity (Section 3.1). The signal components zC , z1, and z2 are assumed (without loss of generality)
to be sparse in Ψ = IN with sparsities KC , K1, and K2, respectively. We assign random Gaussian
values to the nonzero coefficients. We restrict our attention to the symmetric setup in which
K1 = K2 and M1 = M2, and consider signals of length N = 50 and sparsity parameters chosen
such that KC +K1 +K2 = 15 and K1 = K2.

In our joint decoding simulations, we consider values of M1 and M2 in the range between 10
and 40. We find the optimal γC in the γ-weighted `1 formulation (22) using a line search opti-
mization, where simulation indicates the “goodness” of specific γC values in terms of the likelihood
of reconstruction. With the optimal γC , for each set of values we run several thousand trials to
determine the empirical probability of success in decoding z1 and z2. The results of the simulation
are summarized in Figure 7. The results reveal that the degree to which joint decoding outperforms
separate decoding is directly related to the amount of shared information KC . The savings in the
number of required measurements M can be substantial, especially when the common component
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KC is large (Figure 7). For KC = 11, K1 = K2 = 2, M is reduced by approximately 30%. For
smaller KC , joint decoding barely outperforms separate decoding, since most of the measurements
are expended on innovation components.

Reconstructing two signals with asymmetric measurement rates: In Figure 6, we
compare separate CS reconstruction with the converse bound of Theorem 6, the anticipated converse
bound of Conjecture 1, the achievable bound of Theorem 7, and numerical results.

We use J = 2 signals and choose a common sparsity rate SC = 0.2 and innovation sparsity
rates SI = S1 = S2 = 0.05. Several different asymmetric measurement rates are considered. In
each such setup, we constrain M2 to have the form M2 = αM1 for some α. In the simulation
itself, we first find the optimal γC using a line search optimization as described above. In order
to accelerate this intense optimization, we use relatively short signals of length N = 40. Once
the optimal gammas have been determined, we simulate larger problems of size N = 1000. The
results plotted indicate the smallest pairs (M1,M2) for which we always succeeded reconstructing
the signal over 100 simulation runs. The figure shows that in some areas of the measurement rate
region our γ-weighted `1 formulation (22) requires less measurements than the achievable approach
of Theorem 7.

Reconstructing multiple signals with symmetric measurement rates: The reconstruc-
tion techniques of this section are especially promising when more than J = 2 sensors are used,
since the innovation sparsity rates may become smaller as additional side information from other
signals becomes available, thus enabling even greater savings in the measurement rates. These
savings may be especially valuable in applications such as sensor networks, where data may contain
strong spatial (inter-source) correlations.

We use J ∈ {2, . . . , 10} signals and choose the same sparsity rates SC = 0.2 and SI = 0.05
as the asymmetric rate simulations; here we use symmetric measurement rates. We first find
the optimal γC using a line search optimization as described above; during this procedure we
use relatively short signals of length N = 40 to accelerate the computation. Once the optimal
gammas are determined, we simulate larger problems of size N = 500 (since the computation scales
with (J + 1)3, as mentioned in Section 4.6.3, we used shorter signals than in the asymmetric rate
J = 2 signal simulations described above). The results of Figure 8 describe the smallest symmetric
measurement rates for which we always succeeded reconstructing the signal over 100 simulation
runs. Clearly, as J increases, lower measurement rates can be used.

5 Recovery Strategies for Common Sparse Supports (JSM-2)

Under the JSM-2 signal ensemble model from Section 3.2, separate recovery of each signal via `0
minimization would require K + 1 measurements per signal, while separate recovery via `1 mini-
mization would require cK measurements per signal. As we now demonstrate, the total number of
measurements can be reduced substantially by employing specially tailored joint reconstruction al-
gorithms that exploit the common structure among the signals, in particular the common coefficient
support set Ω.

The algorithms we propose are inspired by conventional greedy pursuit algorithms for CS
(such as OMP [30]). In the single-signal case, OMP iteratively constructs the sparse support set Ω;
decisions are based on inner products between the columns of ΦΨ and a residual. In the multi-signal
case, there are more clues available for determining the elements of Ω.
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Figure 8: Multi-sensor measurement results for JSM-1. We choose a common sparsity rate SC = 0.2,
innovation sparsity rates SI = 0.05, and signals of length N = 500.

5.1 Recovery via One-Step Greedy Algorithm (OSGA)

When there are many correlated signals in the ensemble, a simple non-iterative greedy algorithm
based on inner products will suffice to recover the signals jointly. For simplicity but without loss
of generality, we again assume that Ψ = IN and that an equal number of measurements Mj = M
are taken of each signal. We write Φj in terms of its columns, with Φj = [φj,1, φj,2, . . . , φj,N ].

One-Step Greedy Algorithm (OSGA) for JSM-2

1. Get greedy: Given all of the measurements, compute the test statistics

ξn =
1

J

J∑

j=1

〈yj , φj,n〉
2, n ∈ {1, 2, . . . , N} (24)

and estimate the elements of the common coefficient support set by

Ω̂ = {n having one of the K largest ξn}.

When the sparse, nonzero coefficients are sufficiently generic (as defined below), we have the
following surprising result, which is proved in Appendix G.

Theorem 8 Let Ψ be an orthonormal basis for R
N , let the measurement matrices Φj contain i.i.d.

Gaussian entries, and assume that the nonzero coefficients in the θj are i.i.d. Gaussian random
variables. Then with M ≥ 1 measurements per signal, OSGA recovers Ω with probability approach-
ing one as J → ∞.

In words, with fewer than K measurements per sensor, it is possible to recover the sparse
support set Ω under the JSM-2 model.11 Of course, this approach does not recover the K coefficient
values for each signal; K measurements per sensor are required for this.

11One can also show the somewhat stronger result that, as long as
P

j Mj � N , OSGA recovers Ω with probability
approaching one. We have omitted this additional result for brevity.
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Figure 9: Reconstruction using OSGA for JSM-2. Approximate formula (dashed lines) for the
probability of error in recovering the support set Ω in JSM-2 using OSGA given J , N , K, and M
[56] compared against simulation results (solid) for fixed N = 50, K = 5 and varying number of
measurements M and number of signals J = 5, J = 20, and J = 100.

Theorem 9 Assume that the nonzero coefficients in the θj are i.i.d. Gaussian random variables.
Then the following statements hold:

1. Let the measurement matrices Φj contain i.i.d. Gaussian entries, with each matrix having an
oversampling factor of c = 1 (that is, Mj = K for each measurement matrix Φj). Then OSGA
recovers all signals from the ensemble {xj} with probability approaching one as J → ∞.

2. Let Φj be a measurement matrix with oversampling factor c < 1 (that is, Mj < K), for some
j ∈ {1, 2, . . . , J}. Then with probability one, the signal xj cannot be uniquely recovered by any
algorithm for any value of J .

The first statement is an immediate corollary of Theorem 8; the second statement follows
because each equation yj = Φjxj would be underdetermined even if the nonzero indices were
known. Thus, under the JSM-2 model, the one-step greedy algorithm asymptotically performs as
well as an oracle decoder that has prior knowledge of the locations of the sparse coefficients. From
an information theoretic perspective, Theorem 9 provides tight achievable and converse bounds for
JSM-2 signals.

In a technical report [56], we derive an approximate formula for the probability of error in
recovering the common support set Ω given J , N , K, and M . Figure 9 depicts the performance
of the formula in comparison to simulation results. While theoretically interesting and potentially
practically useful, these results require J to be large. Our numerical experiments show that OSGA
works well even when M is small, as long as J is sufficiently large. However, in the case of fewer
signals (small J), OSGA performs poorly. We propose next an alternative recovery technique based
on simultaneous greedy pursuit that performs well for small J .

