

A New Compressive Imaging Camera Architecture using Optical-Domain Compression

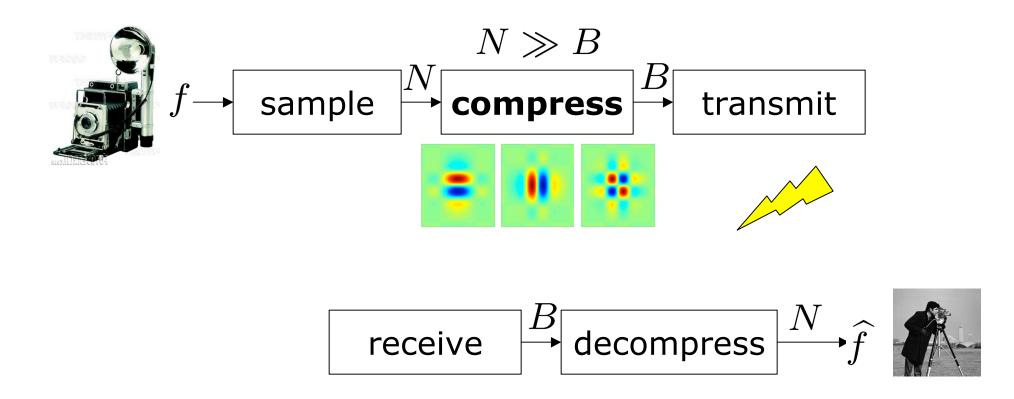
Marco F. Duarte

Joint work with Dharmpal Takhar, Jason Laska, Mike Wakin, Dror Baron, Shri Sarvotham, Kevin Kelly and Rich Baraniuk

Rice University dsp.rice.edu/cs

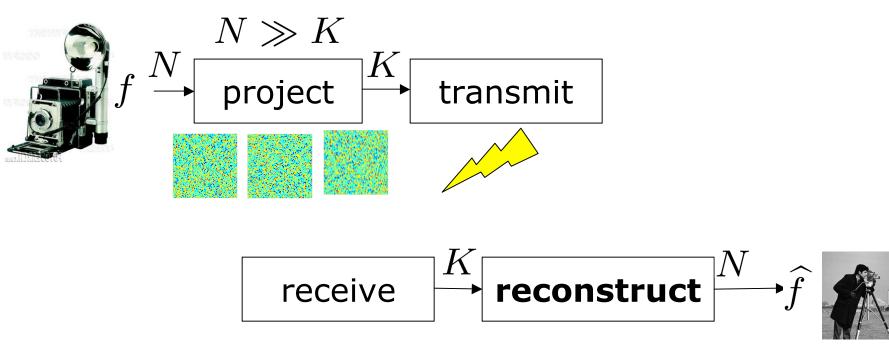
DSP Sensing

- The typical sensing/compression setup
 - compress = transform, sort coefficients, encode
 - most computation at *sensor* (asymmetrical)
 - lots of work to throw away >80% of the coefficients



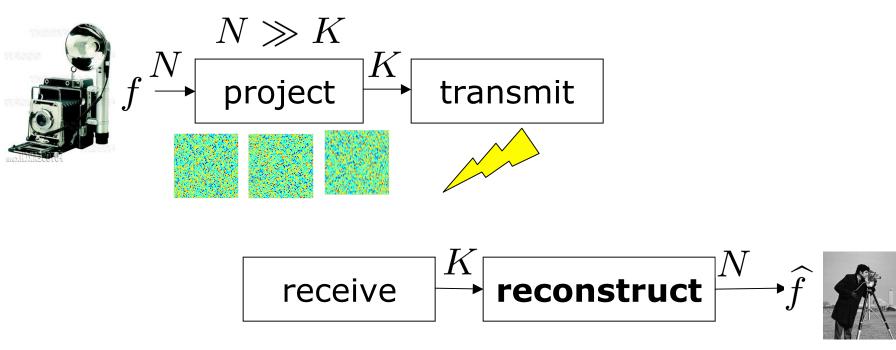
Compressive Sensing (CS)

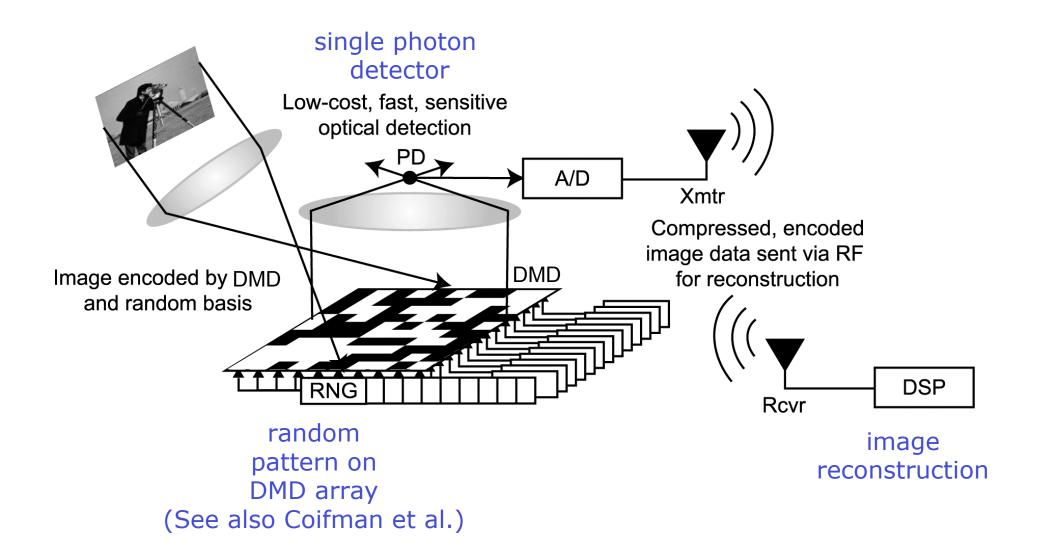
- Measure projections onto *incoherent* basis/frame
 random "white noise" is *universally incoherent*
- Reconstruct via nonlinear techniques
- Mild overmeasuring: $K \ge cB$, $c \approx 3$
- Highly asymmetrical (most computation at *receiver*)



