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DSP Sensing

e The typical sensing/compression setup
— compress = transform, sort coefficients, encode
— most computation at sensor (asymmetrical)
— lots of work to throw away >80% of the coefficients
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Compressive Sensing (CS)

e Measure projections onto incoherent basis/frame
— random “white noise” is universally incoherent

e Reconstruct via nonlinear techniques
e Mild overmeasuring: K > c¢B, ¢~ 3
e Highly asymmetrical (most computation at receiver)
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Compressive Imaging (CI)
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Rice CI Camera

single photon
detector
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Image encoded by DMD
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(See also Coifman et al.)




TI Digital Micromirror Device (DMD)

Mirror =10 deg
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Figure 15: DMD Discovery ™ Controller Board with
DMD.

Spring Tip Substrate
D . \n\‘
o3 < = x‘ = ‘\
P
N

S
7”’a
N
‘l
. v,
& \\ O
1 2 S
e’ s " Ny
r 1»\-

Figure 16. Discovery 1000 chipset with 0.7 XGA DDR

DMD. digital controller, and analog mirror reset driver



Optical Projections

e Binary patterns are loaded into mirror array:

- light reflected towards the
lens/photodiode (1)

- light reflected elsewhere (0)

— pixel-wise products summed by
lens

Lower resolution




Random Projections
Universal / agnostic representation
F U t U re p ro Of Low-cost, fast, sensitive
optical detection )>>
Encrypted mage dat sent v RF
Image encoded by DMD for reconstruction
and random basis <<(
------ L DSP

Simple coding
— no position information
— uniform quantization

Robust

— to quantization error [Candes, Romberg, Tao; Haupt, Nowak]
- loss of measurements degrades reconstruction gracefully




CI Camera

Single Sensor Camera

Compressed, encoded
image data sent via RF
for reconstruction

Potential for: T ‘ <((

Image encoded by DMD

e new modalities beyond what can be sensed
by CCD or CMOS imagers

e high-performance (speed, noise, bandwidth, ...)
e |ow cost
e |ow power

Other CI approaches: D. Brady (Duke), R. Coifman (Yale)
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Rice CI Camera

LED (light source)

Photodiode & ) e , | DMD-+ALP
circuit b A% Board
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(Pseudo) Random Projections

e Pseudorandom number generator outputs
measurement basis vectors

e Mersenne Twister

- Binary sequence (0/1)
— Period 219937-1

[Matsumoto/Nishimura, 1997]

— Two generators: encoder and decoder




Image Acquisition

ideal 64x64 image 400 675
(4096 pixels) wavelets wavelets

R

image on 1600 2700
DMD array random meas. random meas.




Progressivity

1500 rand meas 1600 rand meas 1700 rand meas

2000 rand meas




CI Challenges

Reconstruction remains computationally challenging

— N > few thousand impractical for many applications
— DSP challenges: new reconstruction algorithms, ...

Low-cost, fast, sensitive
optical detection

)

Compressed, encoded
image data sent via RF
for reconstruction

------- e

Ensuring robustness to noise and quantization errors

Image encoded by PMM
and random basis




Addressing the CI Challenges

Fast, robust algorithms for signal reconstruction

e going beyond Basis Pursuit

e (greedy algorithms for sparse signal approximation
— Matching Pursuit: iterative, greedy algorithm
- lower computational complexity
— much faster in practice

e extend greedy algorithms
- exploit model for signal structure
= going beyond sparsity
= improves speed and robustness

See also [J. Tropp and A. Gilbert, 2005]



Matching Pursuit

Goal: find sparsef st. Yy — be
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project y into each of the columns of P
find projection with largest magnitude
update coefficient estimate

subtract coefficient contribution

repeat




Matching Pursuit

Goal: find sparsef st. Yy — be
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Matching Pursuit

Goal: find sparsef st. Yy — be

1, Yy, >

K X N

max
magnitude

v
(I T B B T[T

f‘

project y into each of the columns of P
find projection with largest magnitude
update coefficient estimate

subtract coefficient contribution

repeat until ||ye|| < €||y]||




Matching Pursuit

Goal: find sparsef st Yy — be

Advantages:
e Low computational complexity: O(BN - #£lter)

Disadvantages:

e Must project to all dictionary vectors every iteration

e May revisit previously selected coefficients

e Unbounded number of iterations needed for
convergence

e Orthogonal Matching Pursuit (OMP) solves last two
problems



Matching Pursuits vs. Basis Pursuit

2000 random measurements

Matching Pursuit
Basis Pursuit 13X faster




Limitations

e Basis Pursuit and Greedy Algorithms exploit sparsity
— each B-sparse coefficient vector is equally “good”

e We often expect more than just sparsity
- how do the sparse coefficients behave?

e Idea: incorporate this model into reconstruction
algorithms
— even faster reconstruction
— robustness to noise



Wavelets: more than just sparsity

e Wavelet transform sports a tree structure
e Piecewise smooth signal “rule of thumb”

- small/large values tumble
down the tree f I T I T T T 7]

— wavelet coefficients decay

monotonically along
branches of wavelet tree
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Image and Wavelet Transform
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Wavelets: more than just sparsity

Wavelet transform sports a tree structure

Piecewise smooth signal “rule of thumb”

- small/large values tumble
down the tree f I T I T T T 7]

— wavelet coefficients decay
monotonically along
branches of wavelet tree

Exploit this structure for
- fast reconstruction
- noise regularization

Tree MP/OMP: top-down greedy algorithm using branch info
Fast: MP/OMP search drops from O(B2N) to O(B?3)



Tree Matching Pursuit
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Tree Matching Pursuit
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Tree Matching Pursuit
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Tree Matching Pursuit

Goal: find sparsef st Y — CDf

Advantages:

e Lower computational complexity: O(B3)
e Search only in coefficient subset

Challenges:

e TMP has unbounded number of iterations for

convergence; solved by using Tree Orthogonal
Matching Pursuit (up to K iterations)

e Success depends on tree structure



Tree Greedy Pursuit

BP - 1500 rand meas

MP - 4M inner prod. TMP - 2M inner prod.




Denoising via wavelet thresholding

BP - 2000 rand meas

TMP - ¢ = 103 TMP - ¢ =2 x 1073




Conclusions

e Compressive imaging
— a new imaging framework based on compressive sensing
— exploit a priori image sparsity information
— based on new uncertainty principles

e Proof of concept: CI camera
— single sensor element
— universal, simple, robust image coding
— progressive

e Current work
- measurement and reconstruction using transforms
— video acquisition Rice Universimy

- camera networks B?

dsp.rice.edu/cs