5.2 Recovery via iterative greedy pursuit

In practice, the common sparse support among the J signals enables a fast iterative algorithm
to recover all of the signals jointly. Tropp and Gilbert have proposed one such algorithm, called
Simultaneous Orthogonal Matching Pursuit (SOMP) [34], which can be readily applied in our DCS
framework. SOMP is a variant of OMP that seeks to identify Ω one element at a time. (A similar
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simultaneous sparse approximation algorithm has been proposed using convex optimization; see
[57] for details.) We dub the DCS-tailored SOMP algorithm DCS-SOMP.

To adapt the original SOMP algorithm to our setting, we first extend it to cover a different
measurement basis Φj for each signal xj . Then, in each DCS-SOMP iteration, we select the column
index n ∈ {1, 2, . . . , N} that accounts for the greatest amount of residual energy across all signals.
As in SOMP, we orthogonalize the remaining columns (in each measurement basis) after each step;
after convergence we obtain an expansion of the measurement vector on an orthogonalized subset
of the holographic basis vectors. To obtain the expansion coefficients in the sparse basis, we then
reverse the orthogonalization process using the QR matrix factorization. We assume without loss
of generality that Ψ = IN .

DCS-SOMP Algorithm for JSM-2

1. Initialize: Set the iteration counter ` = 1. For each signal index j ∈ {1, 2, . . . , J}, initialize
the orthogonalized coefficient vectors β̂j = 0, β̂j ∈ R

M ; also initialize the set of selected

indices Ω̂ = ∅. Let rj,` denote the residual of the measurement yj remaining after the first `
iterations, and initialize rj,0 = yj .

2. Select the dictionary vector that maximizes the value of the sum of the magnitudes of the
projections of the residual, and add its index to the set of selected indices

n` = arg max
n=1,2,...,N

J∑

j=1

|〈rj,`−1, φj,n〉|

‖φj,n‖2
,

Ω̂ = [Ω̂ n`].

3. Orthogonalize the selected basis vector against the orthogonalized set of previously selected
dictionary vectors

γj,` = φj,n`
−

`−1∑

t=0

〈φj,n`
, γj,t〉

‖γj,t‖2
2

γj,t.

4. Iterate: Update the estimate of the coefficients for the selected vector and residuals

β̂j(`) =
〈rj,`−1, γj,`〉

‖γj,`‖2
2

,

rj,` = rj,`−1 −
〈rj,`−1, γj,`〉

‖γj,`‖
2
2

γj,`.

5. Check for convergence: If ‖rj,`‖2 > ε‖yj‖2 for all j, then increment ` and go to Step
2; otherwise, continue to Step 6. The parameter ε determines the target error power level
allowed for algorithm convergence. Note that due to Step 3 the algorithm can only run for
up to M iterations.

6. De-orthogonalize: Consider the relationship between Γj = [γj,1, γj,2, . . . , γj,M ] and the Φj

given by the QR factorization
Φ

j,bΩ = ΓjRj,

where Φj,bΩ = [φj,n1
, φj,n2

, . . . , φj,nM
] is the so-called mutilated basis.12 Since yj = Γjβj =

Φj,bΩxj,bΩ = ΓjRjxj,bΩ, where xj,bΩ is the mutilated coefficient vector, we can compute the

12We define a mutilated basis ΦΩ as a subset of the basis vectors from Φ = [φ1, φ2, . . . , φN ] corresponding to the
indices given by the set Ω = {n1, n2, . . . , nM}, that is, ΦΩ = [φn1

, φn2
, . . . , φnM

]. This concept can be extended to
vectors in the same manner.
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signal estimates {x̂j} as

θ̂j,bΩ = R−1
j β̂j ,

x̂j = Ψθ̂j,

where θ̂
j,bΩ is the mutilated version of the sparse coefficient vector θ̂j.

In practice, each sensor projects its signal xj via Φjxj to produce ĉK measurements for some
ĉ. The decoder then applies DCS-SOMP to reconstruct the J signals jointly. We orthogonalize
because as the number of iterations approaches M the norms of the residues of an orthogonal
pursuit decrease faster than for a non-orthogonal pursuit.

Thanks to the common sparsity structure among the signals, we believe (but have not proved)
that DCS-SOMP will succeed with ĉ < c(S). Empirically, we have observed that a small number
of measurements proportional to K suffices for a moderate number of sensors J . We conjecture
that K + 1 measurements per sensor suffice as J → ∞; numerical experiments are presented
in Section 5.3. Thus, in practice, this efficient greedy algorithm enables an oversampling factor
ĉ = (K + 1)/K that approaches 1 as J , K, and N increase.

5.3 Simulations for JSM-2

We now present a simulation comparing separate CS reconstruction versus joint DCS-SOMP re-
construction for a JSM-2 signal ensemble. Figure 10 plots the probability of perfect reconstruction
corresponding to various numbers of measurements M as the number of sensors varies from J = 1
to 32. We fix the signal lengths at N = 50 and the sparsity of each signal to K = 5.

With DCS-SOMP, for perfect reconstruction of all signals the average number of measurements
per signal decreases as a function of J . The trend suggests that, for very large J , close to K
measurements per signal should suffice. On the contrary, with separate CS reconstruction, for
perfect reconstruction of all signals the number of measurements per sensor increases as a function
of J . This surprise is due to the fact that each signal will experience an independent probability
p ≤ 1 of successful reconstruction; therefore the overall probability of complete success is pJ .
Consequently, each sensor must compensate by making additional measurements. This phenomenon
further motivates joint reconstruction under JSM-2.

Finally, we note that we can use algorithms other than DCS-SOMP to recover the signals under
the JSM-2 model. Cotter et al. [53] have proposed additional algorithms (such as the M-FOCUSS
algorithm) that iteratively eliminate basis vectors from the dictionary and converge to the set of
sparse basis vectors over which the signals are supported. We hope to extend such algorithms to
JSM-2 in future work.

6 Recovery Strategies for Nonsparse Common Component
+ Sparse Innovations (JSM-3)

The JSM-3 signal ensemble model from Section 3.3 provides a particularly compelling motivation
for joint recovery. Under this model, no individual signal xj is sparse, and so recovery of each
signal separately would require fully N measurements per signal. As in the other JSMs, however,
the commonality among the signals makes it possible to substantially reduce this number.

6.1 Recovery via Transpose Estimation of Common Component (TECC)

Successful recovery of the signal ensemble {xj} requires recovery of both the nonsparse common
component zC and the sparse innovations {zj}. To illustrate the potential for signal recovery using
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Figure 10: Reconstructing a signal ensemble with common sparse supports (JSM-2). We plot the
probability of perfect reconstruction via DCS-SOMP (solid lines) and independent CS reconstruc-
tion (dashed lines) as a function of the number of measurements per signal M and the number of
signals J . We fix the signal length to N = 50, the sparsity to K = 5, and average over 1000 sim-
ulation runs. An oracle encoder that knows the positions of the large signal expansion coefficients
would use 5 measurements per signal.

far fewer than N measurements per sensor, consider the following gedankenexperiment. Again, for
simplicity but without loss of generality, we assume Ψ = IN .

If zC were known, then each innovation zj could be estimated using the standard single-signal
CS machinery on the adjusted measurements

yj − ΦjzC = Φjzj.

While zC is not known in advance, it can be estimated from the measurements. In fact, across all J
sensors, a total of

∑
j Mj random projections of zC are observed (each corrupted by a contribution

from one of the zj). Since zC is not sparse, it cannot be recovered via CS techniques, but when the
number of measurements is sufficiently large (

∑
j Mj � N), zC can be estimated using standard

tools from linear algebra. A key requirement for such a method to succeed in recovering zC is that
each Φj be different, so that their rows combine to span all of R

N . In the limit (again, assuming
the sparse innovation coefficients are well-behaved), the common component zC can be recovered
while still allowing each sensor to operate at the minimum measurement rate dictated by the {zj}.
A prototype algorithm is listed below, where we assume that each measurement matrix Φj has i.i.d.
N (0, σ2

j ) entries.