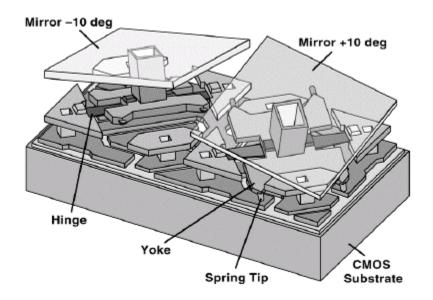
Compressive Imaging (CI)

- Measure projections onto *incoherent* basis/frame
 random "white noise" is *universally incoherent*
- Reconstruct via nonlinear techniques
- Mild overmeasuring: $K \ge cB$, $c \approx 3$
- Highly asymmetrical (most computation at *receiver*)





TI Digital Micromirror Device (DMD)



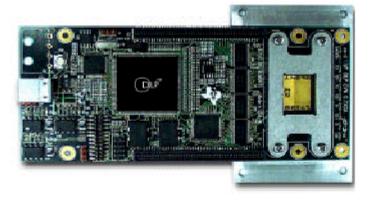
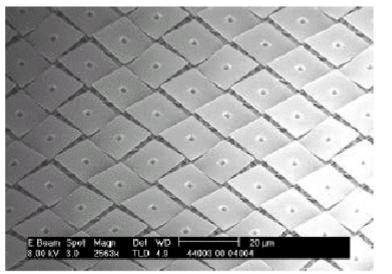


Figure 15: DMD DiscoveryTM Controller Board with DMD.



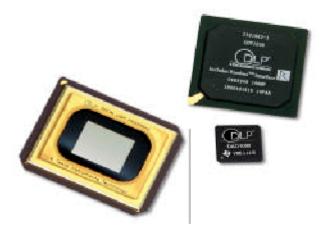
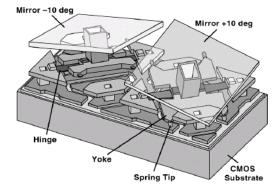
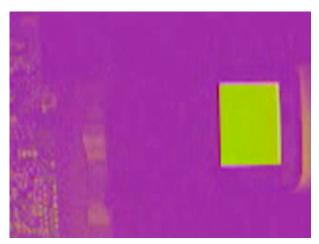


Figure 16. Discovery 1000 chipset with 0.7 XGA DDR DMD, digital controller, and analog mirror reset driver

Optical Projections

- Binary patterns are loaded into mirror array:
 - light reflected towards the lens/photodiode (1)
 - light reflected elsewhere (0)
 - pixel-wise products summed by lens



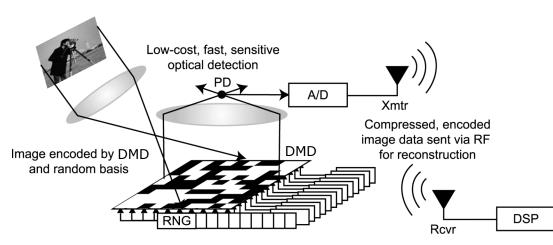


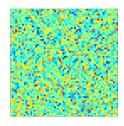
Lower resolution

Higher resolution

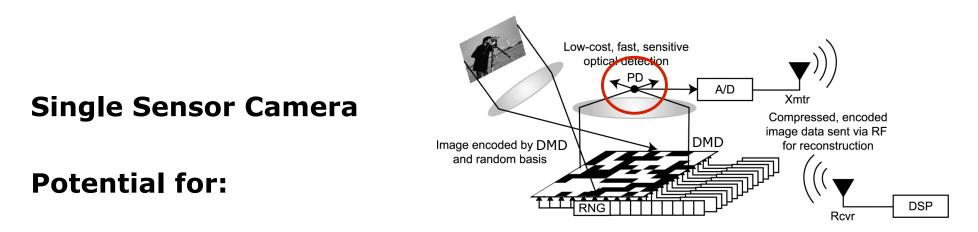
Random Projections

- Universal / agnostic representation
- Future proof
- Encrypted
- Simple coding
 - no position information
 - uniform quantization
- Robust
 - to quantization error [Candes, Romberg, Tao; Haupt, Nowak]
 - loss of measurements degrades reconstruction gracefully



