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ABSTRACT

The compressed sensing (CS) framework has been pro-

posed for efficient acquisition of sparse and compress-

ible signals through incoherent measurements. In our re-

cent work, we introduced a new concept of joint sparsity

of a signal ensemble. For several specific joint sparsity

models, we demonstrated distributed CS schemes. This

paper considers joint sparsity via graphical models that

link the sparse underlying coefficient vector, signal en-

tries, and measurements. Our converse and achievable

bounds establish that the number of measurements re-

quired in the noiseless measurement setting is closely re-

lated to the dimensionality of the sparse coefficient vec-

tor. Single signal and joint (single-encoder) CS are spe-

cial cases of joint sparsity, and their performance lim-

its fit into our graphical model framework for distributed

(multi-encoder) CS.

Index Terms— Distributed compressed sensing,

jointly sparse signals, graphical models.

1. INTRODUCTION

A framework for single-signal sensing and compres-

sion has recently emerged under the rubric of Com-

pressed Sensing (CS). CS builds on the work of Candès,

Romberg, and Tao [1] and Donoho [2], and relies on

tractable signal recovery procedures that provide exact

recovery of a signal of length N and sparsity K as long

as cK projections are used to recover the signal (typ-

ically c ≈ 3 or 4). While powerful, the CS theory is

mainly designed to exploit intra-signal structures at a

single sensor. Certain schemes have been proposed to

apply CS in a multi-sensor setting [3, 4], but they ignore

intra-signal correlations.

In our recent work [5], we introduced a theory for

distributed compressed sensing (DCS) that enables new
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distributed coding algorithms to exploit both intra- and

inter-signal correlation structures. In a typical DCS sce-

nario, multiple sensors measure signals that are each

individually sparse in some basis and also correlated

among sensors. Each sensor independently encodes its

signal by projecting it onto another, incoherent basis

(such as a random one) and then transmits just a few

of the resulting coefficients to a single collection point.

Under the right conditions, a decoder at the collection

point can recover each of the signals precisely.

The DCS theory relies on the joint sparsity of a signal

ensemble. Unlike the single-signal definition of sparsity,

however, there are numerous plausible ways in which

joint sparsity could be defined. In this paper, we pro-

vide a general framework for joint sparsity using graph-

ical models. Using this framework, we derive upper and

lower bounds for the number of noiseless measurements

required for recovery. Our results are also applicable to

cases where the signal ensembles are measured jointly,

as well as to the single signal case.

2. COMPRESSED SENSING BACKGROUND

Consider a length-N , real-valued signal x ∈ R
N and a

sparsifying basis Ψ, which provides a K-sparse repre-

sentation θ = ΨT x of x. Using ‖ · ‖p to denote the ℓp

norm,1 we have ‖θ‖0 = K . Various expansions, includ-

ing Fourier and wavelets, are widely used for representa-

tion and compression of natural signals, and other data.

In CS we do not measure or encode the sparse vec-

tor θ directly. Rather, we take M < N projections of

the signal onto a second set of random functions. Using

matrix notation, we measure y = Φx, where y ∈ R
M

column vector and the measurement matrix Φ ∈ R
M×N

with i.i.d. Gaussian entries. Since M < N , recovery of

the signal x from the measurements y is ill-posed in gen-

eral. However, the assumption of signal sparsity makes

recovery possible and computationally tractable.

1The ℓ0 “norm” ‖θ‖0 counts the number of nonzero entries in θ.
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The sparse set of significant coefficients θ can be re-

covered by searching for the signal with ℓ0-sparsest co-

efficients θ̂ that agrees with y:

θ̂ = arg min ‖θ‖0 s.t. y = ΦΨθ. (1)

In principle, remarkably few incoherent measurements

are required to perfectly recover a K-sparse signal using

(1). Although it is necessary to take more than K mea-

surements to avoid ambiguity, K + 1 measurements will

suffice [5]. Thus, one measurement separates the achiev-

able region, where perfect recovery is possible with prob-

ability one, from the converse region, where recovery is

impossible. Unfortunately, (1) is prohibitively complex.