TECC Algorithm for JSM-3

1. Estimate common component: Define the matrix Φ̂ as the concatenation of the regular-
ized individual measurement matrices Φ̂j = 1

Mjσ2
j

Φj, that is, Φ̂ = [Φ̂1, Φ̂2, . . . , Φ̂J ]. Calculate

the estimate of the common component as ẑC = 1
J Φ̂T y.

2. Estimate measurements generated by innovations: Using the previous estimate, sub-
tract the contribution of the common part on the measurements and generate estimates for
the measurements caused by the innovations for each signal: ŷj = yj − Φj ẑC .

3. Reconstruct innovations: Using a standard single-signal CS reconstruction algorithm,
obtain estimates of the innovations ẑj from the estimated innovation measurements ŷj.
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4. Obtain signal estimates: Estimate each signal as the sum of the common and innovations
estimates; that is, x̂j = ẑC + ẑj .

The following theorem, proved in Appendix H, shows that asymptotically, by using the TECC
algorithm, each sensor need only measure at the rate dictated by the sparsity Kj .

Theorem 10 Assume that the nonzero expansion coefficients of the sparse innovations zj are i.i.d.
Gaussian random variables and that their locations are uniformly distributed on {1, 2, ..., N}. Then
the following statements hold:

1. Let the measurement matrices Φj contain i.i.d. N (0, σ2
j ) entries with Mj ≥ Kj + 1. Then

each signal xj can be recovered using the TECC algorithm with probability approaching one
as J → ∞.

2. Let Φj be a measurement matrix with Mj ≤ Kj for some j ∈ {1, 2, ..., J}. Then with proba-
bility one, the signal xj cannot be uniquely recovered by any algorithm for any value of J .

For large J , the measurement rates permitted by Statement 1 are the lowest possible for any
reconstruction strategy on JSM-3 signals, even neglecting the presence of the nonsparse component.
Thus, Theorem 10 provides a tight achievable and converse for JSM-3 signals. The CS technique
employed in Theorem 10 involves combinatorial searches for estimating the innovation components.
More efficient techniques could also be employed (including several proposed for CS in the presence
of noise [38, 39, 45, 48, 51]). It is reasonable to expect similar behavior; as the error in estimating
the common component diminishes, these techniques should perform similarly to their noiseless
analogues (Basis Pursuit [45, 48], for example).

6.2 Recovery via Alternating Common and Innovation Estimation (ACIE)

The preceding analysis demonstrates that the number of required measurements in JSM-3 can be
substantially reduced through joint recovery. While Theorem 10 suggests the theoretical gains
as J → ∞, practical gains can also be realized with a moderate number of sensors. For example,
suppose in the TECC algorithm that the initial estimate ẑC is not accurate enough to enable correct
identification of the sparse innovation supports {Ωj}. In such a case, it may still be possible for
a rough approximation of the innovations {zj} to help refine the estimate ẑC . This in turn could
help to refine the estimates of the innovations. Since each component helps to estimate the other
components, we propose an iterative algorithm for JSM-3 recovery.

The Alternating Common and Innovation Estimation (ACIE) algorithm exploits the observa-
tion that once the basis vectors comprising the innovation zj have been identified in the index set
Ωj, their effect on the measurements yj can be removed to aid in estimating zC . Suppose that we

have an estimate for these innovation basis vectors in Ω̂j. We can then partition the measurements
into two parts: the projection into span({φj,n}n∈bΩj

) and the component orthogonal to that span.

We build a basis for the R
Mj where yj lives:

Bj = [Φ
j,bΩj

Qj],

where Φj,bΩj
is the mutilated holographic basis corresponding to the indices in Ω̂j, and the Mj ×

(Mj − |Ω̂j |) matrix Qj = [qj,1 . . . qj,Mj−|bΩj |
] has orthonormal columns that span the orthogonal

complement of Φj,bΩj
.
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This construction allows us to remove the projection of the measurements into the aforemen-
tioned span to obtain measurements caused exclusively by vectors not in Ω̂j

ỹj = QT
j yj, (25)

Φ̃j = QT
j Φj. (26)

These modifications enable the sparse decomposition of the measurement, which now lives in

R
Mj−|bΩj |, to remain unchanged

ỹj =

N∑

n=1

αjφ̃j,n.

Thus, the modified measurements Ỹ =
[
ỹT
1 ỹT

2 . . . ỹT
J

]T
and modified holographic basis Φ̃ =[

Φ̃T
1 Φ̃T

2 . . . Φ̃T
J

]T
can be used to refine the estimate of the measurements caused by the common

part of the signal
z̃C = Φ̃†Ỹ , (27)

where A† = (ATA)−1AT denotes the pseudoinverse of matrix A.

In the case where the innovation support estimate is correct (Ω̂j = Ωj), the measurements ỹj

will describe only the common component zC . If this is true for every signal j and the number of
remaining measurements

∑
j Mj −KJ ≥ N , then zC can be perfectly recovered via (27). However,

it may be difficult to obtain correct estimates for all signal supports in the first iteration of the
algorithm, and so we find it preferable to refine the estimate of the support by executing several
iterations.

ACIE Algorithm for JSM-3

1. Initialize: Set Ω̂j = ∅ for each j. Set the iteration counter ` = 1.

2. Estimate common component: Update estimate z̃C according to (25)–(27).

3. Estimate innovation supports: For each sensor j, after subtracting the contribution z̃C
from the measurements, ŷj = yj−Φj z̃C , estimate the sparse support of each signal innovation

Ω̂j.

4. Iterate: If ` < L, a preset number of iterations, then increment ` and return to Step 2.
Otherwise proceed to Step 5.

5. Estimate innovation coefficients: For each signal j, estimate the coefficients for the indices
in Ω̂j

θ̂j,bΩj
= Φ†

j,bΩj

(yj − Φj z̃C),

where θ̂j,bΩj
is a mutilated version of the innovation’s sparse coefficient vector estimate θ̂j .

6. Reconstruct signals: Compute the estimate of each signal as x̂j = z̃C + ẑj = z̃C + Φj θ̂j.

Estimation of the sparse supports in Step 3 can be accomplished using a variety of techniques.
We propose to run ` iterations of OMP; if the supports of the innovations are known to match
across signals — as in the JSM-2 scenario — then more powerful algorithms like SOMP can be
used.
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6.3 Simulations for JSM-3

We now present simulations of JSM-3 reconstruction in the following scenario. Consider J signals of
length N = 50 containing a common white noise component zC(n) ∼ N (0, 1) for n ∈ {1, 2, . . . , N}
that, by definition, is not sparse in any fixed basis. Each innovations component zj has sparsity
K = 5 (once again in the time domain), resulting in xj = zC +zj . The support for each innovations
component is randomly selected with uniform probability from all possible supports for K-sparse,
length-N signals. We draw the values of the innovation coefficients from a unit-variance Gaussian
distribution.

We study two different cases. The first is an extension of JSM-1: we select the supports for
the various innovations independently and then apply OMP independently to each signal in Step
3 of the ACIE algorithm in order to estimate its innovations component. The second case is an
extension of JSM-2: we select one common support for all of the innovations across the signals and
then apply the DCS-SOMP algorithm from Section 5.2 to estimate the innovations in Step 3. In
both cases we set L = 10. We test the algorithms for different numbers of signals J and calculate
the probability of correct reconstruction as a function of the (same) number of measurements per
signal M .