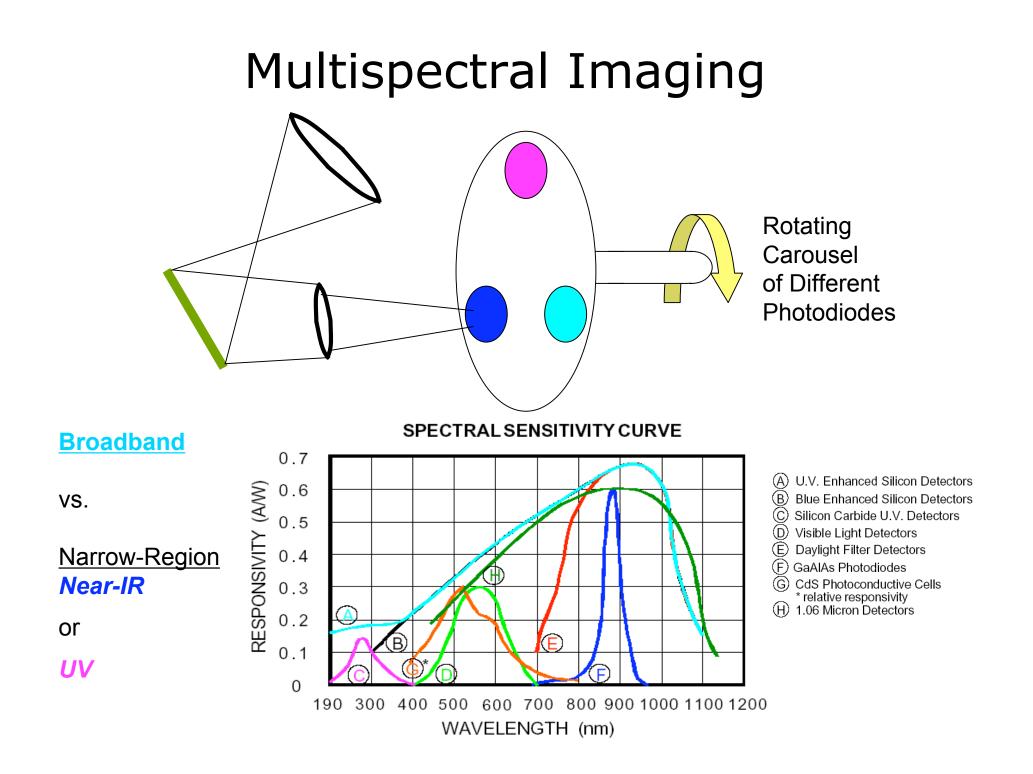


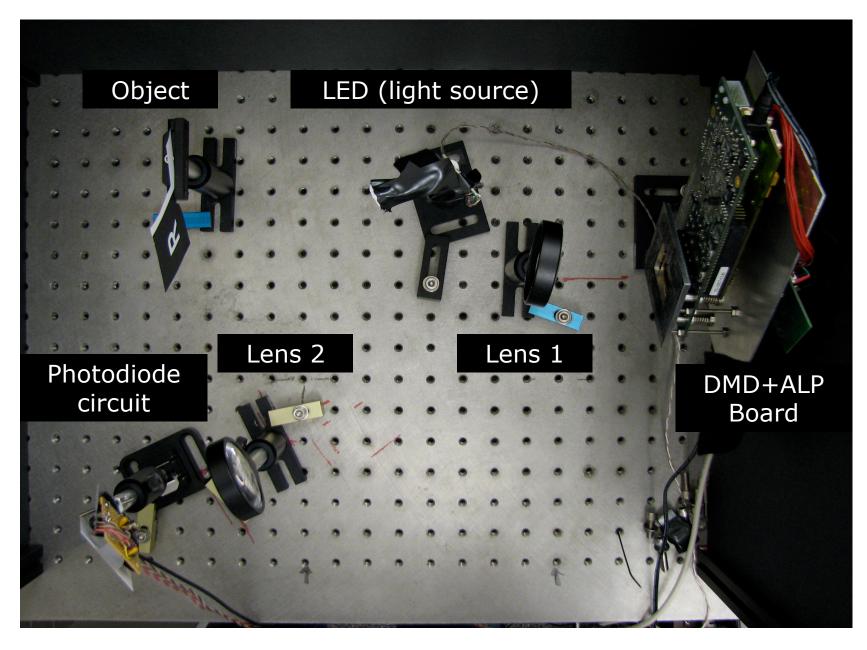
CI Camera

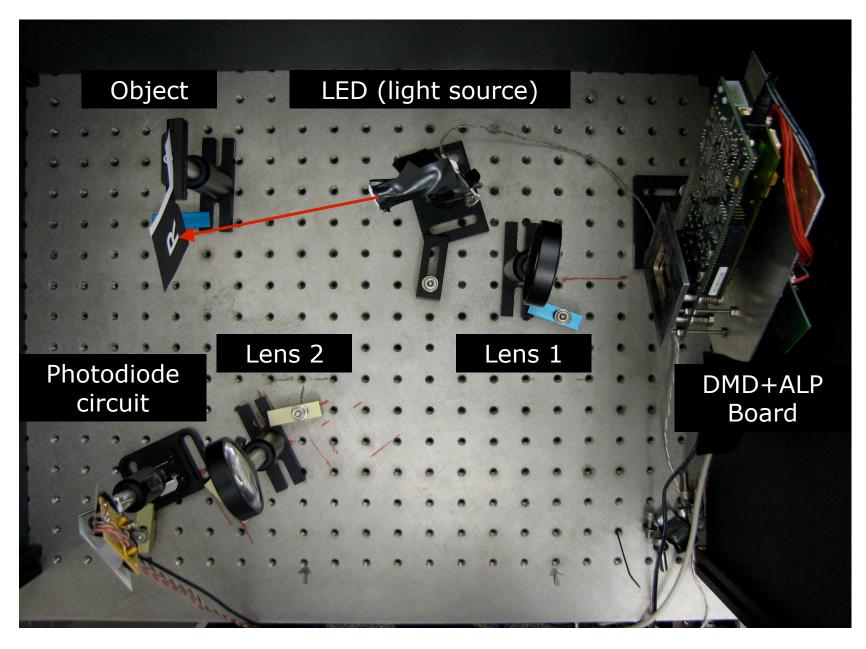


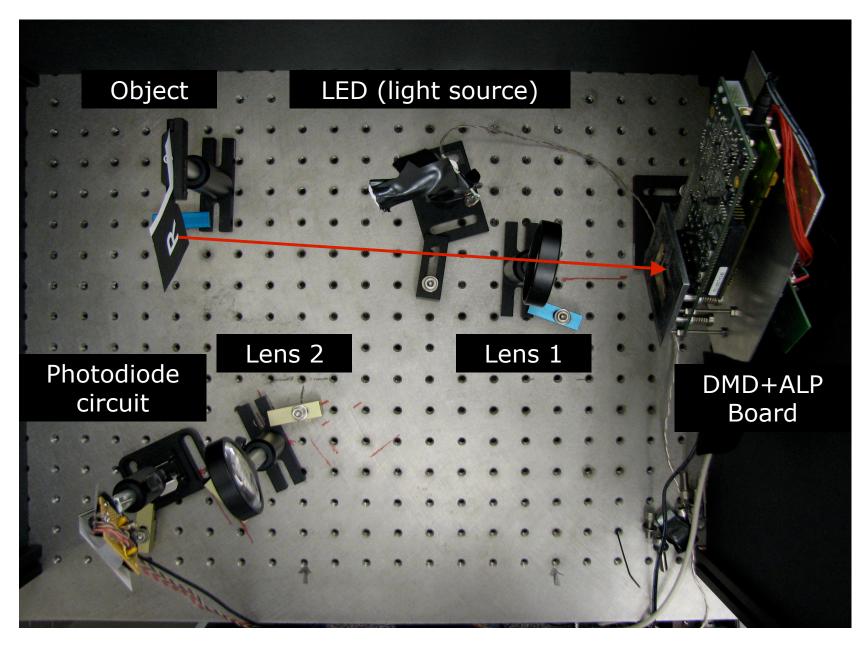
- new modalities beyond what can be sensed by CCD or CMOS imagers
- high-performance (speed, noise, bandwidth, ...)
- low cost
- low power

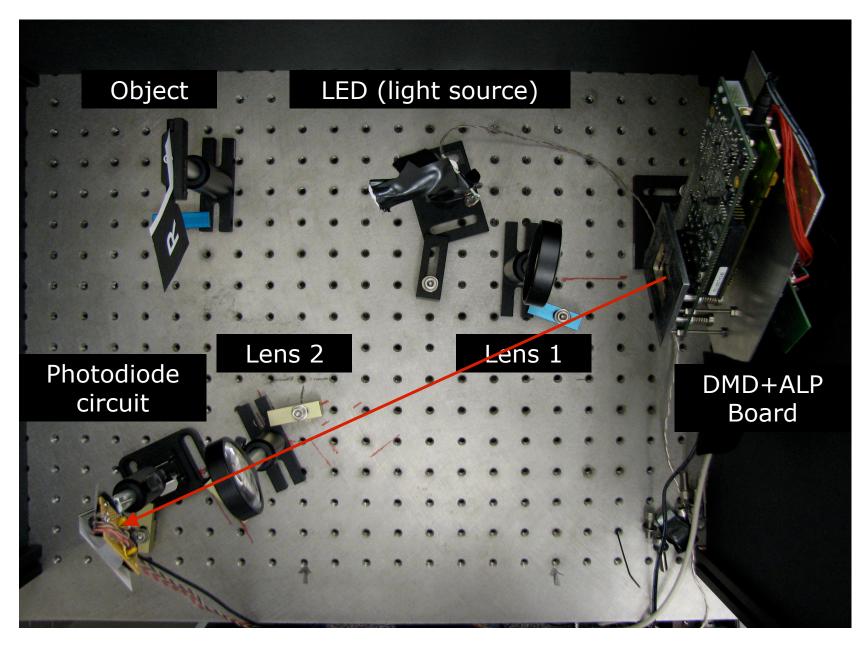
Other CI approaches: D. Brady (Duke), R. Coifman (Yale)











(Pseudo) Random Projections

- Pseudorandom number generator outputs measurement basis vectors
- Mersenne Twister

[Matsumoto/Nishimura, 1997]

- Binary sequence (0/1)
- Period 219937-1
- Two generators: encoder and decoder

Image Acquisition

ideal 64x64 image (4096 pixels)

400 wavelets

675 wavelets

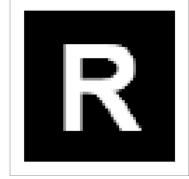


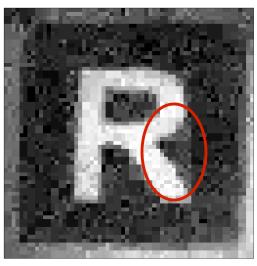
image on DMD array

1600 random meas.

