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ABSTRACT

In recent years, sparsity and compressive sensing have attracted significant attention in parameter estimation
tasks, including frequency estimation, delay estimation, and localization. Parametric dictionaries collect obser-
vations for a sampling of the parameter space and can yield sparse representations for the signals of interest when
the sampling is su�ciently dense. While this dense sampling can lead to high coherence in the dictionary, it is
possible to leverage structured sparsity models to prevent highly coherent dictionary elements from appearing
simultaneously in a signal representation, alleviating these coherence issues. However, the resulting approaches
depend heavily on a careful setting of the maximum allowable coherence; furthermore, their guarantees apply
to the coe�cient vector recovery and do not translate in general to the parameter estimation task. We propose
a new algorithm based on optimal sparse approximation measured by earth mover’s distance (EMD). We show
that EMD provides a better-suited metric for the performance of parametric dictionary-based parameter estima-
tion. We leverage K-median clustering algorithms to solve the EMD-optimal sparse approximation problem, and
show that the resulting compressive parameter estimation algorithms provide satisfactory performance without
requiring control of dictionary coherence.

Keywords: compressive sensing, parameter estimation, earth mover’s distance, parametric dictionaries, K-
median clustering

1. INTRODUCTION

Compressive sensing (CS) has emerged as a framework for integrated sensing and compression of signals that
are known to be sparse or compressible in some transform.1–3 CS has attracted significant attention in recent
years; its application has been extended from signal recovery to parameter estimation through the design of
parametric dictionaries (PDs) that yield sparse representations for the signal of interest. The PD consists of a
set of signal observations corresponding to a discrete set of parameter values. Intuitively, a PD corresponds to
a discrete sampling of the continuous parameter space (such as the possible values of the frequencies, delays,
and locations, respectively). Making this connection between parameter estimation and sparsity allows for com-
pressive parameter estimation algorithms that rely on the rich standard (sparsity-based) CS framework. The
resulting dictionary coe�cient vector obtained from CS signal recovery is interpreted by matching parameter
values to the nonzero entries of the recovered vector. This sparsity-based approach has been previously formu-
lated for landmark parameter estimation problems, including localization and bearing estimation,4–15 frequency
estimation (FE),16–21 and time delay estimation (TDE).22–24

Unfortunately, compressive parameter estimation with PDs can only be perfect in the contrived case when
the observed parameter values are contained in the set of parameters sampled by the PD; fortunately, it may give
low estimation error if the true parameters are very close to some sampled parameter.15 Thus, a dense sampling
of the parameter space may be able to improve the average parameter estimation error; however, the resulting
PD will have a significantly larger coherence (i.e., the largest inner product between its normalized columns will
become closer to one), which is known to hamper the performance of sparse approximation algorithms.25 Previous
approaches address this coherence problem by leveraging structured sparsity models26 in order to inhibit highly
coherent dictionary elements from appearing simultaneously in the recovered signal’s representation.15,20–22,27

However, the performance of the resulting algorithms will be dependent on a careful setting of the maximum
allowable value of the coherence, which must compensate the performance of the algorithms with the spacing of
the parameters that can be observed simultaneously and the resolution of the PD.

1

Marco Duarte
Dian Mo and Marco F. Duarte, "Compressive Parameter Estimation with Earth Mover’s Distance via K-Median Clustering", Sparsity and Wavelets XV at SPIE Optics and Photonics, Article Number 8858-62, 2013.




A second issue that arises from the use of PDs is that almost all proposed CS recovery algorithms guarantee
stable recovery of the coe�cient vector as measured by the `2 norm, i.e., the estimated coe�cient vector is
close to the true vector in Euclidean distance. Most of these algorithms link the proof of such guarantees to
the core thresholding operation, which sets all components of an input vector to zero except for those with the
largest magnitudes and returns the optimal sparse approximation to the input vector, again in terms of the `2

distance. Such guarantees have very limited impact for PD-based compressive parameter estimation, since these
guarantees can only be linked to accurate estimation of the support (i.e., the indices of the nonzero entries in
the vector, which are translated into parameter estimates) only in the most demanding case of perfect signal
recovery. Consider the simple example where a canonical basis vector c = ei 2 RN of sparsity 1 (its only nonzero
entry is the ith entry) encodes the Fourier Transform coe�cients of a complex exponential of frequency fi. When
perfect recovery is obtained, it is easy to see that the frequency estimate is accurate. However, if perfect recovery
is not possible, two candidate 1-sparse recovered vectors bc = ei+1 and bc = ei+2 provide the same `2 recovery
error, as their supports are disjoint with that of c; nonetheless, the frequency estimate b

f = fi+1 from the first
vector will have smaller error than that from the second vector b

f = fi+2, as the elements of the Fourier transform
are ordered so that fi < fi+1 < fi+2. This example motivates the need for new performance metrics that can
capture the di↵erence between these two candidates and prefer the former over the latter.

