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Abstract—We show that compressive sensing (CS) applied to
time delay estimation (TDE) simultaneously enables a reduction
in the sampling frequency and preserves good estimation preci-
sion. With CS, we seek to recover signals and parameters from
an under-determined system of linear equations by assuming
sparsity in a known dictionary. A common problem in CS is
that the observed signals may not be sparsely representable in
the dictionary. This problem also occurs in TDE as the delay
parameter is a continuous parameter. We remedy this issue by
combining CS with interpolation.

Index Terms—Compressive sensing, time delay estimation,
parameter estimation, interpolation.

I. PROBLEM FORMULATION

Let the received time-domain analog signal be defined as

f(t;α, τ ) =

K∑
i=1

αi · g(t− τi) + n(t), (1)

where α = {α1, α2, · · · , αK} are the unknown signal ampli-
tudes, τ = {τ1, τ2, · · · , τK} are the unknown signal delays in
time, g(t) is a known signal waveform and n(t) is the noise.
The task of the estimation algorithm is then to estimate α and
τ from a sampled version of (1). Depending on the bandwidth
of g(t), the required sampling rate to estimate the delays to a
desired precision may be high. If we assume that only a few
signal components are active, i.e. K is small, we may use CS
to achieve the desired precision at a lower sampling rate. With
a CS receiver the received signal is y = Φf , where f ∈ CN is
the Nyquist sampled version of (1), y ∈ CM is the received
signal and Φ ∈ RM×N is the CS measurement matrix.

To enable reconstruction CS requires a sparsifying dictio-
nary Ψ ∈ CN×N . In the case of TDE the dictionary is a
circulant matrix of delayed waveforms. Since the delay pa-
rameter is continuous the received signal may not be sparsely
representable by the dictionary, which may lower performance.

Our contribution is bridging the work on CS and interpo-
lation to improve estimator precision in TDE while keeping
the sampling frequency low. This is achieved by incorporating
an interpolation step in a greedy algorithm. In each iteration
of the algorithm, after finding the strongest correlating atom
in the dictionary, we propose to use an interpolation function
to improve the estimation precision. There are many possible
choices of interpolation functions. In this work we compare
two such functions: second order polynomial and polar inter-
polation based on a manifold model.
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Fig. 1. τ -MSE vs. κ.
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Fig. 2. τ -MSE vs. SNR, κ = 0.5.

II. NUMERICAL SIMULATIONS

We compare five delay estimators: 1) BOMP is an existing
greedy algorithm without interpolation, 2) PaIBOMP adds
to BOMP parabolic interpolation, 3) PoIBOMP uses polar
interpolation, 4) TDE MUSIC reconstructs the signal using `1-
minimization and then estimates the delays using the MUSIC
algorithm, and 5) TDE MUSIC/subsample directly downsam-
ples the signal by a factor of N/M and estimates the delays
using the MUSIC algorithm. The last algorithm shows that
direct downsampling fails due to aliasing.

In the first experiments we assume a noise-free signal and
vary the number of measurements M = κN , where κ ∈ [0, 1)
is the CS subsampling rate. Fig. 1 shows the performance of
the five estimators by computing the time delay mean squared
error (τ -MSE) between the true and estimated value of the
time delay. This corresponds to the sample variance of the
estimators and is a measure of estimator precision. All four
CS estimators allow for subsampling while maintaining good
estimation precision. TDE MUSIC performs best for low κ,
while the interpolation algorithms perform best as κ increases.

For the second experiment we include additive white Gaus-
sian measurement noise in the signal model. We fix κ = 0.5
and vary the signal-to-noise ratio (SNR). Fig. 2 shows that the
algorithms are affected by noise, but as SNR increases they
converge towards the results for κ = 0.5 in Fig. 1.

These numerical results show that CS coupled with in-
terpolation enables subsampling while maintaining a desired
estimation precision. For full details, see our technical report
[1] and our website www.sparsesampling.com/tde.
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