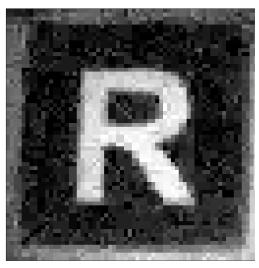
2700 random meas.

Progressivity

1500 rand meas

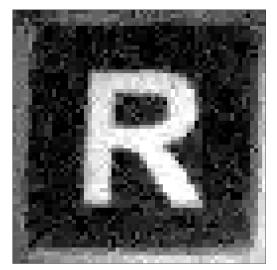


1800 rand meas

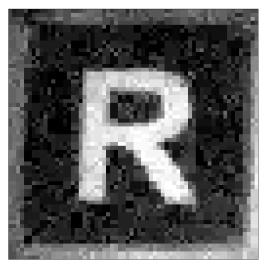


1600 rand meas

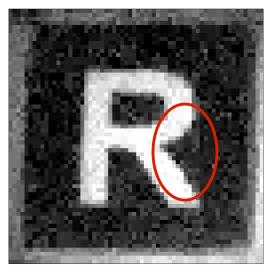
1900 rand meas



1700 rand meas

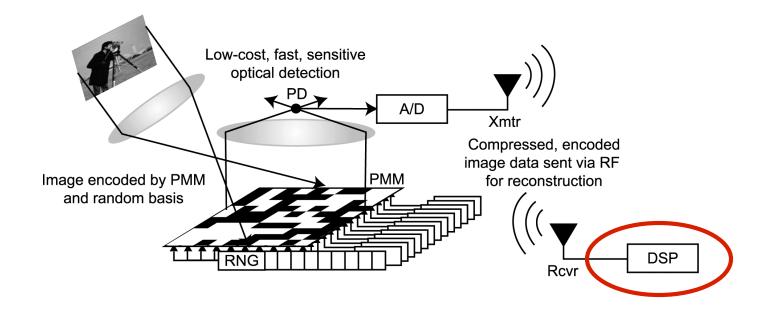


2000 rand meas



CI Challenges

- Reconstruction remains *computationally challenging*
 - -N > few thousand impractical for many applications
 - DSP challenges: new reconstruction algorithms, ...



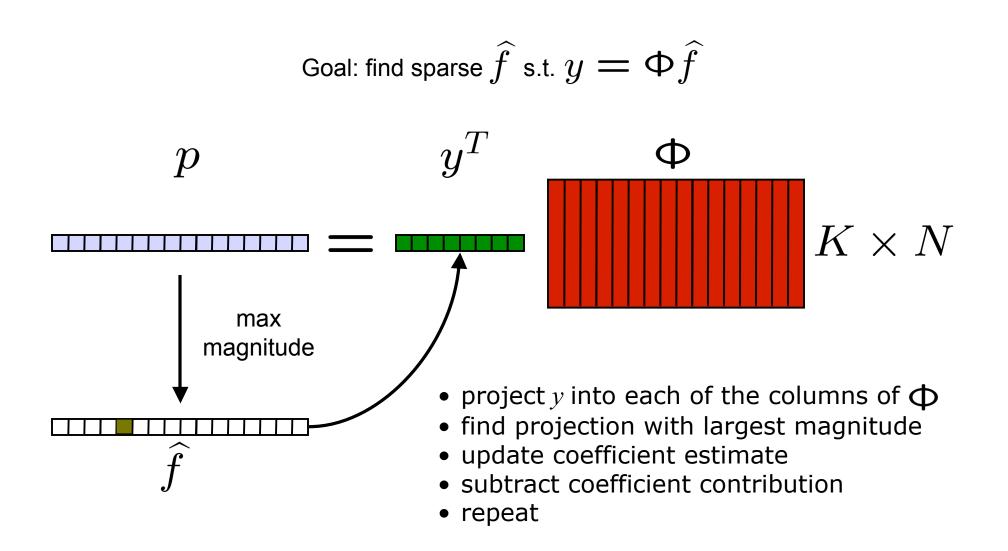
• Ensuring robustness to noise and quantization errors

