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Compressive Sensing (CS)
[Candes/Romberg/Tao, Donoho, 2005]
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Sparse signal x, matrix ®, measurements y = ¢x

Distributed Compressive Sensing (DCS)

[Baron, Wakin, Duarte, Sarvotham, Baraniuk, 2005]

destination

e Types of structure in signal ensem-
bles

e Intrasignal and Intersignal correlation

e Example: temperature measurements in a field with
correlations in the time and spatial domain

e Compressive measurements obtained individually
by each sensor - reduced communication requirement

Joint Sparsity Model (JSM)

Single model for the signal ensemble describes signal correlations
Example: Sparse common and innovations
J signals z1,...,z; of length N

W =20 Zag J=1oa

commaon \ innovation

|lzcllo = K¢ Izjllo = K;

M individual measurements y; = ®;x;

Single Matrix/Vector Representation

Measurements conveniently represented as Y = & X
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Location Matrices and Value Vectors

Consider single signal case, z € RY||z|o = K

Location matrix P: identity submatrix for sparsity pattern
Value vector 0 € R¥: values for nonzero entries of x
Unique sparsest representation r = P06

For Joint Sparsity Models:

e Apply location matrix and value vector model to signal
ensemble to obtain X = PO

e JSM defined as a group P of allowed location matrices P
e Joint sparsity (dimensionality) of signal ensemble:
D = mindim(©) such that X = PO, P € P
e Minimal location matrices:
Pu(X)={PcPst. PcRN*P JOst. X = PO}

Example: Sparse common and innovations
2c = Pclc and z; = P;0;
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Bipartite Graph Formulation
Represent relationships between measurements (V,,),

value vector coefficients (V4,), and signal coefficients (Vy)
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Quantifying dependencies

Signal Value vector
coefficients coefficients

e I': subset of signal indices{1,...,J}
e Vg(I'): set of signal vertices for all signals inT’

e Measurements from I' must recover two groups of value
vector coefficients:

e [(T', P): set of value vector coefficients that are linked
only to Vs(r)

e Ko.r(P): Number of common component coefficients
that overlap with innovations for all signals outsideTI"

Result

Given P € Py, (X), Gaussian random measurements:

e Converse measurement region:

> ier M < |I(I', P)|+ K¢ r(P)
e Achievable measurement region:

D jer M > |I(T, P)| + Ker(P) + [T

Example: Sparse common and innovations

> M;>> K;+Kor(P)+T|
jer jer

Discussion

e Theorem applies to:
¢ joint compressive sensing
(same measurement sum bound)
e single signal compressive sensing
(matches bounds for o minimization)
e Similar conditions for location matrices with linearly

independent columns
e Dimensionality has volumetric notion similar to entropy




