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ABSTRACT

Compressive sensing is a new data acquisition technique that aims
to measure sparse and compressible signals at close to their intrin-
sic information rate rather than their Nyquist rate. Recent results in
compressive sensing show that a sparse or compressible signal can
be reconstructed from very few incoherent measurements. Although
the sampling and reconstruction process is robust to measurement
noise, all current reconstruction methods assume some knowledge
of the noise power or the acquired signal to noise ratio. This knowl-
edge is necessary to set algorithmic parameters and stopping con-
ditions. If these parameters are set incorrectly, then the reconstruc-
tion algorithms either do not fully reconstruct the acquired signal
(underfitting) or try to explain a significant portion of the noise by
distorting the reconstructed signal (overfitting). This paper explores
this behavior and examines the use of cross validation to determine
the stopping conditions for the optimization algorithms. We demon-
strate that by designating a small set of measurements as a validation
set it is possible to optimize these algorithms and reduce the recon-
struction error. Furthermore we explore the trade-off between using
the additional measurements for cross validation instead of recon-
struction.

Index Terms— Data acquisition, sampling methods, data mod-
els, signal reconstruction, parameter estimation.

1. INTRODUCTION

Compressive sensing (CS) is a new data acquisition technique that
aims to measure sparse and compressible signals at close to their
intrinsic information rate rather than their Nyquist rate [1, 2]. The
fundamental premise is that certain classes of signals, such as natural
images, have a concise representation in terms of a sparsity inducing
basis (or sparsity basis for short) where most of the coefficients are
zero or small and only a few are large. For example, smooth signals
and piecewise smooth signals are sparse in the Fourier and wavelet
bases, respectively.

The traditional mode of data acquisition is to first uniformly
sample the signal (at or above its Nyquist rate). Since for wide-
band signals this often results in too many samples, sampling is often
followed by a second compression step. In transform-domain com-
pression (transform coding), the raw data samples are transformed
to a sparse representation in a sparsity basis; the large coefficients
are kept while the small coefficients are discarded, thereby reducing
the amount of data required to be stored, processed, or transmitted.
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Recent results in CS demonstrate that a condensed version of a
sparse or compressible signal can be directly acquired in one step us-
ing a low-rate acquisition process that projects it onto a small set of
vectors that is incoherent with the sparsity basis. The signal is subse-
quently recovered using an optimization (linear program) or greedy
algorithm that determines the sparsest representation consistent with
the measurements. The quality of the reconstruction depends on the
sparsity of the original signal, the choice of the reconstruction al-
gorithm, and the degree of incoherence. One of the most attractive
features of compressive sensing is that random vectors are incoher-
ent with any sparsity-inducing basis with high probability.

Since noise is often present in real data acquisition systems, a
range of different algorithms have been developed that enable exact
reconstruction of sparse signals from noisy compressive measure-
ments [1–8]. The reconstruction quality for compressible signals is
comparable to that of the signal’s optimal sparse approximation (ob-
tained by keeping only the largest coefficients in the sparsity basis).

There are a number of caveats for noisy CS signal reconstruc-
tion, however. First, current reconstruction algorithms only provide
worst-case performance guarantees. Second, current reconstruction
algorithms generally assume that the noise is either bounded or Gaus-
sian with known variance. Third, most current reconstruction algo-
rithms are iterative and use information about the noise magnitude
to establish a stopping criterion. Finally, in practice, the sparsity or
compressibility of the signal is often unknown; this can lead to either
early or late termination of an iterative reconstruction algorithm. In
the former case, the signal has not been completely reconstructed
(underfitting), while in the latter case some of the noise is treated
as signal (overfitting). In both cases, the reconstruction quality is
inferior.

In this paper, we take the viewpoint that noisy CS signal recon-
struction is essentially a model order selection and parameter esti-
mation problem, which makes cross validation (CV) immediately
applicable. Cross validation is a statistical technique that separates a
data set into a training/estimation set and a test/cross validation set.
The test set is used to estimate noise levels and reduce the model
order complexity so that it does not overfit the data.

The key property of CS that enables the application of CV tech-
niques stems from the incoherence between the measurement vectors
and the sparsity basis. In a nutshell, incoherence makes CS “demo-
cratic” in that it spreads the signal information evenly amongst all the
measurements, giving each equal weight in the reconstruction [1, 2].
Furthermore, any sufficiently large set of measurements is as suit-
able as any other for reconstruction. While additional measurements
could be used to improve the reconstruction quality, we will show
below that holding these measurements out for CV can significantly
improve the CS reconstruction of noisy signals.