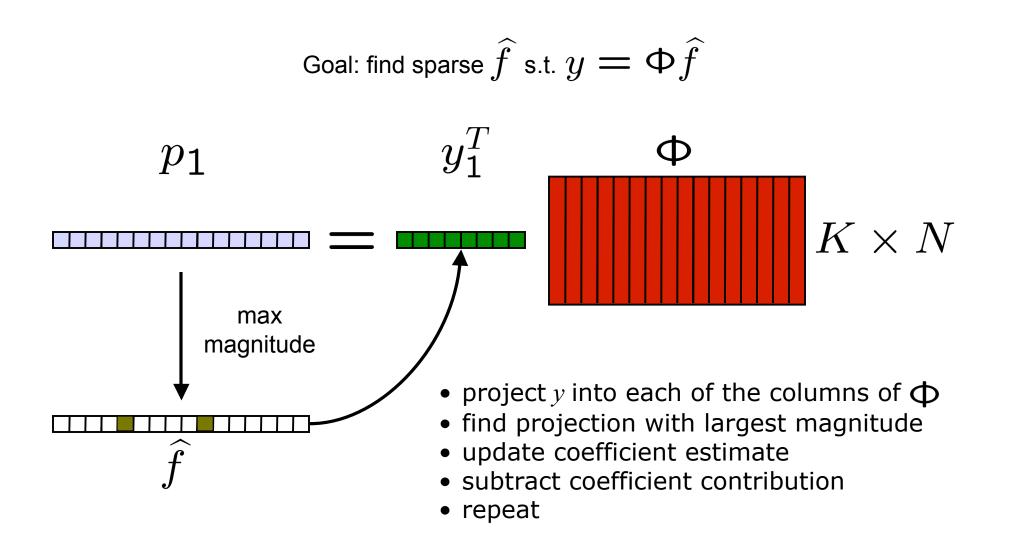
Addressing the CI Challenges

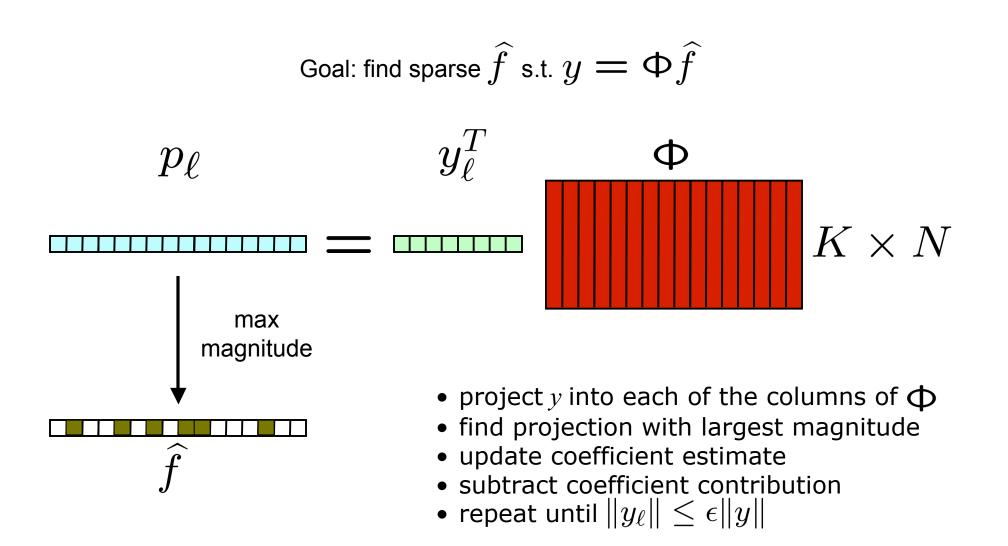
Fast, robust algorithms for signal reconstruction

- going beyond Basis Pursuit
- greedy algorithms for sparse signal approximation
 - Matching Pursuit: iterative, greedy algorithm
 - lower computational complexity
 - much faster in practice
- extend greedy algorithms
 - exploit *model* for signal structure
 - going beyond sparsity
 - improves speed and robustness

See also [J. Tropp and A. Gilbert, 2005]







Goal: find sparse
$$\widehat{f}$$
 s.t. $y=\Phi\widehat{f}$

Advantages:

• Low computational complexity: $O(BN \cdot \# \text{Iter})$

Disadvantages:

- Must project to all dictionary vectors every iteration
- May revisit previously selected coefficients
- Unbounded number of iterations needed for convergence
- Orthogonal Matching Pursuit (OMP) solves last two problems

Matching Pursuits vs. Basis Pursuit

2000 random measurements

Basis Pursuit



Matching Pursuit 13X faster

Limitations

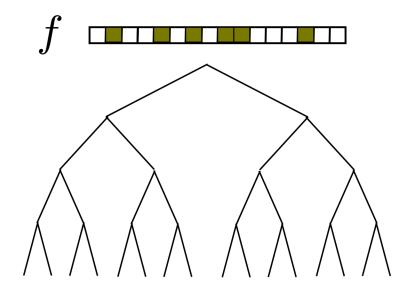
- Basis Pursuit and Greedy Algorithms exploit *sparsity*
 - each B-sparse coefficient vector is equally "good"

- We often expect *more* than just sparsity
 - how do the sparse coefficients behave?

- Idea: incorporate this model into reconstruction algorithms
 - even faster reconstruction
 - robustness to noise

Wavelets: more than just sparsity

- Wavelet transform sports a *tree structure*
- Piecewise smooth signal "rule of thumb"
 - small/large values tumble down the tree
 - wavelet coefficients decay monotonically along branches of wavelet tree



Wavelets: more than just sparsity

- Wavelet transform sports a *tree structure*
- Piecewise smooth signal "rule of thumb"
 - small/large values tumble down the tree
 - wavelet coefficients decay monotonically along branches of wavelet tree

