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Compressive Sensing:
From Samples to Measurements

• Many interesting signals are sparse or compressible

• Instead of sampling the signal, encode the relevant information 
into a few measurements (inner products)
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• Decoding = reconstruction = inverse problem
– given y, extract information of interest about x

measurements
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• Reconstruction/decoding:!              given
(ill-posed inverse problem)! !              find

• ! ! fast, wrong
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• Reconstruction/decoding:!              given
(ill-posed inverse problem)! !              find

• ! ! fast, wrong

• ! ! correct,
                   slow

• ! ! correct, 
! !

! ! [Candès et al, Donoho, ...]

• greedy ! [Tropp, Gilbert, Strauss; Rice]

• statistical! [Candès; Nowak et al; Rice]

CS Signal Recovery
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Reweighted     Algorithm
• Minimize                                instead            

• Use iterative procedure to construct weights

so that                             

• Weights wn small when |xn| large

• Reduce number of measurements M required for reconstruction

[Candès, Wakin and Boyd. See also Gorodnitsky and Rao; Figueiredo, Bioucas-Dias, and Nowak]



Wavelets: more than just sparsity



• Wavelet transform sports a connected subtree structure

• Piecewise smooth signal “rule of thumb”

– persistence: small/large values 
tumble down the tree

– magnitude: wavelet coefficients decay 
monotonically along 
branches of wavelet tree

• Exploit this structure for 
– fast reconstruction 

– lower oversampling

– noise regularization
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• Issues: Gaps in branches of large-coefficient subtree

Wavelets: more than just sparsity
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Hidden Markov Tree (HMT)

State

s

1

2

3

4

5

...

[Crouse, Nowak and Baraniuk, 1997]
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Hidden Markov Tree (HMT)

State: Large, Small

Value: State-dependent zero-mean Gaussian distribution

[Crouse, Nowak and Baraniuk, 1997]
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Hidden Markov Tree (HMT)

State: To obtain persistence, 
            favor progressions
Value: To obtain decay, 
            reduce variances 
            across scales
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CS Reconstruction 
of Wavelet-Sparse Signals

Original signal IRWL1, MSE = 1.55

TMP, MSE = 1.47 HMT+IRWL1, MSE = 0.08
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HMT-Derived Weights 
for Reweighted     Algorithm
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Goal for weights:
Penalize wavelet coefficients
that do not follow HMT model 

Original signal IRWL1, MSE = 1.55

TMP, MSE = 1.47 HMT+IRWL1, MSE = 0.08

N = 1024

M = 300

10 iterations/algorithm

Spurious wavelets
coefficients



HMT-Derived Weights 
for Reweighted     Algorithm

Original signal IRWL1, MSE = 1.55

TMP, MSE = 1.47 HMT+IRWL1, MSE = 0.08

Spurious wavelets
coefficients

Goal for weights:
Penalize wavelet coefficients
that do not follow HMT model 

Original signal IRWL1, MSE = 1.55

TMP, MSE = 1.47 HMT+IRWL1, MSE = 0.08

N = 1024

M = 300

10 iterations/algorithm



HMT-Derived Weights 
for Reweighted     Algorithm

Original signal IRWL1, MSE = 1.55

TMP, MSE = 1.47 HMT+IRWL1, MSE = 0.08
Goal for weights:
Penalize wavelet coefficients
that do not follow HMT model 

N = 1024

M = 300

10 iterations/algorithm



HMT-Derived Weights 
for Reweighted     Algorithm

Original signal IRWL1, MSE = 1.55

TMP, MSE = 1.47 HMT+IRWL1, MSE = 0.08
Goal for weights:
Penalize wavelet coefficients
that do not follow HMT model 

N = 1024

M = 300
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Model Training: 
EM Algorithm
State Sequence 
Estimation: 
Viterbi Algorithm



HMT-Reweighted     Performance
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Piecewise polynomial signals
Random polynomial coefficients
5 discontinuities at random points

N = 1024

10 iterations for reweighting
100 repetitions for each value of M



Conclusions

• Reweighted minimization allows for signal recovery 
under specialized probabilistic sparse signal models

• Probability-dependent weights enforce 
model-fitting solutions to CS recovery

• Other sparse signal models can be used
(generalized Gaussians, spatial clustering, etc.)

• Further work:
– Analysis for reconstruction performance

– Extensions to richer models and higher dimensions

dsp.rice.edu/cs


