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ABSTRACT

Compressive Sensing is an emerging field based on the rev-
elation that a small group of non-adaptive linear projections
of a compressible signal contains enough information for re-
construction and processing. In this paper, we propose algo-
rithms and hardware to support a new theory of Compressive
Imaging. Our approach is based on a new digital image/video
camera that directly acquires random projections of the signal
without first collecting the pixels/voxels. Our camera archi-
tecture employs a digital micromirror array to perform optical
calculations of linear projections of an image onto pseudo-
random binary patterns. Its hallmarks include the ability to
obtain an image with a single detection element while mea-
suring the image/video fewer times than the number of pix-
els — this can significantly reduce the computation required
for video acquisition/encoding. Because our system relies on
a single photon detector, it can also be adapted to image at
wavelengths that are currently impossible with conventional
CCD and CMOS imagers. We are currently testing a proto-
type design for the camera and include experimental results.

Index Terms— Data Acquisition, Data Compression, Im-
age Coding, Image Sensors, Video Coding

1. INTRODUCTION

The large amount of raw data acquired in a conventional dig-
ital image or video often necessitates immediate compression
in order to store or transmit that data. This compression typ-
ically exploits a priori knowledge about the data, such as the
fact that an N -pixel image can be well approximated as a
sparse linear combination of K � N wavelets. These appro-
priate wavelet coefficients can be efficiently computed from
the N pixel values and then easily stored or transmitted along
with their locations. Similar procedures are applied to videos
containing F frames of P pixels each; we letN = FP denote
the number of “voxels”.

This process has two major potential drawbacks. First,
acquiring large amounts of raw image or video data (large N )
can be expensive, particularly at wavelengths where CMOS
or CCD sensing technology is limited. Second, compress-
ing raw data can be computationally demanding, particularly
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in the case of video. While there may appear to be no way
around this procedure of “sample, process, keep the important
information, and throw away the rest,” a new theory known
as Compressive Sensing (CS) has emerged that offers hope
for directly acquiring a compressed digital representation of a
signal without first sampling that signal [1–3].

In this paper, we propose algorithms and hardware to sup-
port a new theory of Compressive Imaging. Our approach is
based on a new digital image/video camera that directly ac-
quires random projections without first collecting the N pix-
els/voxels [4]. Due to unique measurement approach, it has
the ability to obtain an image with a single detection element
while measuring the image far fewer times than the number
of pixels. Because of this single detector, it can be adapted to
image at wavelengths that are currently impossible with con-
ventional CCD and CMOS imagers.

This paper is organized as follows. Section 2 provides
an overview of CS, the theoretical foundation for our CI ap-
proach. Section 3 overviews our CI framework and hardware
testbed and Section 4 presents experimental results.

2. COMPRESSIVE SENSING

CS builds upon a core tenet of signal processing and informa-
tion theory: that signals, images, and other data often contain
some type of structure that enables intelligent representation
and processing. Current state-of-the-art compression algo-
rithms employ a decorrelating transform to compact a cor-
related signal’s energy into just a few essential coefficients.
Such transform coders exploit the fact that many signals have
a sparse representation in terms of some basis Ψ, meaning
that a small number K of adaptively chosen transform co-
efficients can be transmitted or stored rather than N � K
signal samples. For example, smooth images are sparse in
the Fourier basis, and piecewise smooth images are sparse in
a wavelet basis; the commercial coding standards JPEG and
JPEG2000 directly exploit this sparsity.

The standard procedure for transform coding of sparse
signals is to (i) acquire the full N -sample signal x; (ii) com-
pute the complete set {θ(n)} of transform coefficients θn =
〈ψn, x〉; (iii) locate the K largest, significant coefficients and
discard the (many) small coefficients; and (iv) encode the val-
ues and locations of the largest coefficients. In cases where
N is large and K is small, this procedure can be quite ineffi-
cient. Much of the output of the analog-to-digital conversion



process ends up being discarded (though it is not known a
priori which pieces are needed).