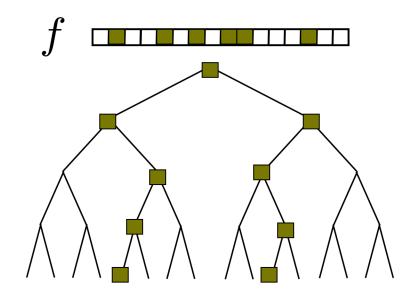
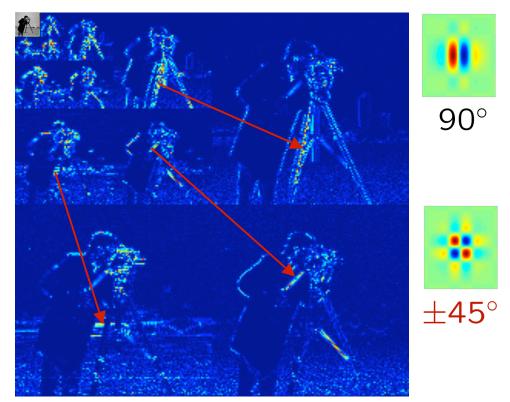
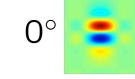


Image and Wavelet Transform

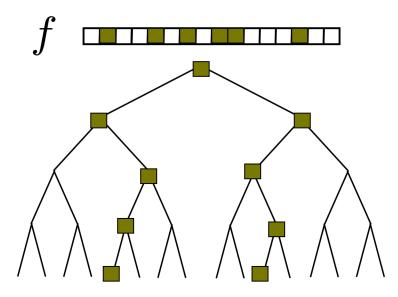




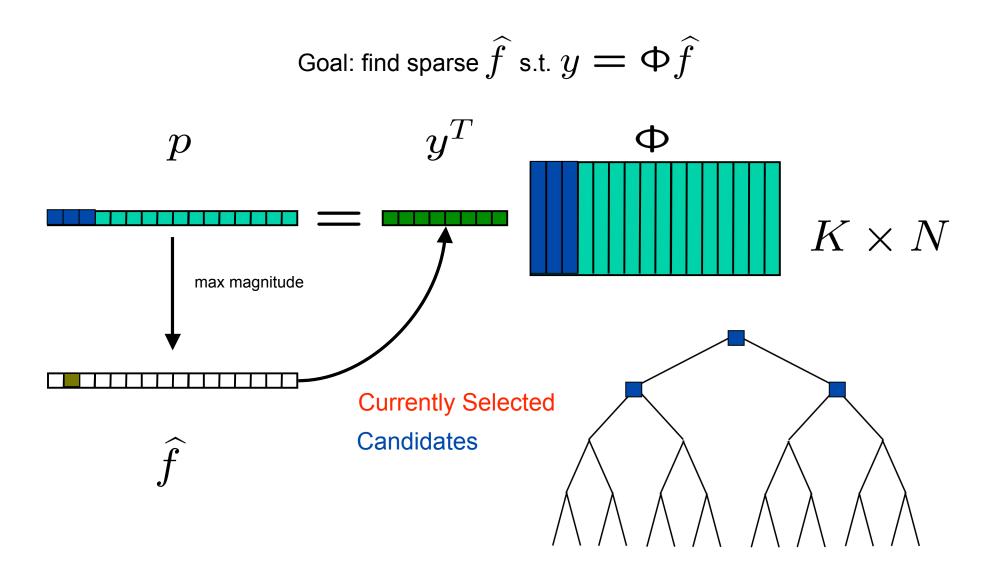
 $f = \sum_{i} \alpha_{i} \psi_{i}$

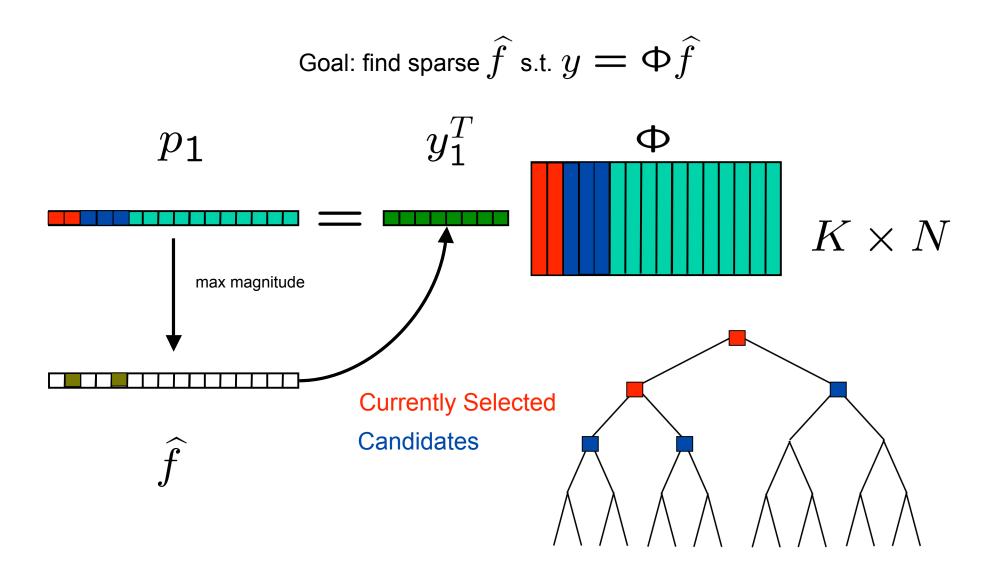
Wavelets: more than just sparsity

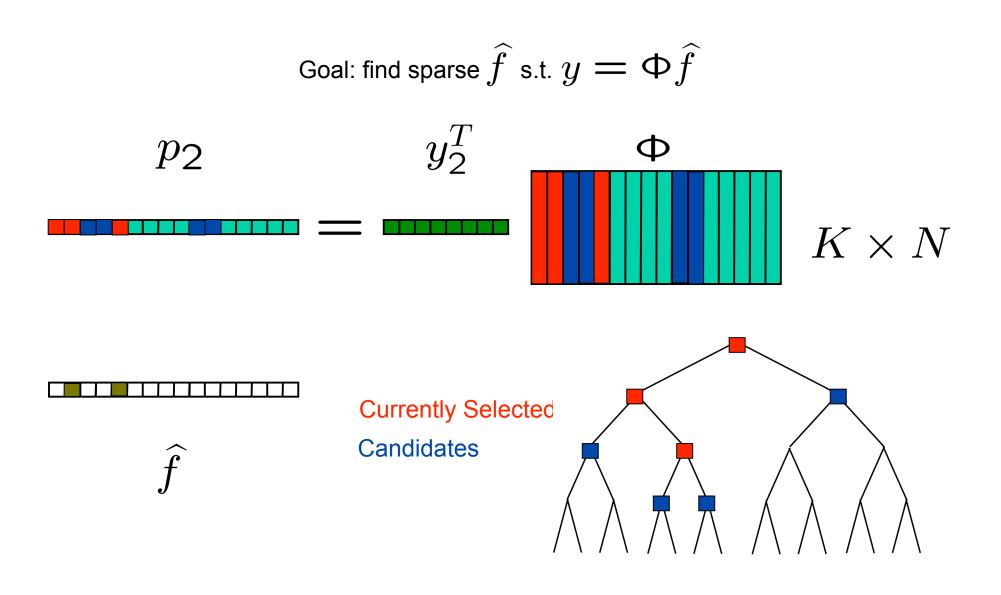
- Wavelet transform sports a *tree structure*
- Piecewise smooth signal "rule of thumb"
 - small/large values tumble down the tree
 - wavelet coefficients decay monotonically along branches of wavelet tree
- Exploit this structure for
 - fast reconstruction
 - noise regularization



- Tree MP/OMP: top-down greedy algorithm using branch info
- Fast: MP/OMP search drops from $O(B^2N)$ to $O(B^3)$







Goal: find sparse
$$\widehat{f}$$
 s.t. $y=\Phi\widehat{f}$

Advantages:

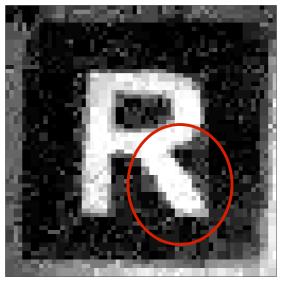
- Lower computational complexity: $O(B^3)$
- Search only in coefficient subset