In fact, it is NP-complete. Recovery methods such as

ℓ1 minimization provide computationally tractable sig-

nal recovery at the expense of a moderate increase in the

number of measurements M [1, 2].

3. JOINT SPARSITY MODELS

In this section, we generalize the notion of a signal be-

ing sparse in some basis to joint sparsity within a sig-

nal ensemble. We begin with basic notation. Let Λ :=
{1, 2, . . . , J} be the set of signal indices. Denote the sig-

nals in the ensemble by xj ∈ R
N , where j ∈ Λ. We

use xj(n) to denote sample n in signal j, and assume

for the sake of illustration that these signals are sparse in

the canonical basis, i.e., Ψ = I. The entries of the sig-

nal can take arbitrary real values, and the framework is

extendable to arbitrary Ψ.

We denote by Φj the measurement matrix for sig-

nal j; Φj is Mj × N and, in general, entries of Φj

are different for each j. Thus, yj = Φjxj consists

of Mj < N random measurements of xj . We em-

phasize random Gaussian matrices Φj in the follow-

ing, but other measurement matrices are possible. To

compactly represent the signal and measurement en-

sembles, we define X = [xT
1 . . . xT

J ]T ∈ R
JN and

Y = [yT
1 . . . yT

J ]T ∈ R

P

Mj . Finally, we also define

Φ = diag(Φ1, . . . , ΦJ), where diag denotes a matrix

diagonal concatenation, to get Y = ΦX .

3.1. Algebraic framework

Our framework enables analysis of a given ensemble

x1, x2, . . . , xJ in a “jointly sparse” sense, as well as a

metric for the complexities of different signal ensembles.

It is based on a factored representation of the signal en-

semble, and decouples location and value information.

We begin by illustrating the single signal case.

Single signal case: Consider a sparse x ∈ R
N with

K < N nonzero entries. Alternatively, we can write x =
Pθ, where θ ∈ R

K contains the nonzero values of x, and

P is an identity submatrix, i.e., P contains K columns

of the N × N identity matrix I. To model the set of all

possible sparse signals, let P be the set of all identity

submatrices of all possible sizes N ×K ′, with 1 ≤ K ′ ≤
N . We refer to P as a sparsity model. Given a signal

x, one may consider all possible factorizations x = Pθ,

with P ∈ P . Among them, the smallest dimensionality

for θ indicates the sparsity of x under the model P .

Multiple signal case: For multiple signals, consider

factorizations of the form X = PΘ where X ∈ R
JN as

above, P ∈ R
JN×D, and Θ ∈ R

D. We refer to P and

Θ as the location matrix and value vector, respectively.

A joint sparsity model (JSM) is defined in terms of a set

P of admissible location matrices P with varying num-

bers of columns. Unlike the single signal case, there are

multiple choices for what matrices P belong to a joint

sparsity model P .

Minimal sparsity: For a given ensemble X , let

PF (X) denote the set of feasible location matrices

P ∈ P for which a factorization X = PΘ exists. Among

the feasible location matrices, we let PM (X) ⊆ PF (X)
denote the matrices P having the minimal number of

columns. The number of columns D for each P ∈
PM (X) is called the joint sparsity level of X under the

model P . Generally speaking, the minimal location ma-

trices PM (X) permit the most efficient factorizations

of the signal ensemble; we show in Section 4 that these

matrices dictate the number of measurements.

We restrict our attention in this paper to scenarios

where each signal xj is generated as a combination of

two components: (i) a common component zC , which is

present in all signals, and (ii) an innovation component

zj , which is unique to each signal. These combine addi-

tively, giving xj = zC +zj, j ∈ Λ. However, individual

components might be zero-valued in specific scenarios.

3.2. Example Joint Sparsity Model: JSM-1

In the sparse common and innovations (JSM-1) model [5],

the common component zC and each innovation com-

ponent zj are sparse with respective sparsities KC and

Kj . Within our algebraic framework, the class of JSM-1

signals correspond to the set of all matrices

P =




PC P1 . . . 0

...
...

. . .
...