Figure 11(a) shows that, for sufficiently large J , we can recover all of the signals with sig-
nificantly fewer than N measurements per signal. We note the following behavior in the graph.
First, as J grows, it becomes more difficult to perfectly reconstruct all J signals. We believe this
is inevitable, because even if zC were known without error, then perfect ensemble recovery would
require the successful execution of J independent runs of OMP. Second, for small J , the probability
of success can decrease at high values of M . We believe this behavior is due to the fact that initial
errors in estimating zC may tend to be somewhat sparse (since ẑC roughly becomes an average of
the signals {xj}), and these sparse errors can mislead the subsequent OMP processes. For more
moderate M , it seems that the errors in estimating zC (though greater) tend to be less sparse. We
expect that a more sophisticated algorithm could alleviate such a problem, and we note that the
problem is also mitigated at higher J .

Figure 11(b) shows that when the sparse innovations share common supports we see an even
greater savings. As a point of reference, a traditional approach to signal encoding would require 1600
total measurements to reconstruct these J = 32 nonsparse signals of length N = 50. Our approach
requires only approximately 10 random measurements per sensor for a total of 320 measurements.

7 Discussion and Conclusions

In this paper we have taken the first steps towards extending the theory and practice of Compressed
Sensing (CS) to multi-signal, distributed settings. Our three simple joint sparsity models (JSMs) for
signal ensembles with both intra- and inter-signal correlations capture the essence of real physical
scenarios, illustrate the basic analysis and algorithmic techniques, and indicate the significant
gains to be realized from joint recovery. In some sense Distributed Compressed Sensing (DCS) is a
framework for distributed compression of sources with memory, which has remained a challenging
problem for some time.

For JSM-1, we have established a measurement rate region analogous to the Slepian-Wolf
theorem [14], with converse and achievable bounds on performance. This required a careful analysis
of equivalent viable representations that can explain the measurements. Simulations with our γ-
weighted `1 signal recovery algorithm revealed that in practice the savings in the total number of
required measurements can be substantial over separate CS encoding/decoding, especially when
the common component dominates. In one of our scenarios with just two sensors, the savings in
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(a) (b)

Figure 11: Reconstructing a signal ensemble with nonsparse common component and sparse inno-
vations (JSM-3) using ACIE. (a) Reconstruction using OMP independently on each signal in Step
3 of the ACIE algorithm (innovations have arbitrary supports). (b) Reconstruction using DCS-
SOMP jointly on all signals in Step 3 of the ACIE algorithm (innovations have identical supports).
Signal length N = 50, sparsity K = 5. The common structure exploited by DCS-SOMP enables
dramatic savings in the number of measurements. We average over 1000 simulation runs.

the number of measurements was as large as 30%.

For JSM-2, we have demonstrated using OSGA that important collective signal properties (the
sparse support of the ensemble, for example) can be learned from as few as one measurement per
signal. We also introduced DCS-SOMP, an efficient greedy algorithm for joint signal recovery based
on the SOMP algorithm for simultaneous sparse approximation. DCS-SOMP features asymptoti-
cally best-possible performance that cannot be improved upon by any compression scheme: only
roughly K measurements per signal are required in order to reconstruct an ensemble of K-sparse
signals as their number grows. Simulations indicate that the asymptotics take effect with just a
moderate number of signals.

For JSM-3, we have developed TECC and ACIE, procedures that recover a special class of
nonsparse signal ensembles from few measurements, despite the fact that no individual signal in
the ensemble could be recovered without the full number of measurements. These algorithms offer
a surprising gain in performance: only roughly cK measurements per signal are required in order
to reconstruct the ensemble of signals as their number grows (and only K measurements per signal
are required if the innovations share common supports), essentially overcoming the complexity
of sampling a nonsparse component. Finally, while we have used sparsity basis Ψ = IN in our
theoretical development and simulations (which implies our signals are spikes in the time domain),
we emphasize that our results hold for signals sparse in any basis.

There are many opportunities for applications and extensions of these ideas.

Application to sensor networks: The area that appears most likely to benefit immedi-
ately from the new DCS theory is low-powered sensor networks, where energy and communication
bandwidth limitations require that we perform data compression while minimizing inter-sensor
communications [11, 12]. DCS encoders work completely independently; therefore inter-sensor com-
munication is required in a DCS-enabled sensor network only to support multi-hop networking to
the data collection point. Moreover, the fact that typical sensor networks are designed to measure
physical phenomena suggests that their data will possess considerable joint structure in the form
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of inter- and intra-signal correlations [40].

Compressible signals: In practice natural signals are not exactly `0 sparse but rather can
be better modeled as `p sparse with 0 < p ≤ 1. Roughly speaking, a signal in a weak-`p ball
has coefficients that decay as n−1/p once sorted according to magnitude [28]. The key concept
is that the ordering of these coefficients is important. For JSM-2, we can extend the notion of
simultaneous sparsity for `p-sparse signals whose sorted coefficients obey roughly the same ordering.
This condition could perhaps be enforced as an `p constraint on the composite signal





J∑

j=1

|xj(1)|,
J∑

j=1

|xj(2)|, . . . ,
J∑

j=1

|xj(N)|



 .

Quantized and noisy measurements: In general, (random) measurements will be real num-
bers; quantization will gradually degrade the reconstruction quality as the quantization becomes
coarser [39]. Moreover, in many practical situations some amount of measurement noise will corrupt
the {xj}, making them not exactly sparse in any basis. While characterizing these effects and the
resulting rate-distortion consequences in the DCS setting are topics for future work, there has been
work in the single-signal CS literature that we should be able to leverage, including Basis Pursuit
with Denoising [28, 45, 51, 58], robust iterative reconstruction algorithms [38], CS noise sensitivity
analysis [27], and the Dantzig Selector [39].

Fast algorithms: In some applications, the linear program associated with some DCS decoders
(in JSM-1 and JSM-3) could prove too computationally intense. As we saw in JSM-2, efficient
iterative and greedy algorithms could come to the rescue, but these need to be extended to the
multi-signal case. SOMP is a solid first step, and some progress has been made on fast algorithms
for certain sparse signal classes, such as piecewise smooth signals in wavelet bases [35, 36].

Sparse signals with positive expansion coefficients: Tanner and Donoho have shown
that the oversampling factor c(S) required for perfect reconstruction drops dramatically when the
sparse expansion coefficients are positive in some basis, that is, when θj(n) ≥ 0. While we cannot
improve upon the (best-possible) theoretical performance of our algorithms for JSM-2 and JSM-
3, the measurement rates in JSM-1 could benefit from this additional knowledge of the signal
structure.

Acknowledgments

Thanks to Emmanuel Candès, Hyeokho Choi, Albert Cohen, Ron DeVore, Anna Gilbert, Rob
Nowak, Jared Tanner, and Joel Tropp for informative and inspiring conversations. Special thanks
to Jared Tanner for his code to compute the sparsity phase transition boundary in Figure 3 and
to Mark Davenport for a thorough critique of our manuscript. Final thanks to Ryan King for
supercharging our computational capabilities.

A Proof of Theorem 2

We first prove Statement 2, followed by Statements 1 and 3.

Statement 2 (Achievable, M ≥ K + 1): Since Ψ is an orthonormal basis, it follows that
entries of the M ×N matrix ΦΨ will be i.i.d. Gaussian. Thus without loss of generality, we assume
Ψ to be the identity, Ψ = IN , and so y = Φθ. We concentrate on the “most difficult” case where
M = K + 1; other cases follow similarly.

Let Ω be the index set corresponding to the nonzero entries of θ; we have |Ω| = K. Also let ΦΩ

be the M×K mutilated matrix obtained by selecting the columns of Φ corresponding to the indices
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Ω. The measurement y is then a linear combination of the K columns of ΦΩ. With probability
one, the columns of ΦΩ are linearly independent. Thus, ΦΩ will have rank K and can be used to
recover the K nonzero entries of θ.