This raises a simple question: For a given signal, is it pos-
sible to directly estimate the set of large coefficients that will
not be discarded by the transform coder? While this seems
improbable, the recent theory of Compressive Sensing intro-
duced by Candès, Romberg, and Tao [1] and Donoho [2]
demonstrates that a signal that is K-sparse in one basis (call
it the sparsity basis) can be recovered from cK nonadaptive
linear projections onto a second basis (call it the measure-
ment basis) that is incoherent with the first, where where c
is a small overmeasuring constant. While the measurement
process is linear, the reconstruction process is decidedly non-
linear.

2.1. Incoherent projections

In CS, we do not measure or encode the K significant θ(n)
directly. Rather, we measure and encode M < N projec-
tions y(m) = 〈x, φT

m〉 of the signal onto a second set of basis
functions {φm},m ∈ {1, 2, . . . ,M}, where φT

m denotes the
transpose of φm and 〈·, ·〉 denotes the inner product. In matrix
notation, we measure

y = Φx, (1)

where y is an M ×1 column vector, and the measurement ba-
sis matrix Φ isM×N with each row a basis vector φm. Since
M < N , recovery of the signal x from the measurements y
is ill-posed in general; however the additional assumption of
signal sparsity makes recovery possible and practical.

The CS theory tells us that when certain conditions hold,
namely that the basis {φm} cannot sparsely represent the ele-
ments of the sparsity-inducing basis {ψn} (a condition known
as incoherence of the two bases [1, 2]) and the number of mea-
surements M is large enough, then it is indeed possible to re-
cover the set of large {θ(n)} (and thus the signal x) from a
similarly sized set of measurements {y(m)}. This incoher-
ence property holds for many pairs of bases, including for
example, delta spikes and the sine waves of the Fourier basis,
or the Fourier basis and wavelets. Significantly, this inco-
herence also holds with high probability between an arbitrary
fixed basis and a randomly generated one (consisting of i.i.d.
Gaussian or Bernoulli/Rademacher ±1 vectors). Signals that
are sparsely represented in frames or unions of bases can be
recovered from incoherent measurements in the same fashion.

2.2. Signal recovery

The recovery of the sparse set of significant coefficients
{θ(n)} can be achieved using optimization by searching for
the signal with `0-sparsest1 coefficients {θ(n)} that agrees
with theM observed measurements in y (recall thatM < N ).

1The `0 “norm” ‖θ‖0 merely counts the number of nonzero entries in the
vector θ.

Unfortunately, solving this `0 optimization problem is pro-
hibitively complex, and is believed to be NP-hard [5]. The
practical revelation that supports the new CS theory is that it is
not necessary to solve the `0-minimization problem to recover
the set of significant {θ(n)}. In fact, a much easier problem
yields an equivalent solution (thanks again to the incoherency
of the bases); we need only solve for the `1-sparsest coeffi-
cients θ that agree with the measurements y [1, 2]

θ̂ = arg min ‖θ‖1 s.t. y = ΦΨθ. (2)

This optimization problem, also known as Basis Pursuit [6],
is significantly more approachable and can be solved with tra-
ditional linear programming techniques whose computational
complexities are polynomial in N . Although only K + 1
measurements are required to recover sparse signals via `0
optimization [7], with Basis Pursuit one typically requires
M ≥ cK measurements, where c > 1 is an overmeasuring
factor.

At the expense of slightly more measurements, iterative
greedy algorithms have also been developed to recover the
signal x from the measurements y. Examples include the iter-
ative Orthogonal Matching Pursuit (OMP) [8], matching pur-
suit (MP), and tree matching pursuit (TMP) algorithms. The
same methods have also been shown to perform well on com-
pressible signals, which are not exactly K-sparse but are well
approximated by a K-term representation. This is a more re-
alistic model in practice.

3. COMPRESSIVE IMAGING

In this paper, we develop a new system to support what can
be called Compressive Imaging (CI). Our system incorporates
a microcontrolled mirror array driven by pseudorandom and
other measurement bases and a single or multiple photodiode
optical sensor. This hardware optically computes incoherent
image measurements as dictated by the CS theory; we then
apply CS reconstruction algorithms to obtain the acquired im-
ages. Our camera can also be used to take streaming measure-
ments of a video signal, which can then be recovered using
CS techniques designed for either 2-D frame-by-frame recon-
struction or joint 3-D reconstruction.