PC 0 . . . PJ



 ,

where PC and {Pj}j∈Λ are arbitrary identity submatrices

of sizes N×KC and N×Kj , respectively, and 0 denotes

a zero matrix of appropriate size. Given X = PΘ, we

can partition the value vector Θ = [θT
C θT

1 θT
2 . . . θT

J ]T ,

where θC ∈ R
KC and each θj ∈ R

Kj . When generating

a signal according to this model, we have zC = PCθC ,
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zj = Pjθj , j ∈ Λ. If P ∈ PM (X), then the joint sparsity

is D = KC +
∑

j∈Λ
Kj .

Sparsity reduction: If a signal ensemble X = PΘ,

Θ ∈ R
D, were to be generated by a selection of PC

and {Pj}j∈Λ, where all J + 1 identity submatrices share

a common column vector, then P /∈ PM (X). By re-

moving the instance of this column in PC , one obtains

Q ∈ P such that there exists Θ′ ∈ R
D−1 with X = QΘ′.

We term this phenomenon sparsity reduction, since it re-

duces the effective joint sparsity of a signal ensemble.

4. BOUND ON MEASUREMENT RATES

We seek conditions on the number of measurements from

each sensor that guarantee perfect recovery of X given

Y . Within our algebraic framework, recovering X in-

volves determining a value vector Θ and location matrix

P such that X = PΘ. Two challenges are present. First,

a given measurement depends only on some of the com-

ponents of Θ, and the measurement budget should be ad-

justed between the sensors in order to gather sufficient in-

formation on all components of Θ. Second, the decoder

must identify a feasible location matrix P ∈ PF (X)
from the set P and the measurements Y . In this section,

we develop tools to address these challenges and charac-

terize the number of measurements needed by them.

4.1. Graphical model framework

We introduce a graphical representation that captures the

dependencies between the measurements in Y and the

value vector Θ, represented by Φ and P . Consider a fea-

sible decomposition of X into P ∈ PF (X) and the cor-

responding Θ. We define the following sets of vertices,

illustrated in Figure 1(a): (i) the set of value vertices VV

has elements with indices d ∈ {1, . . . , D} representing

entries of the value vector θ(d); (ii) the set of signal ver-

tices VS has elements with indices (j, n) representing the

signal entries xj(n), with j ∈ Λ and n ∈ {1, . . . , N};

and (iii) the set of measurement vertices VM has ele-

ments with indices (j, m) representing the measurements

yj(m), with j ∈ Λ and m ∈ {1, . . . , Mj}. The car-

dinalities of these sets are |VV | = D, |VS | = JN and

|VM | =
∑

j∈Λ
Mj .

Let P be partitioned into location submatrices P j ,

j ∈ Λ, so that xj = P jΘ; here P j is the restriction of

P to the rows that generate the signal xj . We then define

the bipartite graph G = (VS , VV , E), determined by P ,

where there exists an edge connecting (j, n) and d if and

only if P j(n, d) 6= 0.

A similar bipartite graph G′ = (VM , VS , E′), illus-

trated in Figure 1(a), connects between the measurement

vertices {(j, m)} and the signal vertices {(j, n)}; there

exists an edge in G′ connecting (j, n) ∈ VS and (j, m) ∈

VM if Φj(m, n) 6= 0. When the measurements matri-

ces Φj are dense, which occurs with probability one for

i.i.d. Gaussian random matrices, the vertices correspond-

ing to entries of a given signal xj in VS are all connected

to all vertices corresponding to the measurements yj in

VV . Figure 1 shows an example for dense measurement

matrices: each measurement vertex (j, ·) is connected to

each signal vertex (j, ·).

The graphs G and G′ can be merged into Ĝ =
(VM , VV , Ê) that relates entries of the value vector to

measurements. Figure 1(b) shows the example compo-

sition of the previous two bipartite graphs. Ĝ is used to

recover Θ from the measurement ensemble Y when P is

known.

4.2. Quantifying dependencies and redundancies

We now define the subset of the value vector entries that

is measured exclusively by a subset Γ of the sensors in

the ensemble; the cardinality of this set will help de-

termine the number of measurements the sensors in Γ
should perform. We denote by E(V ) the neighbors of a

set of vertices V through E.