Challenges:

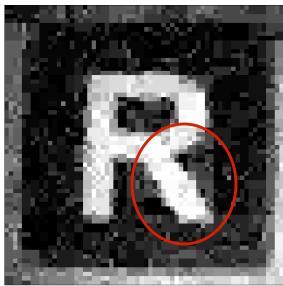
- TMP has unbounded number of iterations for convergence; solved by using Tree Orthogonal Matching Pursuit (up to *K* iterations)
- Success depends on tree structure

Tree Greedy Pursuit

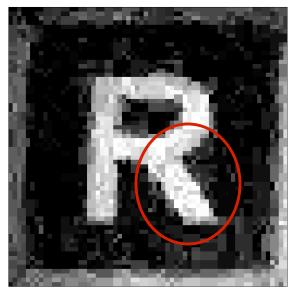
BP - 1500 rand meas



MP - 4M inner prod.

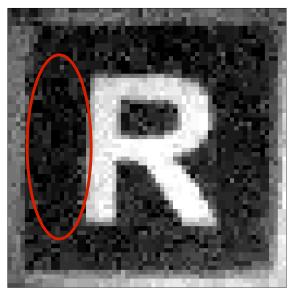


TMP - 2M inner prod.

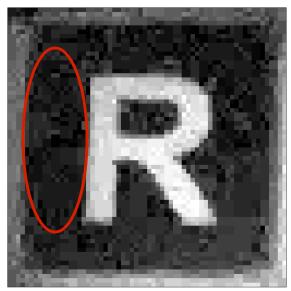


Denoising via wavelet thresholding

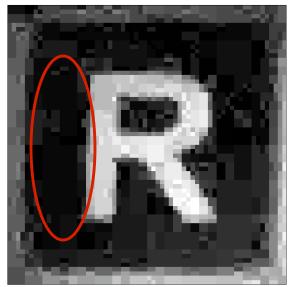
BP - 2000 rand meas



TMP - $\epsilon = 10^{-3}$



TMP - $\epsilon = 2 \times 10^{-3}$



Conclusions

- Compressive imaging
 - a new imaging framework based on compressive sensing
 - exploit a priori image sparsity information
 - based on new uncertainty principles
- Proof of concept: CI camera
 - single sensor element
 - universal, simple, robust image coding
 - progressive
- Current work
 - measurement and reconstruction using transforms
 - video acquisition
 - camera networks