Other desirable features of our system include the use of
a single detector (potentially enabling imaging at new wave-
lengths too expensive to measure using CCD or CMOS tech-
nology), universal measurement bases (incoherent with arbi-
trary sparse bases), encrypted measurements (tied to a random
seed that can be kept secure), and scalable progressive recon-
struction (yielding better quality as more measurements are
obtained).

3.1. Camera hardware
Our hardware realization of the CI concept is a single pixel
camera; it combines a microcontrolled mirror array display-
ing a time sequence of M pseudorandom basis images φm



Fig. 1. Compressive Imaging (CI) camera block diagram. Incident light-
field (corresponding to the desired image x) is reflected off a digital mi-
cromirror device (DMD) array whose mirror orientations are modulated in
the pseudorandom pattern φm supplied by the random number generators
(RNG). Each different mirror pattern produces a voltage at the single photo-
diode that corresponds to one measurement y(m).

with a single optical sensor to compute incoherent image
measurements y as in (1) (see Figure 1). By adaptively se-
lecting how many measurements to compute, we trade off the
amount of compression versus acquisition time; in contrast,
conventional cameras trade off resolution versus the number
of pixel sensors.

We employ a Texas Instruments (TI) digital micromirror
device (DMD) for generating the random basis patterns. The
DMD consists of a 1024× 768 array of electrostatically actu-
ated micromirrors where each mirror of the array is suspended
above an individual SRAM cell. Each mirror rotates about a
hinge and can be positioned in one of two states (+12 de-
grees and −12 degrees from horizontal); thus light falling on
the DMD may be reflected in two directions depending on the
orientation of the mirrors.

With the help of a biconvex lens, the desired image is
formed on the DMD plane; this image acts as an object for
the second biconvex lens which focuses the image onto the
photodiode. The light is collected from one of the two direc-
tions in which it is reflected (e.g., the light reflected by mirrors
in the +12 degree state). The light from a given configuration
of the DMD mirrors is summed at the photodiode to yield an
absolute voltage that yields a coefficient y(m) for that config-
uration. The output of the photodiode is amplified through an
op-amp circuit and then digitized by a 12-bit analog-to-digital
converter. These photodiode measurements can be interpreted
as the inner product of the desired image x with a measure-
ment basis vector φm. In particular, letting ρ(m) denote the
mirror positions of them-th measurement pattern, the voltage
reading from the photodiode v can be written as

v(m) ∝ 〈x, φm〉+ DC offset, (3)

where
φm = 1{ρ(m)=+12 degrees} (4)

and 1 is the indicator function. (The DC offset can be mea-
sured by setting all mirrors to −12 degrees; it can then sub-
tracted off.)

Equation (3) holds the key for implementing a CI sys-
tem. For a given image x, we take M measurements

{y(1), y(2), . . . , y(M)} corresponding to mirror configura-
tions {ρ(1), ρ(2), . . . , ρ(M)}. Since the patterns ρ(m) are
programmable, we can select them to be incoherent with
the sparsity-inducing basis (e.g., wavelets or curvelets). As
mentioned previously, random or pseudorandom measure-
ment patterns enjoy a useful universal incoherence prop-
erty with any fixed basis, and so we employ pseudorandom
±12 degree patterns on the mirrors. These correspond to
pseudorandom 0/1 Bernoulli measurement vectors φm =
1{ρ(m)=+12 degrees}. (The measurements may easily be con-
verted to ±1 Rademacher patterns by setting all mirrors in
ρ(1) to +12 degrees and then letting y(m) ← 2y(m)− y(1)
for m > 1.) Other options for incoherent CI mirror patterns
include −1/0/1 group-testing patterns [9]. Mirrors can also
be duty-cycled to give the elements of φ finer precision, for
example to approximate Gaussian measurement vectors [2,
3].

This system directly acquires a reduced set of M incoher-
ent projections of an N -pixel image x without first acquiring
the N pixel values. Since the camera is “progressive,” bet-
ter quality images (larger K) can be obtained by taking more
measurements M . Also, since the data measured by the cam-
era is “future-proof,” new reconstruction algorithms based on
better sparsifying image transforms can be applied at a later
date to obtain even better quality images.