This paper is organized as follows. Section 2 introduces the req-
uisite background on CS and CV and establishes our notation. Sec-
tion 3 develops our CS/CV framework for noisy signals. Section 4



provides experimental results for several reconstruction algorithms.
We close in Section 5 with a discussion and conclusions.

2. BACKGROUND ON COMPRESSIVE SENSING

2.1. Compressive Measurements

We consider signals x ∈ R
N that are sparse or compressible in some

sparsity basis. Without loss of generality, we assume that x is sparse
in the canonical basis of R

N . The signal is sparse if only K of its
coefficients are non-zero, withK " N . The signal is compressible
if x ∈ !p for p < 2; in this case, its sorted coefficients decay rapidly
and are well-approximated asK-sparse.

We measure the signal by taking inner products with a set of
M vectors {φi, i = 1, . . . , M} that are incoherent with the sparsity
basis. By incoherent we mean that none of the vectors {φi, i =
1, . . . , M} have a sparse or compressible representation in terms of
the sparsity basis; see [2] for a precise definition. The measurement
process is a linear mapΦ : R

N → R
M . The measurements are then

corrupted by additive zero-mean white noise n of variance σ2 per
measurement — i.e., with an expected noise variance of σ2

n
= Mσ2.

The resulting measurement vector y is expressed as

y = Φx + n, E{nn
T } = σ2

IM , (1)

where IM is theM × M identity matrix.

2.2. Reconstruction from Noise-free Measurements

If the measurement process satisfies the Restricted Isometry Property
(RIP) conditions described in [2], then a sparse/compressible sig-
nal can be recovered exactly/approximately using sparse reconstruc-
tion algorithms that determine the sparsest signal bx that explains the
measurements y [1, 2, 4]. Specific reconstruction algorithms include
linear programming (Basis Pursuit) [9] and Orthogonal Matching
Pursuit (OMP) [4]; numerical experiments demonstrate good per-
formance using Matching Pursuit (MP) [10] for reconstruction even
though there are no theoretical guarantees. MP is often preferred to
OMP due to its significantly reduced computational complexity.

2.3. Reconstruction from Noisy Measurements

In the presence of measurement noise, variations of the aforemen-
tioned algorithms have been shown to reliably approximate the orig-
inal signal, assuming certain noise or signal parameters are known.
All the algorithms used in compressive sensing solve one of the fol-
lowing formulations.
Basis Pursuit with Inequality Constraints relaxes the requirement
that the reconstructed signal exactly explain the measurements. In-
stead, the constraint is expressed in terms of the maximum distance
of the measurements from the re-measured reconstructed signal. The
reconstruction solves the program

bx = arg min
x

‖x‖!1 s.t. ‖y − Φx‖!2 ≤ ε, (2)

some small ε > 0. In [3] it is shown that if the noise is power-limited
to ε and enough measurements are taken, then the reconstructed sig-
nal bx is guaranteed to be within Cε of the original signal x:

‖x − bx‖!2 ≤ Cε,

where the constant C depends only on the measurement parameters,
and not on the level of noise. Unfortunately, noise in practice is not

necessarily power limited, and, even when it is, the power limit is
usually unknown.
The Dantzig Selector is an alternative convex program useful when
the noise is unbounded [5]. Specifically, for the measurement as-
sumptions in (1) and if enough measurements are taken, the convex
program

bx = arg min
x

‖x‖!1 s.t. ‖Φ
∗(y − Φx)‖!∞ ≤

p
2 log Nσ

reconstructs a signal that satisfies

‖x − bx‖!2 ≤ σ · C
p

2 log(N)K.

Similar results apply for compressible signals. Unfortunately, this
optimimization also requires a priori knowledge of the error variance
and the signal sparsity.
The Lasso and Basis Pursuit De-Noising are two alternative for-
mulations of the same objective. In particular, Basis Pursuit De-
Noising relaxes the hard constraint on the reconstruction error mag-
nitude with a soft weight λ in the following program:

bx = arg min
x

‖x‖!1 + λ‖y − Φx‖!2 . (3)

With appropriate parameter correspondence, this formulation is equiv-
alent to the Lasso [11]:

bx = arg min
x

‖y −Φx‖!2 s.t. ‖x‖!1 ≤ q. (4)

Furthermore it is demonstrated in [11] that as λ ranges from zero to
infinity, the solution path of (3) is the same at the solution path of (4)
as q ranges from infinity to zero. An efficient algorithm that traces
this path is mentioned and experimentally analyzed in [12]. It fol-
lows that determining the proper value of λ, even if all the solutions
are available, is akin to determining the power limit ε of the noise.

