Wavelet-Domain Compressive Signal Reconstruction Using a Hidden Markov Tree Model

Marco F. Duarte

Joint work with M. B. Wakin and R. G. Baraniuk ICASSP - April 1, 2008

Compressive Sensing: From Samples to Measurements

- Many interesting signals are sparse or compressible
- Instead of sampling the signal, encode the relevant information into a few measurements (inner products)

Compressive Sensing: From Samples to Measurements

• **Decoding** = reconstruction = inverse problem

– given y, extract information of interest about x

CS Signal Recovery

CS Signal Recovery

CS Signal Recovery

 Reconstruction/decoding: (ill-posed inverse problem) 		given find	$\begin{array}{l} y = \Phi x \\ x \end{array}$
• ℓ_2	fast, wrong		$\widehat{x} = \arg\min_{y = \Phi x} \ x\ _2$
• ℓ_0	correct, $M = 2K$ slow		$\widehat{x} = \arg\min_{y = \Phi x} \ x\ _0$
• <i>l</i> 1	correct, $M = CK \log(N/K)$ [Candès et al, Donoho,]		$\widehat{x} = \arg\min_{y=\Phi x} \ x\ _1$ linear program

- greedy [Tropp, Gilbert, Strauss; Rice]
- **statistical** [Candès; Nowak et al; Rice]

• Minimize $\|Wx\|_1 = \sum w_n |x_n|$

Use iterative procedure to construct weights

$$\begin{split} w_n^{(0)} &= 1 \text{ for all } n \\ \widehat{x}^{(i)} &= \arg\min_{y=\Phi x} \|W^{(i-1)}x\|_1 \\ w_n^{(i)} &= \frac{1}{|\widehat{x}_n^{(i)}| + \epsilon} \text{ for all } n \\ \end{split}$$
that $\|Wx\|_1 \approx \|x\|_0$

 \boldsymbol{n}

- Weights w_n small when $|x_n|$ large

SO

- Reduce number of measurements ${\cal M}$ required for reconstruction

[Candès, Wakin and Boyd. See also Gorodnitsky and Rao; Figueiredo, Bioucas-Dias, and Nowak]

- Wavelet transform sports a connected subtree structure
- Piecewise smooth signal "rule of thumb"
 - persistence: small/large values tumble down the tree
 - magnitude: wavelet coefficients decay monotonically along branches of wavelet tree

• Exploit this structure for

- fast reconstruction
- lower oversampling
- noise regularization

 $x = \Psi \alpha$

- Wavelet transform sports a connected subtree structure
- Piecewise smooth signal "rule of thumb"
 - persistence: small/large values tumble down the tree
 - magnitude: wavelet coefficients decay monotonically along branches of wavelet tree

• Exploit this structure for

- fast reconstruction
- lower oversampling
- noise regularization

Greedy Algorithms

 restrict search to connected tree [Duarte/Wakin/Baraniuk, La/Do] $x = \Psi \alpha$

- Wavelet transform sports a connected subtree structure
- Piecewise smooth signal "rule of thumb"
 - persistence: small/large values tumble down the tree
 - magnitude: wavelet coefficients decay monotonically along branches of wavelet tree

• Exploit this structure for

- fast reconstruction
- lower oversampling
- noise regularization

Greedy Algorithms

- restrict search to connected tree [Duarte/Wakin/Baraniuk, La/Do]
- **Issues**: Gaps in branches of large-coefficient subtree

 $x = \Psi \alpha$

Hidden Markov Tree

http://www.flickr.com/photos/bestrated1/

Hidden Markov Tree

http://www.flickr.com/photos/bestrated1/

[Crouse, Nowak and Baraniuk, 1997]

S

1

2

3

4

5

[Crouse, Nowak and Baraniuk, 1997]

 $S_{s,i}$ (

 $lpha_{s,i}$

CS Reconstruction of Wavelet-Sparse Signals

N = 1024M = 300IO iterations/algorithm

CS Reconstruction of Wavelet-Sparse Signals

N = 1024M = 300IO iterations/algorithm

HMT-Derived Weights for Reweighted ℓ_1 Algorithm

N = 1024M = 30010 iterations/algorithm

Goal for weights:

Penalize wavelet coefficients that do not follow HMT model

coefficients

HMT-Derived Weights for Reweighted ℓ_1 Algorithm

Original signal IRWL1, MSE = 1.55N = 1024M = 30010 iterations/algorithm **Goal for weights:** TMP, MSE = 1.47Penalize wavelet coefficients that do not follow HMT model Spurious wavelets coefficients $= \frac{1}{\left(p\left(S_n = \mathbf{L} | \widehat{\alpha}^{(i-1)}, \mathcal{M}\right) + \delta\right)^q} \text{ for all } n$ $w_n^{(i)}$

HMT-Derived Weights for Reweighted ℓ_1 Algorithm

N = 1024M = 30010 iterations/algorithm

Goal for weights:

Penalize wavelet coefficients that do not follow HMT model

HMT-Derived Weights for Reweighted ℓ_1 Algorithm

HMT-Reweighted ℓ_1 Performance

Piecewise polynomial signals Random polynomial coefficients 5 discontinuities at random points N = 1024

10 iterations for reweighting

100 repetitions for each value of M

Conclusions

- Reweighted minimization allows for signal recovery under specialized probabilistic sparse signal models
- Probability-dependent weights enforce model-fitting solutions to CS recovery
- Other sparse signal models can be used (generalized Gaussians, spatial clustering, etc.)
- Further work:
 - -Analysis for reconstruction performance
 - -Extensions to richer models and higher dimensions