The coefficient vector θ can be uniquely determined if no other index set Ω̂ can be used to
explain the measurements y. Let Ω̂ 6= Ω be a different set of K indices (possibly with up to K − 1
indices in common with Ω). We will show that (with probability one) y is not in the column span of
ΦbΩ, where the column span of the matrix A is defined as the vector space spanned by the columns
of A and denoted by colspan(A).

First, we note that with probability one, the columns of ΦbΩ are linearly independent and so
ΦbΩ will have rank K. Now we examine the concatenation of these matrices

[
ΦΩ ΦbΩ

]
. The matrix[

ΦΩ ΦbΩ
]

cannot have rank K unless colspan(ΦΩ) = colspan(ΦbΩ), a situation that occurs with
probability zero. Since these matrices have M = K + 1 rows, it follows that

[
ΦΩ ΦbΩ

]
will have

rank K + 1; hence the column span is R
K+1.

Since the combined column span of ΦΩ and ΦbΩ is R
K+1 and since each matrix has rank K, it

follows that colspan(ΦΩ) ∩ colspan(ΦbΩ) is a (K − 1)-dimensional linear subspace of R
K+1. (Each

matrix contributes one additional dimension to the column span.) This intersection is the set of
measurements in the column span of ΦΩ that could be confused with signals generated from the
vectors Ω̂. Based on its dimensionality, this set has measure zero in the column span of ΦΩ; hence
the probability that θ can be recovered using Ω̂ is zero. Since the number of sets of K indices is
finite, the probability that there exists Ω̂ 6= Ω that enables recovery of θ is zero.

Statement 1 (Achievable, M ≥ 2K): We first note that, if K ≥ N/2, then with probability
one, the matrix Φ has rank N , and there is a unique (correct) reconstruction. Thus we assume
that K < N/2. The proof of Statement 1 follows similarly to the proof of Statement 2. The
key fact is that with probability one, all subsets of up to 2K columns drawn from Φ are linearly
independent. Assuming this holds, then for two index sets Ω 6= Ω̂ such that |Ω| = |Ω̂| = K,
colspan(ΦΩ)∩colspan(ΦbΩ) has dimension equal to the number of indices common to both Ω and Ω̂.
A signal projects to this common space only if its coefficients are nonzero on exactly these (fewer
than K) common indices; since ‖θ‖0 = K, this does not occur. Thus every K-sparse signal projects
to a unique point in R

M .

Statement 3 (Converse, M ≤ K): If M < K, then there is insufficient information in the
vector y to recover the K nonzero coefficients of θ; thus we assume M = K. In this case, there is
a single explanation for the measurements only if there is a single set Ω of K linearly independent
columns and the nonzero indices of θ are the elements of Ω. Aside from this pathological case, the
rank of subsets ΦbΩ will generally be less than K (which would prevent robust recovery of signals

supported on Ω̂) or will be equal to K (which would give ambiguous solutions among all such sets
Ω̂). �

B Proof of Theorem 4

Denote by V = ΦΨ̃ the joint matrix whose columns should offer a sparse decomposition of y; we
assume without loss of generality that Ψ = IN . This proof essentially requires us to provide an
extension of Theorem 2 to the multi-signal case; for generality we state the proof for an arbitrary
number of signals J ≥ 2. Recall from (7) that all minimal sparsity representations (zC , z1, z2, . . . )
have total sparsity K ′

C +
∑

j K
′
j + J ·K∩.

For this proof we will use the index 0 to denote the common component; that is, z0 , zC . For a
particular minimal sparsity representation (z0, z1, z2, . . . ), we will also let Ωj ⊂ {1, 2, . . . , N} be the
set of nonzero indices corresponding to zj ; note that |Ωj | = Kj . More formally, we say that n ∈ Ωj
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if and only if zj(n) 6= 0. We write Ω = (Ω0,Ω1, . . . ,ΩJ), where we define the tuple cardinality
as the sum of the cardinalities of the elements: |Ω| = K ′

C +
∑

j K
′
j + J · K∩. We let VΩ be the

(K ′
C +

∑
j K

′
j + J ·K∩)× (K ′

C +
∑

j K
′
j + J ·K∩) matrix obtained by sampling the columns Ω from

V , and for brevity we denote VΩj
= V(∅,...,∅,Ωj ,∅,...,∅), where Ωj is the j-th element in the tuple.

Case Mj = K ′
j +K∩ for some j: We will show that, if the first condition (15a) is violated (in

particular by one measurement, though other cases follow similarly), then there exists a representa-
tion (z̃C , z̃1, z̃2, . . . ), that has total sparsity K ′

C +
∑

j K
′
j + J ·K∩ and explains the measurements y

(and is therefore indistinguishable during reconstruction from any minimal sparsity representation)
but does not generate the correct signals x.

We can construct such a representation as follows. Let (zC , z1, z2, . . . ) be a minimal sparsity
representation such that Kj = K ′

j +K∩. To construct the representation (z̃C , z̃1, z̃2, . . . ), we modify

only zj by choosing an arbitrary Ω̂j ⊂ {1, 2, . . . , N} such that |Ω̂j| = |Ωj| = K ′
j +K∩ but Ω̂j 6= Ωj

and then assigning coefficients to z̃j to ensure that Φj z̃j = Φjzj . As in Theorem 2, this is possible
with probability one because the rank of Φj is K ′

j +K∩. The new representation (z̃C , z̃1, z̃2, . . . )
will have total sparsity K ′

C +
∑

j K
′
j +J ·K∩; however since z̃j 6= zj the reconstruction x̃j = z̃C + z̃j

will be incorrect. Thus xj cannot be uniquely recovered if the first condition (15a) is violated.

Case
∑

j Mj = K ′
C +

∑
j K

′
j +J ·K∩ and Mj ≥ K ′

j +K∩ +1 ∀j: If the second condition (15b)
is violated (again by just one measurement), we will again show the existence of an unfavorable
representation (z̃C , z̃1, z̃2, . . . ).

We recall at this point that any minimal sparsity representation must have, for each n ∈
{1, . . . , N}, either z(n) = 0 or have at least one j such that zj(n) = 0; otherwise a sparser

representation exists. In other words, we have
⋂J

j=0 Ωj = ∅. This also implies that, when Ω is the
support of a minimum sparsity representation, VΩ has full rank K ′

C +
∑

j K
′
j + J · K∩. (Sets of

columns of V are linearly independent with probability one, unless a column index n is included
from each Ωj , j = 0, 1, . . . , J .)

Let h be a column index such that h /∈ Ω0 ∪ Ωj for some j ∈ {1, 2, . . . , J}. (If no such j
exists, then all signals xj are nonsparse and each requires a full N measurements.) Without loss

of generality, we assume that j = 1. Now construct a new index set Ω̂ = (Ω̂0, Ω̂1, . . . , Ω̂J) such
that (i) Ω̂0 = Ω0 ∪ {h}\{n} for some n ∈ Ω0 and (ii) Ω̂j = Ωj, for j = 1, 2, . . . , J . It follows that

|Ω̂| = K ′
C +

∑
j K

′
j + J · K∩. The matrix VbΩ should also have full rank K ′

C +
∑

j K
′
j + J · K∩

(since
⋂J

j=0 Ω̂j = ∅), and so the indices Ω̂ yield a feasible signal set (ẑC , ẑ1, . . . , ẑJ ) that explains
the measurements y. We know that ẑC(h) 6= 0, since otherwise the solution (ẑC , ẑ1, . . . , ẑJ) would
have sparsity less than K ′

C +
∑

j K
′
j + J ·K∩. From this it follows that x̂1(h) = ẑC(h) 6= 0 = x1(h),

and so this solution will be incorrect. Since this solution produces the same measurement vector
y and has the same sparsity K ′

C +
∑

j K
′
j + J ·K∩, no algorithm exists that could distinguish it

from the correct solution. Thus both conditions (15a), (15b) must be satisfied to permit signal
recovery. �

C Proof of Theorem 5

Suppose Mj ≥ K ′
j + K∩ + 1 ∀j and

∑
j Mj ≥ K ′

C +
∑

j K
′
j + J · K∩ + 1. For this proof we

consider the specific minimal sparsity representation (zε
C , z

ε
1, z

ε
2, . . . ) known as the ε-point (defined

in Section 4.3). We recall from (12a)–(12c) that

Kε
C = K ′

C and Kε
j = K ′

j +K∩ ∀j.