These three reconstruction formulations are based on the same
principle: that !1 minimization, under certain conditions on the mea-
surement vectors and sparsity basis, recovers the support (locations)
of the non-zero coefficients of the sparse representation. These al-
gorithms are often followed by a subsequent step, known as debi-
asing, in which a standard least squares problem is solved on the
support. Debiasing has been shown to lower the reconstruction er-
ror; see Sec. 4.
Matching Pursuit (MP) is a greedy algorithm that iteratively incor-
porates in the reconstructed signal the component from the measure-
ment set that explains the largest portion of the residual from the
previous iteration [13]. At each iteration i, the algorithm computes:

c(i)
k = 〈r(i−1), φk〉,
bk = arg max

k
|c(i)

k |,

x
(i) = x

(i−1) + c(i)
bk

δbk,

r
(i) = r

(i−1) − c(i)
bk

φbk,

where r(i) is the residual after iteration i, with r(i) = y−Φx(i). The
algorithm is initialized using x(0) = 0 and r(0) = y and terminated
when the residual has magnitude below a set threshold.
Orthogonal Matching Pursuit (OMP) additionally orthogonalizes
the residual against all measuremnent vectors selected in previous
iterations. Although this step increases the complexity of the algo-
rithm, it improves its performance and provides better reconstruction
guarantees compared to plain old MP. The orthogonalization step is
similar to the debiasing modification of the above optimization based



algorithms, with the exception that it is performed at every iteration
of the algorithm rather than at the end.

Both MP and OMP can be shown to converge to a solution that
fully explains the data and the noise. However, only OMP is guar-
anteed to converge to a sparse solution. It is theoretically possible
that MP converges to a dense solution that explains the measure-
ments and the noise, but does not approximate well the original sig-
nal. Experimental results, on the other hand, demonstrate good per-
formance. They further demonstrate that proper termination of the
algorithms is a practical way to reject the measurement noise in the
reconstruction. However, the conditions for proper termination are
heuristic. Even in the case the stopping condition from the Basis Pur-
suit De-Noising algorithm is heuristically used, namely ‖r(i)‖ ≤ ε,
the noise level ε is still a necessary input to the algorithm, as is the
case with all the methods described in this section. In order to deter-
mine the correct parameter values, we propose to apply CV.

2.4. Cross Validation

Cross Validation is a statistical technique to determine the appropri-
ate model order complexity and thus avoid overfitting a model to a
set of sample data. CV first divides the data to two distinct sets: a
training/estimation set, and a test/cross validation set. The model fit-
ting algorithm operates on the training set, and then its performance
is predicted on the testing set. As the algorithm estimates the global
parameters of the model and increases the model complexity and the
accuracy of the estimated parameters, the prediction performance on
the CV set increases. However, when the algorithm begin overfitting
the training set, its performance on the testing set decreases. Thus,
a further increase in the model complexity is not beneficial and the
algorithm should terminate.

Cross validation can be immediately applied to any iterative al-
gorithm, as described in Sec. 3.2. From the family of matching
pursuits we focus on the OMP algorithm due to its superior perfor-
mance in our experiments. Similarly, several algorithms exist that
solve each of the !1-based formulations mentioned in Sec. 2.3. From
those algorithms, we focus the Homotopy continuation algorithm
introduced in [14] as a solution to the Lasso formulation. This is
the same as the Least Angle Regression (LARS) algorithm with the
Lasso modification described in [12]. The key property of Homo-
topy continuation is that as it iterates it visits all of the solutions to
the minimization in Eq. (4), and consequently (3), as λ increases
from zero to infinity. Thus we are able to introduce CV at each iter-
ation in order to determine the appropriate parameter values from all
of the solutions visited.

There exist algorithms that solve the Lasso formulation more
efficiently than the Homotopy continuation algorithm if the param-
eter values are predetermined and known in advance; for examples
see [6–8]. To successfully use these algorithms with cross valida-
tion, however, it is necessary to execute them a number of times,
each for a different parameter value, thus defeating the speedup of
the algorithms.

3. CROSS VALIDATION FOR COMPRESSIVE SENSING

We now demonstrate how CV can be profitably applied to CS re-
construction of noisy data using any iterative signal estimation algo-
rithm.