3.2. Related work

Other efforts on CI include [10, 11], which employ optical
elements to perform transform coding of multispectral im-
ages. These designs obtain sampled outputs that correspond
to coded information of interest, such as the wavelength of a
given light signal or the transform coefficients in a basis of
interest. The elegant hardware designed for these purposes
uses concepts that include optical projections, group testing
[9], and signal inference. Two notable previous DMD-driven
applications involve confocal microscopy [12] and micro-
optoelectromechanical (MOEM) systems [13]. For more re-
lated work, see the references in [4].

4. EXPERIMENTAL RESULTS

4.1. Imaging results

For our imaging experiment, we displayed a printout of the
letter “R” in front of the camera; Figure 2(a) shows the print-
out. Since our test image is piecewise constant (with sharp
edges) it can be sparsely represented in the wavelet domain.
Figures 2(b) and 2(c) show the best K-term Haar wavelet
approximation of the idealized image in Figure 2(a) with
K = 205 and 409, respectively. Using M = 819 and 1600
measurements (roughly 4× the K used in (b) and (c)), we re-
constructed the images shown in Figures 2(e) and 2(f) using
OMP [8]. This preliminary experiment confirms the feasibil-
ity of the CI approach; we are currently working to resolve



(a) ideal image (b) 205 wavelets (c) 409 wavelets

(d) image on DMD (e) 819 meas. (f) 1600 meas.

Fig. 2. CI DMD imaging of a 64× 64 (N = 4096 pixel) image. Ideal im-
age (a) of full resolution and approximated by its (b) largest 400 wavelet coef-
ficients and (c) largest 675 wavelet coefficients. (d) Conventional 320× 240
camera image acquired at the DMD plane. CS reconstruction from (e) 1600
random measurements and (f) 2700 random measurements. In all cases, Haar
wavelets were used for approximation or reconstruction.

(a) frame 32 (b) 2D CS (c) 3D CS (d) 3D wavelets

Fig. 3. (a) Frame 32 of a 64-frame video sequence (64x64 images of a disk
moving from top to bottom, corresponding to 262,144 3-D voxels). (b) CS
frame-by-frame reconstruction using 20,000 total 2-D random projections
(313 independent 2-D projections for each image in the sequence). (c) Full
3-D video reconstruction from 20,000 3-D random projections (using 3-D
wavelets as the sparsity-inducing basis). (d) Result of 3-D wavelet threshold-
ing to 2000 total coefficients.

minor calibration and noise issues to improve the reconstruc-
tion quality.

4.2. Video results

In principle, our camera can also be used to take streaming
measurements of video sequences. Figure 3 shows a simu-
lation comparing three different schemes for video acquisi-
tion/coding: frame-by-frame acquisition that independently
acquires each image of the video sequence using 2-D ran-
dom projections, with frame-by-frame reconstruction at the
decoder; joint acquisition that acquires 3-D random projec-
tions of the entire video sequence, with 3-D reconstruction at
the decoder using 3-D wavelets as a sparsity-inducing basis;
and (for comparison) 3-D wavelet encoding that thresholds
the 3-D wavelet transform of the entire video sequence. As
we see from Figure 3, 3-D reconstruction significantly out-
performs 2-D frame-by-frame reconstruction, because a 3-D
video wavelet transform is significantly more sparse than a
collection of 2-D image wavelet transforms. Current work fo-

cuses on extending the camera design to take fully 3-D inco-
herent projections and exploiting more advanced models for
3-D video structure (beyond 3-D wavelets) for reconstruction.

5. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a prototype imaging system
that successfully employs compressive sensing (CS) princi-
ples. The camera has many attractive features, including sim-
plicity, universality, robustness, and scalability, that should
enable it to impact a variety of different applications. Another
interesting and potentially useful practical feature of our sys-
tem is that it off-loads processing from data collection into
data reconstruction. Not only will this lower the complexity
and power consumption of the device, but it will enable new
adaptive new measurements schemes. The most intriguing
feature of the system is that, since it relies on a single pho-
ton detector, it can be adapted to image at wavelengths that
are currently impossible with conventional CCD and CMOS
imagers.2
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