As in the proof of Theorem 4, we let Ω denote the support of this representation. As a minimal
sparsity representation, the ε-point has total sparsity K ′

C +
∑

j K
′
j + J · K∩. We aim to show
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that with probability one, any other representation that explains the measurements y and has the
same (or lower) total sparsity will also yield the same signals {xj}, and therefore solving the `0
minimization problem will yield the correct signals {xj}. For this proof, we denote by Vj,n the
column of V corresponding to element n of component j; that is, Vj,n , V(∅,...,n,...,∅) with the j-th
index set being nonempty.

As before, we select an index set Ω̂, with |Ω̂| = K ′
C +

∑
j K

′
j +J ·K∩, that could support another

representation (that is, that explains the measurements y and has the same total sparsity). Without
loss of generality, we can assume that Ω̂ (like the ε-point) is concentrated into the innovation
components. That is, for each n such that #{j : n ∈ Ω̂j} = J , we have n /∈ Ω̂0 and n ∈ Ω̂j,
j ∈ {1, 2, . . . , J} (the common component is neglected in favor of the J innovations). We see that
for any Ω̂ that does not feature such concentration, there exists another Ω̂′ that is concentrated
in the innovation components for which colspan(VbΩ) = colspan(VbΩ′) and |Ω̂| = |Ω̂′|, and so any

feasible solution with support Ω̂ can also be described using support Ω̂′.

We must consider several situations involving the measurement rates and the column spans.

Case 1: |Ω̂j| < Mj for all j: For Ω and Ω̂ to be feasible supports for sparsest solutions, it is
required that VΩ and VbΩ have rank at least K ′

C +
∑

j K
′
j + J ·K∩, as argued previously. The joint

matrix [VΩ VbΩ] has a rank greater than K ′
C +

∑
j K

′
j + J ·K∩, unless colspan(VΩ) = colspan(VbΩ).

Case 1(a): colspan(VΩ) = colspan(VbΩ): In this case we argue that Ω = Ω̂. To see this,
consider a vector Vj,n ∈ colspan(VΩ) for j ≥ 1. This can occur only if n ∈ Ωj; if n /∈ Ωj then
because |Ωj | = K ′

j + K∩ < Mj, colspan(VΩj
) contains Vj,n only with probability zero. Similarly,

with probability one, a column V0,n ∈ colspan(VΩ) only if n ∈ Ω0 or #{j : n ∈ Ωj} = J .

Repeating these arguments for colspan(VbΩ) (and exploiting the assumption that |Ω̂j | < Mj for

all j), we conclude that for j ≥ 1, Vj,n ∈ colspan(VbΩ) only if n ∈ Ω̂j, and that V0,n ∈ colspan(VbΩ)

only if n ∈ Ω̂0 or #{j : n ∈ Ω̂j} = J . Since colspan(VΩ) = colspan(VbΩ), we conclude that Ω = Ω̂,
and so trivially we see that the reconstructions x and x̂ must be equal.

Case 1(b): colspan(VΩ) 6= colspan(VbΩ): For this case we mimic the arguments from the
achievable proof of Theorem 2. Here [VΩ VbΩ] has rank at least K ′

C +
∑

j K
′
j + J ·K∩ + 1, which in

turn implies that colspan(VΩ)∩colspan(VbΩ) is a
(
K ′

C +
∑

j K
′
j + J ·K∩ − 1

)
-dimensional subspace

of R
K ′

C
+

P
j K ′

j+J ·K∩+1 (each matrix contributes one additional dimension, giving [VΩ VbΩ] a rank of
K ′

C +
∑

j K
′
j + J ·K∩ + 1). Once again, colspan(VΩ) ∩ colspan(VbΩ) is the subspace containing all

measurements that can be explained by two distinct signals embedded in a space with dimension
at least K ′

C +
∑

j K
′
j + J ·K∩ + 1. Based on its dimensionality, this set has measure zero in the

column span of VΩ, and so an arbitrary set of signals with support given by Ω can be recovered
with probability one.

Case 2: |Ω̂j| ≥ Mj for some j: In this case we conclude that colspan(VΩ) 6= colspan(VbΩ).

To see this we consider the signal j for which |Ω̂j | ≥Mj . Then with probability one every column

Vj,n, n ∈ {1, 2, . . . , N} is contained in colspan(VbΩ) because the |Ω̂j| columns in VbΩj
span the Mj-

dimensional measurement space. However these columns Vj,n cannot all be in colspan(VΩ) because
|Ωj| = K ′

j + K∩ < Mj and so VΩj
has insufficient dimension to span this same space. Thus,

colspan(VΩ) and colspan(VbΩ) must differ.

Since colspan(VΩ) 6= colspan(VbΩ), the arguments from Case 1(b) above apply, and so we con-
clude that an arbitrary set of signals with support given by Ω can be recovered with probability
one. �
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D Proof of Lemma 2

Necessary conditions on innovation components: We begin by proving that in order to
reconstruct zC , z1, and z2 via the γ-weighted `1 formulation it is necessary that z1 can be recovered
via single-signal `1 CS reconstruction using Φ1 and measurements ỹ1 = Φ1z1.

Consider the single-signal `1 reconstruction problem

z̃1 = arg min ‖z1‖1 s.t. ỹ1 = Φ1z1.

Suppose that this `1 reconstruction for z1 fails; that is, there exists z̃1 6= z1 such that ỹ1 = Φ1z̃1
and ‖z̃1‖1 ≤ ‖z1‖1. Therefore, substituting z̃1 instead of z1 in the γ-weighted `1 formulation
(22) provides an alternate explanation for the measurements with a smaller or equal modified `1
penalty. Consequently, reconstruction of z1 using (22) will fail, and thus we will reconstruct x1

incorrectly. We conclude that the single-signal `1 CS reconstruction of z1 using Φ1 is necessary for
successful reconstruction using the γ-weighted `1 formulation. A similar necessary condition for `1
CS reconstruction of z2 using Φ2 and measurements Φ2z2 can be proved in an analogous manner.

Necessary condition on common component: We now prove that in order to reconstruct
zC , z1, and z2 via the γ-weighted `1 formulation it is necessary that zC can be recovered via single-
signal `1 CS reconstruction using the joint matrix [ΦT

1 ΦT
2 ]T and measurements [ΦT

1 ΦT
2 ]T zC .

The proof is very similar to the previous proof for the innovation component z1. Consider the
single-signal `1 reconstruction problem

z̃C = arg min ‖zC‖1 s.t. ỹC = [ΦT
1 ΦT

2 ]T zC .