3.1. Cross Validation Measurement Model

Consistent with the measurement model of (1), we propose to take
additional measurements using:

ycv = Φcvx + ncv,

E{ncvn
T
cv} = σ2IMcv

,

in whichMcv denotes the number of additional measurements, Φcv

denotes the CV measurement matrix and ncv denotes the noise
added on the CV measurements. Since the same data acquisition
system is assumed to be used to obtain both the reconstruction and
the cross-validation measurements, the CV noise has the same per-
measurement variance as the estimation noise in (1). It is, thus, as-
sumed that the cross validation measurement matrix is generated in
the same way as the acquisition measurement matrix and properly
normalized such that the signal to noise ratio for the signal acqui-
sition measurements and the cross validation measurements is the
same. For example, if the reconstruction measurement matrix Φ is
normalized to have unit column norm, then the CV measurement
matrixΦcv is normalized to have column norm equal to

p
Mcv/M .

On the other hand, if Φ contains i.i.d. entries drawn form a distri-
bution with a certain variance, then Φcv also contains i.i.d. entries
drawn from the same distribution, with the same variance.

3.2. CV-based Modification to CS Reconstruction Algorithms

Consider any iterative CS reconstruction algorithm for noisy data
such as MP, OMP, or Homotopy continuation/LARS. Each iteration
produces a signal estimate bx(i). To be able to use cross-validation we
modify the CS reconstruction algorithm by wrapping each iteration
in a CV step as follows:

1. Initialize:
Set ε = ‖ycv‖2, ex = 0, i = 1.
Initialize the estimation algorithm.

2. Estimate:
Execute one estimation iteration to compute bx(i).

3. Cross validate:
If ‖ycv − Φcvbx(i)‖2 < ε then set ε = ‖ycv − Φcvbx(i)‖2,
ex = bx(i), and terminate.

4. Iterate:
Increase i by 1 and iterate from 2.

We refer to this modification as the CS-CV modification to the CS
algorithm (e.g., OMP-CV). CS-CV can be terminated after a suffi-
cient number of iterations have been executed, the number of which
depends on the original CS reconstruction algorithm. At the termina-
tion of the modified algorithm, ex contains the estimated signal with
the minimum cross validation error; ε is the norm of this error.

If enough CV measurements are used, then the CV error after
each iteration ‖ycv − Φcvbx(i)‖2 follows a relatively smooth path
as follows: as the algorithm improves the estimate of the signal, the
CV error decreases; as the algorithm starts overfitting the noise, the
CV error increases. The number of iterations should be sufficient
for the original CS reconstruction algorithm to reconstruct the signal
and start oververfitting the noise. For example, if OMP-CV is used
on a K-sparse signal, it should iterate at least K times. In practice,
CS-CV can be terminated if a number of iterations have produced
no improvement in the CV error. For example, a typical run of OMP
is shown in Fig. 1. At each iteration, the norm of the residual on
y, the measurements used in the reconstruction of the signal, (solid
line) decreases. However, the reconstruction error (dash-dot line)
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Fig. 1. Evolution of the error at each iteration of a typical run of CV-based
OMP reconstruction. The errors are normalized with respect to their initial
values.

increases after the 36th iteration. CV ably detects this change, as
demonstrated with the residual on ycv (dashed line). In practice, the
algorithm can be safely terminated after the 40th iteration.

4. EXPERIMENTAL RESULTS

This section presents experiments that demonstrate that CV can be
combined with the aforementioned standard algorithms for signal
reconstruction from noisy compressive measurements. We test how
the problem parameters affect the performance of the reconstruction
algorithms and compare the results with the performance of the al-
gorithms assuming the noise parameters are known in advance.

4.1. Experiment Setup

For all the experiments we use exactly sparse signals of length
N = 1000, with the support of the signal randomly selected from
a uniform distribution. The non-zero coefficients are drawn from a
standard Gaussian distribution. The signals are measured using a
measurement matrix Φ and a CV matrix Φcv that have i.i.d. entries
drawn from a Rademacher distribution of {±1/

√
M} with equal

probability. The noise added to the measurements is properly nor-
malized to maintain the acquired signal-to-noise ratio (SNR) be-
tween the reconstruction and the CV measurements constant.

For each algorithm we evaluate the performance using the
new CV stopping criterion and the inequality stopping criterion of
Eq. (2); we refer to the latter as the residual stopping criterion; for
reference, we also evaluate the performance of an oracle that selects
the solution for the iteration that yields the lowest distortion recon-
struction. We evaluate the performance of the algorithm as a function
of the number of CV measurements and use the SNR of the recon-
struction as the performance metric. We average 200 repetitions of
each experiment, with different realizations of the sparse supports,
random measurement and CV matrices, and additive noise.

