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Compressive Sensing:
From Samples to Measurements

* Many interesting signals are sparse or compressible

* Instead of sampling the signal, encode the relevant information
into a few measurements (inner products)
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Compressive Sensing:
From Samples to Measurements

e Decoding = reconstruction = inverse problem

— given 9, extract information of interest about x
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CS Signal Recovery

* Reconstruction/decoding:

(ill-posed inverse problem)

052

fast, wrong

--J-.-IIT_-II-_I.J_J_Il_ll_.-l..ll.q__.-lln_‘_lr-_.J_L___IIT_I_ﬁlLlf.-lrl_I.J-l.ll__J.-IJ.lJll-J.l_

given
find

y = dPx
X

T = arg min ||x]|2

y=>x




CS Signal Recovery

* Reconstruction/decoding: given y = dPx
(ill-posed inverse problem) find T

fast, wrong r = arg min ||z||2

y=>x

correct, M = 2K r = arg min ||z||o
slow y=>Px




CS Signal Recovery

* Reconstruction/decoding: given y = dPx
(ill-posed inverse problem) find T

fast, wrong arg min ||z||2

y=>x

correct, M = 2K arg min ||z|o
slow y=>bx

correct, _
M = CK log(N/K) arg min ||z|y
[Candes et al, Donoho, ...] Y

linear program

* greedy [Tropp, Gilbert, Strauss; Rice]

e statistical [Candés; Nowak et al; Rice]




Reweighted ¢; Algorithm
e Minimize  ||Wx|[1 = ) wp|z,|

* Use iterative procedure to construct weights

w® =1 for all n

(Z) = arg min [|[W g,
y=>x

0=
|+ e

for all n

so that ||[Wxl||1 = ||z||o

e Weights w,, small when |z,| large

* Reduce number of measurements M required for reconstruction

[Candes, Wakin and Boyd. See also Gorodnitsky and Rao; Figueiredo, Bioucas-Dias, and Nowak]



Wavelets: more than just sparsity

HeaviSine Daub-10 Wavelet
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Wavelets: more than just sparsity

e Wavelet transform sports a connected subtree structure

I“

e Piecewise smooth signal “rule of thumb”

— persistence: small/large values
tumble down the tree

— magnitude: wavelet coefficients decay
monotonically along
branches of wavelet tree

e Exploit this structure for
— fast reconstruction
— lower oversampling

— noise regularization




Wavelets: more than just sparsity

Wavelet transform sports a connected subtree structure

Piecewise smooth signal “rule of thumb”

— persistence: small/large values
tumble down the tree

— magnitude: wavelet coefficients decay
monotonically along
branches of wavelet tree

Exploit this structure for
— fast reconstruction
— lower oversampling

— noise regularization

Greedy Algorithms

— restrict search to connected tree
[Duarte/Wakin/Baraniuk, La/Do]




Wavelets: more than just sparsity

Wavelet transform sports a connected subtree structure

I“

Piecewise smooth signal “rule of thumb”

— persistence: small/large values
tumble down the tree

— magnitude: wavelet coefficients decay
monotonically along
branches of wavelet tree

Exploit this structure for
— fast reconstruction
— lower oversampling

— noise regularization

Greedy Algorithms

— restrict search to connected tree
[Duarte/Wakin/Baraniuk, La/Do]

* Issues: Gaps in branches of large-coefficient subtree
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Hidden Markov Tree (HMT)
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Hidden Markov Tree (HMT)

Ss,i 2 State: Large, Small

Qg Value
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Hidden Markov Tree (HMT)

Ss,i 2 State: Large, Small

Qs j Value: State-dependent zero-mean Gaussian distribution
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[Crouse, Nowak and Baraniuk, 1997]




Hidden Markov Tree (HMT)

Ss,i State: Large, Small

Qg ; Value: State-dependent zero-mean Gaussian distribution
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Hidden Markov Tree (HMT)

State: To obtain persistence,
favor progressions

Value: To obtain decay,
reduce variances
across scales
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CS Reconstruction
of Wavelet-Sparse Signals

Original signal IRWLI1, MSE = 1.55

N = 1024
M = 300

|0 iterations/algorithm
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HMT-Derived Weights
for Reweighted /1 Algorithm

Original signal IRWLI1, MSE = 1.55

N = 1024
M = 300

|0 iterations/algorithm

Goal for weights: \4 K/L

TMP, MSE = 1.47

Penalize wavelet coefficients
that do not follow HMT model
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HMT-Derived Weights
for Reweighted /1 Algorithm

Original signal IRWLI1, MSE = 1.55

N = 1024
M = 300

|0 iterations/algorithm

Goal for weights: \4 K/L

TMP, MSE = 1.47 HMT+IRWLI, MSE = 0.08

Penalize wavelet coefficients
that do not follow HMT model
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HMT-Derived Weights
for Reweighted /1 Algorithm

Original signal IRWLI1, MSE = 1.55

N = 1024
M = 300

|0 iterations/algorithm

e

TMP, MSE = 1.47 HMT+IRWLI, MSE = 0.08

Goal for weights:

Penalize wavelet coefficients
that do not follow HMT model
Model Training:

EM Algorithm

State Sequence % ﬂ/
Estimation:

Viterbi Algorithm
1

w') = for all n

(p (S, = Ljatt-D, M) + §)* m




HMT-Reweighted £1 Performance
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Conclusions

* Reweighted minimization allows for signal recovery
under specialized probabilistic sparse signal models

* Probability-dependent weights enforce
model-fitting solutions to CS recovery

* Other sparse signal models can be used
(generalized Gaussians, spatial clustering, etc.)

 Further work:

— Analysis for reconstruction performance

— Extensions to richer models and higher dimensions

dsp.rice.edu/cs