Suppose that this `1 reconstruction for zC fails; that is, there exists z̃C 6= zC such that ỹC =
[ΦT

1 ΦT
2 ]T z̃C and ‖z̃C‖1 ≤ ‖zC‖1. Therefore, substituting z̃C instead of zC in the γ-weighted `1

formulation (22) provides an alternate explanation for the measurements with a smaller modified
`1 penalty. Consequently, the reconstruction of zC using the γ-weighted `1 formulation (22) will
fail, and thus we will reconstruct x1 and x2 incorrectly. We conclude that the single-signal `1
reconstruction of zC using [ΦT

1 ΦT
2 ]T is necessary for successful reconstruction using the γ-weighted

`1 formulation. �

E Proof of Theorem 6

Consider our γ-weighted `1 formulation (22). Among minimal sparsity representations, there is
one that has smallest γ-weighted `1 norm. We call this the star representation and denote its
components by z∗C , z∗1 , and z∗2 . If the components z∗C , z∗1 , and z∗2 cannot be recovered, then the
solution of the γ-weighted `1 minimization has a smaller `1 norm. But the star representation has
the smallest γ-weighted `1 norm among minimal sparsity representations and thus among viable
representations. Therefore, correct reconstruction of the components z∗C , z∗1 , and z∗2 is a necessary
condition for reconstruction of x1 and x2.

Conditions on individual rates: Using Lemma 1, the innovation components z∗1 and z∗2 must
have sparsity rate no smaller than S′

I . Lemma 2 requires single-signal `1 reconstruction of z∗1 and
z∗2 using Φ1 and Φ2, respectively. The converse bound of Theorem 3 indicates that R1 ≥ c′(S′

I) and
R2 ≥ c′(S′

I) are necessary conditions for single-signal `1 reconstruction of z∗1 and z∗2 , respectively.
Combining these observations, these conditions on R1 and R2 are necessary for the γ-weighted `1
formulation (22) to reconstruct x1 and x2 correctly as N increases.

Condition on sum rate: Using Lemma 1, z∗C must have sparsity rate no smaller than S′
C .

Lemma 2 requires single-signal `1 reconstruction of z∗C using [ΦT
1 ΦT

2 ]T . The converse bound of
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Theorem 3 indicates thatR1+R2 ≥ c′(S′
C) is a necessary condition for single-signal `1 reconstruction

of z∗C . Combining these observations, the condition R1+R2 ≥ c′(S′
C) is necessary for the γ-weighted

`1 formulation (22) to reconstruct x1 and x2 correctly as N increases. �

F Proof of Theorem 7

We construct measurement matrices Φ1 and Φ2 that consist of two sets of rows. The first set of
rows is common to both and reconstructs the signal difference x1 − x2. The second set is different
and reconstructs the signal average 1

2x1 + 1
2x2. Let the submatrix formed by the common rows for

the signal difference be ΦD, and let the submatrices formed by unique rows for the signal average
be ΦA,1 and ΦA,2. In other words, the measurement matrices Φ1 and Φ2 are of the following form:

Φ1 =




ΦD

−−
ΦA,1


 and Φ2 =




ΦD

−−
ΦA,2


 .

The submatrices ΦD, ΦA,1, and ΦA,2 contain i.i.d. Gaussian entries. Once the difference x1 − x2

and average 1
2x1 + 1

2x2 have been reconstructed using the above technique, the computation of x1

and x2 is straightforward. The measurement rate can be computed by considering both parts of
the measurement matrices.

Reconstruction of signal difference: The submatrix ΦD is used to reconstruct the signal
difference. By subtracting the product of ΦD with the signals x1 and x2, we have

ΦDx1 − ΦDx2 = ΦD(x1 − x2).

In the original representation we have x1−x2 = z1−z2 with sparsity rate 2SI . But z1(n)−z2(n) is
nonzero only if z1(n) is nonzero or z2(n) is nonzero. Therefore, the sparsity rate of x1 −x2 is equal
to the sum of the individual sparsities reduced by the sparsity rate of the overlap, and so we have
S(X1 −X2) = 2SI − (SI)

2. Therefore, any measurement rate greater than c′(2SI − (SI)
2) for each

ΦD permits reconstruction of the length N signal x1 − x2. (As always, the probability of correct
reconstruction approaches one as N increases.)

Reconstruction of average: Once x1 − x2 has been reconstructed, we have

x1 −
1

2
(x1 − x2) =

1

2
x1 +

1

2
x2 = x2 +

1

2
(x1 − x2).

At this stage, we know x1 − x2, ΦDx1, ΦDx2, ΦA,1x1, and ΦA,2x2. We have

ΦDx1 −
1

2
ΦD(x1 − x2) = ΦD

(
1

2
x1 +

1

2
x2

)
,

ΦA,1x1 −
1

2
ΦA,1(x1 − x2) = ΦA,1

(
1

2
x1 +

1

2
x2

)
,

ΦA,2x2 +
1

2
ΦA,2(x1 − x2) = ΦA,2

(
1

2
x1 +

1

2
x2

)
,

where ΦD(x1 − x2), ΦA,1(x1 − x2), and ΦA,2(x1 − x2) are easily computable because (x1 − x2) has
been reconstructed. The signal 1

2x1 + 1
2x2 is of length N , and its sparsity rate is clearly upper

bounded by SC + 2SI . The exact sparsity rate is in fact less, since the supports of the original
components zC , z1, and z2 overlap. In fact, 1

2x1 + 1
2x2 is nonzero only if at least one of zC(n),

z1(n), and z2(n) are nonzero. Therefore, the sparsity rate of 1
2x1 + 1

2x2 is equal to the sum of
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the individual sparsities SC + 2SI reduced by the sparsity rate of the overlaps, and so we have
S(1

2X1 + 1
2X2) = SC + 2SI − 2SCSI − (SI)

2 + SC(SI)
2. Therefore, any measurement rate greater

than c′(SC + 2SI − 2SCSI − (SI)
2 + SC(SI)

2) aggregated over the matrices ΦD, ΦA,1, and ΦA,2

enables reconstruction of 1
2x1 + 1

2x2.

Computation of measurement rate: By considering the requirements on ΦD, the individual
measurement rates R1 and R2 must satisfy (23a) and (23b), respectively. Combining the measure-
ment rates required for ΦA,1 and ΦA,2, the sum measurement rate satisfies (23c). We complete the
proof by noting that c′(·) is continuous and that limS→0 c

′(S) = 0, and so the limit of the sum
measurement rate as SI goes to zero is c′(S). �

G Proof of Theorem 8

We again assume that Ψ is an orthonormal matrix. Like Φj itself, the matrix ΦjΨ also has i.i.d.
N (0, 1) entries, since Ψ is orthonormal. For convenience, we assume Ψ = IN . The results presented
can be easily extended to a more general orthonormal matrix Ψ by replacing Φj with ΦjΨ.

Assume without loss of generality that Ω = {1, 2, . . . ,K} for convenience of notation. Thus,
the correct estimates are n ≤ K, and the incorrect estimates are n ≥ K + 1. Now consider the
statistic ξn in (24). This is the sample mean of J i.i.d. variables. The variables 〈yj, φj,n〉

2 are i.i.d.
since each yj = Φjxj, and Φj and xj are i.i.d. Furthermore, these variables have a finite variance.13

Therefore, we invoke the Law of Large Numbers (LLN) to argue that ξn, which is a sample mean
of 〈yj , φj,n〉

2, converges to E[〈yj , φj,n〉
2] as J grows large. We now compute E[〈yj , φj,n〉

2] under two
cases. In the first case, we consider n ≥ K + 1 (we call this the “bad statistics case”), and in the
second case, we consider n ≤ K (“good statistics case”).