4.2. Number of Measurements

When the total number of measurements M + Mcv is fixed, there is
a tradeoff between the number of compressive measurementsM and
the number of CV measurements Mcv . On the one hand, any mea-
surements taken beyond the minimum number required to resolve
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Fig. 2. Comparison of standard reconstruction algorithms from noisy com-
pressive sensing measurements with several stopping criteria. We fix the
parameters N = 1000, K = 50, M = 400, and σn = 2. CV performs
better than the residual criterion (Res.) when sufficient CV measurements
are used; the oracle performance is shown for reference. Additionally, OMP
outperform both Homotopy continuation (HT) and Homotopy continuation
with debiasing (HT/DB).

and reconstruct an estimate [15] can be used to reduce the recon-
struction error, which suggests increasing M and decreasing Mcv .
On the other hand, increasingMcv will improve the CV estimate and
thus ensure that the CV optimum is closer to the oracle optimum.

The first experiment demonstrates how the number of cross val-
idation measurements affects the performance of CV. In this experi-
ment signals of sparsity K = 50 are sampled and reconstructed us-
ingM = 400 measurements and three different reconstruction algo-
rithms: OMP, Homotopy continuation, and Homotopy continuation
with debiasing. The measurement noise is a white Gaussian process
with σn = 2. Figure 2 plots the results for a varying number of CV
measurementsMcv – additional to theM sampling measurements –
with the same measurement noise characteristics. We see that some
small number of CV measurements causes a large improvement in
performance – outperforming the residual criterion – with additional
measurements not providing significant improvement. We also see
that OMP outperforms the Homotopy-based algorithms.

The second experiment examines the tradeoff between allocat-
ing the measurements to reconstruction or CV. Assuming a fixed
number of total measurements M + Mcv = 400 and the same sig-
nal sparsity and noise parameters as in the previous experiment, we
evaluate the performance of the three algorithms asMcv varies from
5 to 100. For comparison, we also plot the performance of these
algorithms assuming the same number of M measurements is used
for reconstruction for two different cases: assuming an oracle guides
the reconstruction and stops the algorithm optimally, and assuming
the exact variance of the noise added is known and used to stop the
algorithms, as described in Sec. 2.3. Note that the simulation uses
the sample variance of the noise realization, not just the value of
the variance parameter σ used to generate the noise; in practice this
value is unknown at reconstruction. The results in Fig. 3 demonstrate
that, although CV performance improves as Mcv increases, the re-
construction performance decreases as the reconstruction measure-
mentsM decrease, even if the optimal stopping iteration is known.
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Fig. 3. Tradeoff of measurements for CV and reconstruction for different al-
gorithms. We fix the parameters N = 1000,K = 50 and σn = 2. The total
number of measurements is help constant at M + Mcv = 400. Increasing
the number of CV measurements improves the ability to detect the optimal
stopping iteration. Increasing the number of reconstruction measurement in-
creases robustness to the additive measurement noise.
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Fig. 4. Performance of the CV performance criterion as a function of the
signal sparsity. CV approaches the oracle performance as K decreases; the
residual criterion does not.

4.3. Parameter sensitivity

We examine the performance of CV-based CS algorithms to the other
sundry parameters change. For presentation clarity, we focus on
OMP for these experiments.

In the first experiment the sparsity K of the signal varies from
5 to 100. We use M = 5K measurements for reconstruction and
Mcv = 100 measurements for CV. The noise variance is σn = 2.
Figure 4 shows that as the signal sparsity decreases, the CV per-
formance approaches that of the oracle, while the difference in per-
formance between the residual criterion and the oracle is roughly
constant.

In the second experiment we vary the expected magnitude of the
added noise σn from 0.2 to 200 and leave K = 50, M = 360 and
Mcv = 40. Figure 5 shows that the residual error stopping crite-
rion performs better than CV only at very large noise variance, in
which case all three stopping conditions perform inadequately in re-
constructing the signal. In the range of practically acceptable levels
of noise, CV consistently outperforms the residual error criterion.

5. CONCLUSIONS

This paper has proposed and explored CV for model selection in CS
reconstruction from noisy measurements. Using a small subset of the
noisy measurements to perform validation of the reconstruction, it is
possible to obtain performance similar to that of standard reconstruc-
tion algorithms without requiring knowledge of the noise parameters
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Fig. 5. Performance of the CV performance criterion as a function of the
noise magnitude. For the cases when the oracle obtains an acceptable SNR,
CV outperforms the residual error criterion.

or statistics. There is, however, a tradeoff between the use of addi-
tional measurements in the reconstruction algorithm to reduce the
reconstruction error vs. the use of these measurements for CV to im-
prove the detection of the optimal stopping iteration. In future work,
we will explore CV-based schemes that rotate compressive measure-
ments in and out of the training and test data sets, eventually using
all the data to both estimate the parameters and cross validate the
data.
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