

Performance Limits for Jointly Sparse Signals via Graphical Models

Marco F. Duarte, Shriram Sarvotham, Dror Baron, Michael B. Wakin, Richard G. Baraniuk

dsp.rice.edu/cs

Location Matrices and Value Vectors

Consider single signal case, $x \in \mathbb{R}^N, ||x||_0 = K$ **Location matrix** *P*: identity submatrix for sparsity pattern **Value vector** $\theta \in \mathbb{R}^{K}$: values for nonzero entries of x **Unique sparsest representation** $x = P\theta$

For Joint Sparsity Models:

- Apply location matrix and value vector model to signal ensemble to obtain $X = P\Theta$
- JSM defined as a **group** \mathcal{P} of allowed location matrices P
- Joint sparsity (dimensionality) of signal ensemble:

 $D = \min \dim(\Theta)$ such that $X = P\Theta, P \in \mathcal{P}$

• Minimal location matrices:

$$\mathcal{P}_M(X) = \{ P \in \mathcal{P} \text{ s.t. } P \in \mathbb{R}^{JN \times D}, \exists \Theta \text{ s.t. } X = P\Theta \}$$

Sparse common and innovations Example:

 $z_C = P_C \theta_C$ and $z_j = P_j \Theta_j$

Bipartite Graph Formulation

Represent relationships between measurements (V_M) , value vector coefficients (V_V) , and signal coefficients (V_S)

Quantifying dependencies

• Γ : subset of signal indices $\{1, \ldots, J\}$

• $V_S(\Gamma)$: set of signal vertices for all signals in Γ

• Measurements from Γ must recover two groups of value vector coefficients:

- $I(\Gamma, P)$: set of value vector coefficients that are linked only to $V_S(\Gamma)$
- $K_{C,\Gamma}(P)$: Number of common component coefficients that overlap with innovations for all signals outside Γ

Result

Given $P \in \mathcal{P}_M(X)$, Gaussian random measurements:

• Converse measurement region:

$$\sum_{j \in \Gamma} M_j < |I(\Gamma, P)| + K_{C,\Gamma}(P)$$
• Achievable measurement region:

$$\sum_{j \in \Gamma} M_j \ge |I(\Gamma, P)| + K_{C, \Gamma}(P) + |\Gamma|$$

Example:

Sparse common and innovations

$$\sum_{\ell \in \Gamma} M_j \ge \sum_{j \in \Gamma} K_j + K_{C,\Gamma}(P) + |\Gamma|$$

Discussion

• Theorem applies to:

• joint compressive sensing

(*same* measurement sum bound)

- single signal compressive sensing
- (*matches* bounds for ℓ_0 minimization)
- Similar conditions for location matrices with *linearly* independent columns

• Dimensionality has volumetric notion similar to **entropy**