Bad statistics: Consider one of the bad statistics by choosing n = K + 1 without loss of
generality. We have

E[〈yj , φj,K+1〉
2] = E

[
K∑

n=1

xj(n)〈φj,n, φj,K+1〉

]2

= E

[
K∑

n=1

xj(n)2〈φj,n, φj,K+1〉
2

]

+ E




K∑

n=1

K∑

`=1,` 6=n

xj(`)xj(n)〈φj,`, φj,K+1〉〈φj,n, φj,K+1〉




=
K∑

n=1

E
[
xj(n)2

]
E
[
〈φj,n, φj,K+1〉

2
]

+

K∑

n=1

K∑

`=1,` 6=n

E[xj(`)]E[xj(n)]E [〈φj,`, φj,K+1〉〈φj,n, φj,K+1〉]

13In [56], we evaluate the variance of 〈yj , φj,n〉
2 as

Var[〈yj , φj,n〉
2] =


Mσ4(34MK + 6K2 + 28M2 + 92M + 48K + 90 + 2M3 + 2MK2 + 4M2K), n ∈ Ω
2MKσ4(MK + 3K + 3M + 6), n /∈ Ω.

For finite M , K and σ, the above variance is finite.
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since the terms are independent. We also have E[xj(n)] = E[xj(`)] = 0, and so

E[〈yj , φj,K+1〉
2] =

K∑

n=1

E
[
xj(n)2

]
E
[
〈φj,n, φj,K+1〉

2
]

=

K∑

n=1

σ2E
[
〈φj,n, φj,K+1〉

2
]
. (28)

To compute E
[
〈φj,n, φj,K+1〉

2
]
, let φj,n be the column vector [a1, a2, ..., aM ]T , where each element

in the vector is i.i.d. N (0, 1). Likewise, let φj,K+1 be the column vector [b1, b2, ..., bM ]T where the
elements are i.i.d. N (0, 1). We have

〈φj,n, φj,K+1〉
2 = (a1b1 + a2b2 + ...+ aMbM )2

=
M∑

m=1

a2
mb

2
m + 2

M−1∑

m=1

M∑

r=m+1

amarbmbr.

Taking the expected value, we have

E
[
〈φj,n, φj,K+1〉

2
]

= E

[
M∑

m=1

a2
mb

2
m

]
+ 2E

[
M−1∑

m=1

M∑

r=m+1

amarbmbr

]

=

M∑

m=1

E
[
a2

mb
2
m

]
+ 2

M−1∑

m=1

M∑

r=q+1

E [amarbmbr]

=

M∑

m=1

E
[
a2

m

]
E
[
b2m
]
+ 2

M−1∑

m=1

M∑

r=m+1

E [am]E [ar]E [bm]E [br]

(since the random variables are independent)

=
M∑

m=1

(1) + 0

(since E [am2] = E [bm2] = 1 and E [am] = E [bm] = 0)

= M

and thus

E
[
〈φj,n, φj,K+1〉

2
]

= M. (29)

Combining this result with (28), we find that

E[〈yj , φj,K+1〉
2] =

K∑

n=1

σ2M = MKσ2.

Thus we have computed E[〈yj , φj,K+1〉
2] and can conclude that as J grows large, the statistic ξK+1

converges to
E[〈yj , φj,K+1〉

2] = MKσ2. (30)

Good statistics: Consider one of the good statistics, and choose n = 1 without loss of
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generality. Then, we have

E[〈yj , φj,1〉
2] = E



(
xj(1)‖φj,1‖

2 +

K∑

n=2

xj(n)〈φj,n, φj,1〉

)2



= E
[
(xj(1))

2 ‖φj,1‖
4
]

+ E

[
K∑

n=2

xj(n)2〈φj,n, φj,1〉
2

]

(all other cross terms have zero expectation)

= E
[
xj(1)

2
]
E
[
‖φj,1‖

4
]
+

K∑

n=2

E
[
xj(n)2

]
E
[
〈φj,n, φj,1〉

2
]

(by independence)

= σ2E
[
‖φj,1‖

4
]
+

K∑

n=2

σ2E
[
〈φj,n, φj,1〉

2
]
. (31)

Extending the result from (29), we can show that E〈φj,n, φj,1〉
2 = M . Using this result in (31), we

find that

E[〈yj , φj,1〉
2] = σ2E‖φj,1‖

4 +

K∑

n=2

σ2M. (32)

To evaluate E
[
‖φj,1‖

4
]
, let φj,1 be the column vector [c1, c2, ..., cM ]T , where the elements of the

vector are random N (0, 1). Define the random variable Z = ‖φj,1‖
2 =

∑M
m=1 c

2
m. Note that

E
[
‖φj,1‖

4
]

= E
[
Z2
]
. From the theory of random variables, we know that Z is chi-squared dis-

tributed with M degrees of freedom. Thus, E
[
‖φj,1‖

4
]

= E
[
Z2
]

= M(M + 2). Using this result
in (32), we have

E[〈yj , φj,1〉
2] = σ2M(M + 2) + (K − 1)σ2M

= M(M +K + 1)σ2.

We have computed the variance of 〈yj , φj,1〉 and can conclude that as J grows large, the statistic
ξ1 converges to

E[〈yj , φj,1〉
2] = (M +K + 1)Mσ2. (33)

Conclusion: From (30) and (33) we conclude that

lim
J→∞

ξn = E[〈yj , φj,n〉
2] =

{
(M +K + 1)Mσ2, n ∈ Ω
KMσ2, n /∈ Ω.

For any M ≥ 1, these values are distinct, with a ratio of M+K+1
K between them. Therefore, as J

increases we can distinguish between the two expected values of ξn with overwhelming probability.
�

H Proof of Theorem 10

Statement 2 follows trivially from Theorem 2 (simply assume that zC is known a priori). The proof
of Statement 1 has two parts. First we argue that limJ→∞ ẑC = zC . Second we show that this
implies vanishing probability of error in recovering each innovation zj .
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Part 1: We can write our estimate as

ẑC =
1

J
Φ̂Ty =

1

J
Φ̂TΦx =

1

J

J∑

j=1

1

Mjσ2
j

ΦT
j Φjxj

=
1

J

J∑

j=1

1

Mjσ2
j

Mj∑

m=1

(φR
j,m)TφR

j,mxi,

where Φ is a diagonal concatenation of the Φj’s as defined in (13), and φR
j,m denotes the m-th row of

Φj, that is, the m-th measurement vector for node j. Since the elements of each Φj are Gaussians
with variance σ2

j , the product (φR
j,m)TφR

j,m has the property

E[(φR
j,m)TφR

j,m] = σ2
j IN .

It follows that
E[(φR

j,m)TφR
j,mxj ] = σ2

jE[xj ] = σ2
jE[zC + zj ] = σ2

j zC

and, similarly, that

E


 1

Mjσ2
j

Mj∑

m=1

(φR
j,m)TφR

j,mxj


 = zC .

Thus, ẑC is a sample mean of J independent random variables with mean zC . From the LLN, we
conclude that

lim
J→∞

ẑC = zC .

Part 2: Consider recovery of the innovation zj from the adjusted measurement vector ŷj = yj −
Φj ẑC . As a recovery scheme, we consider a combinatorial search over all K-sparse index sets drawn
from {1, 2, . . . , N}. For each such index set Ω′, we compute the distance from ŷ to the column
span of Φj,Ω′, denoted by d(ŷ, colspan(Φj,Ω′)), where Φj,Ω′ is the matrix obtained by sampling the
columns Ω′ from Φj. (This distance can be measured using the pseudoinverse of Φj,Ω′.)

For the correct index set Ω, we know that d(ŷj , colspan(Φj,Ω)) → 0 as J → ∞. For any other
index set Ω′, we know from the proof of Theorem 2 that d(ŷj , colspan(Φj,Ω′)) > 0. Let

ζ , min
Ω′ 6=Ω

d(ŷj , colspan(Φi,Ω′)).

With probability one, ζ > 0. Thus for sufficiently large J , we will have d(ŷj, colspan(Φj,Ω)) < ζ/2,
and so the correct index set Ω can be correctly identified. �
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