Definition 1 Let G = (VS , VV , E) be the bipartite

graph determined by P , let Γ ⊆ Λ, and let VS(Γ) be

the set of vertices VS(Γ) = {(j, n) ∈ VS : j ∈ Γ, n ∈
{1, . . . , N}}. We define the set of exclusive indices for

Γ given P , denoted I(Γ, P ), as the largest subset of

{1, . . . , D} such that E(I(Γ, P )) ⊆ VS(Γ).

I(Γ, P ) is significant in our distributed measurement set-

ting, because it contains the coefficients of θ that only af-

fect the signals in the set Γ and, therefore, can only be

measured by those sensors. Figure 1(c) shows an exam-

ple setting of two signals of length N = 3 generated by a

matrix P from the JSM-1 model, with the sets I({1}, P )
and I({2}, P ) defined as the vertices in VV that connect

exclusively with VS({1}) and VS({2}), respectively.

Overlaps: When overlaps between common and in-

novation components are present in a signal, we cannot

recover the overlapped portions of both components from

the measurements of this signal alone; we need to re-

cover the common component’s coefficients using mea-

surements of other signals that do not feature the same

overlap. Furthermore, these coefficients of the value vec-

tor are not included in I(Γ, P ). We thus quantify the size

of the overlap for all subsets of signals Γ ⊂ Λ under a

feasible representation given by P and Θ.

Definition 2 The overlap size for the set of signals
Γ ⊂ Λ, denoted KC,Γ, is the number of indices in which
there is overlap between the common and the innovation
component supports at the signals j /∈ Γ; more formally,

KC,Γ(P ) = |{n ∈ {1, . . . , N} : zC(n), zj(n) 6= 0, j /∈ Γ}|.

For the entire set of signals, the overlap size KC,Λ = 0.
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Fig. 1. Bipartite graphs for distributed compressed sensing. (a) G = (VS , VV , E) connects the entries of each signal with the value

vector coefficients they depend on; G′ = (VM , VS, E′) connects the measurements at each sensor with observed signal entries.

The matrix Φ is a dense Gaussian random matrix, as shown in the graph. (b) bG = (VM , VV , bE) is the composition of G and G′,

and relates between value vector coefficients and measurements. (c) Sets of exclusive indices for our example.

For Γ 6= Λ, KC,Γ(P ) provides a penalty term due to

the need for recovery of common component coefficients

that are overlapped by innovations in all other signals

j /∈ Γ. The definition of KC,Λ accounts for the fact that

all the coefficients of Θ are included in I(Λ, P ).

4.3. Main Result

A converse and achievable bound on the number of mea-

surements necessary for recovery is given below.

Theorem 1 (Achievable) Assume a signal ensemble X
is obtained from a common/innovation component JSM

where P and Φj are random Gaussian for all j ∈ Λ. If

there exists a location matrix P ∈ PM (X) such that
∑

j∈Γ

Mj ≥ |I(Γ, P )| + KC,Γ(P ) + |Γ| (2)

for all Γ ⊆ Λ, then X can be uniquely recovered with

probability one from Y using ℓ0 minimization.

(Converse) If for each P ∈ PM (X), for some Γ ⊆ Λ
∑

j∈Γ

Mj < |I(Γ, P )| + KC,Γ(P ), (3)

then the signal ensemble X cannot be uniquely recovered

from Y , regardless of the measurement matrices Φj .

Theorem 1 is proved in [6]. The number of measure-

ments needed for recovery depends on the number of

value vector coefficients that are observed only by the

sensors in Γ. The identication of a feasible location ma-

trix P causes the 2 measurement-per-sensor gap between

the converse and achievable bounds (2-3).

Discussion: The theorem can also be applied to the

single sensor and joint measurement settings. In the sin-

gle signal setting, we will have x = Pθ with θ ∈ R
K ,

and Λ = {1}; the theorem provides the requirement

M ≥ K + 1, which matches the existing requirements

for reconstruction. The joint measurement setting is

equivalent to the single signal setting with a dense mea-

surement matrix, as all measurements are dependent on

all signal entries. In this case, however, the distribution

of the measurements among the available sensors is ir-

relevant. Therefore, we only obtain a condition on the

total number of measurements obtained by the group of

sensors as
∑

j∈{1,...,N} Mj ≥ D + 1.
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