Several distance metrics that measure coe�cient vector error in terms of similarity between sparse supports
rather than `p distance are available, and can be applied to the PD setting. The Hamming distance measures the
number of coe�cients that are either both zero or both nonzero in the coe�cient vector c and its estimate bc, and
certain CS recovery approaches consider this criterion.28–31 Unfortunately, Hamming distances only control the
number of errors committed in parameter estimation, but not in the magnitude of the errors that occur. As an
alternative, earth mover’s distance (EMD)32 quantifies the magnitudes of the errors by minimizing the amount
and distance of “mass” that would need to flow between the entries of the coe�cient vector bc to become equal to
c. Using this notion of distance in compressive parameter estimation leverages the fact that the elements of the
dictionary (and, by extension, the entries of the coe�cient vector) are sorted by the corresponding parameter

values, so that the EMD between c and bc is indicative of the parameter estimation error ✓� b
✓. Very recently, the

EMD has been integrated within CS to provide recovery algorithms for sparse and nearly sparse signals, where
the accuracy is measured in terms of the EMD.33

In this paper, we propose a new framework for compressive parameter estimation that leverages the EMD to
measure estimation error. Our framework replaces the use of the `2 norm in the sparse approximation algorithms
by EMD. The prevalence of thresholding in the standard algorithms is explained by the fact that thresholding
finds the best su�ciently sparse approximation to the input vector in the `2 sense. Therefore, we propose to
switch K-thresholding into a search for the best K-sparse approximation to the input in the EMD sense, which is
well known to be solved by the K-median clustering procedure.33 The proposed parameter estimation algorithms
can natively avoid highly coherent dictionary elements without prior knowledge about the structure of the PD,
eliminating the need for the selection of a coherence inhibition parameter. Additionally, we show that the use of
manifold interpolation approaches21,22 significantly improves the performance of the proposed methods.

This paper is organized as follows. Section 2 provides background on compressive parameter estimation.
Section 3 motivates the use of EMD for this problem when PDs are involved, and Section 4 introduces our
proposed formulation for EMD-based compressive parameter estimation. Section 5 provides numerical simulation
results that verify the advantages of the proposed approach, and Section 6 o↵ers conclusions and directions for
future work.

2. COMPRESSIVE PARAMETER ESTIMATION

CS describes a reduced-rate acquisition framework in which a discrete signal x 2 CN is compressed using a linear
dimensionality-reducing operator � 2 RM⇥N to obtain a measurement y = �x 2 CM , where M ⌧ N . CS shows
that it is possible to recover an accurate estimate bx of the signal x from measurement y when x is known to be
sparse in a transform domain, i.e., the coe�cient vector c =  ⇤

x of x via the transform matrix  has only a
small number K  M of nonzero components.
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A set of parametric signals is defined via a mapping M : ⇥ ! X from a parameter space ⇥ ✓ CK to a
signal space X ✓ CN that connects each parameter value ✓ 2 ⇥ with a signal x = M(✓) 2 X. The parameter
estimation problem from the noisy measurement y = x + n, where n denotes additive white Gaussian noise
(AWGN), is to find the closed signal bx 2 M to y and then invert the mapping to estimate the corresponding

parameter b✓. The CS theory suggests that a random projection operator � 2 RM⇥N with M ⌧ N approximately
preserves the distance between any signal contained in the set {M(✓) : ✓ 2 ⇥} and a fixed arbitrary signal.34

In other words, compressive parameter estimation can be performed from the noisy compressed measurement
y = �x+n without having to recover the full signal bx from y to then estimate the parameter b✓ from bx. However,
such direct approaches assume that the mapping M is known and available, usually in the form of a nonlinear
low-dimensional manifold model, which can be arbitrarily complex to leverage.34

As an alternative to manifold models, parametric dictionaries (PDs) have adapted the sparse signal model
to perform parameter estimation directly from CS measurements without having to recover the full signal.4–24

In many practical applications, high-complexity parametric signals can be expressed or approximated by the
linear combination of low-complexity parametric signals, i.e., they correspond to the linear combination of some
number K of parametric signals with distinct parameters x =

PK
k=1 ckM(✓k). One can build a PD as a collection

of samples from the set of parametric signals  = [M(!1),M(!2), . . . ,M(!L)] that correspond to a sampling
of the parameter space ⌦ = {!1,!2, . . . ,!L} ✓ ⇥. If the sampling set is large and dense enough so that
unknown parameters are all contained in the sampling set {✓1, ✓2, . . . , ✓K} ✓ ⌦, then the signal can be written
as the product of the PD and a coe�cient vector x =  c, where the coe�cient vector has at most K non-zero
components. By introducing a PD, sparse approximation is retrofitted into parameter estimation, which allows
very simple integration into the CS framework. In this case, finding the unknown parameters reduces to finding
at most K dictionary elements whose linear combination correspond to a CS measurement vector close enough
to y, that is, to obtain an estimate of the coe�cient vector bc from the measurements y = �x+ n = � c+ n.

A limitation that is implicit from the definition of the PD is that parameter estimation can be perfectly solved
only if all the values for the observed parameters are among the sampled parameters ⌦ ✓ ⇥. Fortunately, when
this perfect inclusion case is not met for some observed parameter ✓k, having a densely sampling of the parameter
space in the PD increases the chance that the observation for some sampled parameter M(!l) is su�ciently close
to the observed vector, i.e., kM(!l)�M(✓k)k is very small, in which case it is possible to control the accuracy
of parameter estimation. However, increasing the parameter space sampling resolution inherently increases the
similarity between dictionary elements for adjacent parameter values, as measured by the coherence:

µ( ) := max
1i 6=jL

|hM(!i),M(!j)i|
kM(!i)k2kM(!j)k2

.

The higher similarity that adjacent dictionary elements have, the closer that µ( ) is to one, and the more di�cult
that it is to distinguish between them, severely hampering the performance of parameter estimation with densely
sampled PDs.25

Structured sparsity has emerged as an alternative signal model formulation to address the coherence issue in
PDs.26 In contrast with classical sparsity that allows any sparse vector to appear as the signal representation,
structured sparsity only allows for sparse vectors that exhibit particular additional structure. Structured sparsity
is introduced in CS recovery by replacing the thresholding operation in standard sparse recovery algorithms by a
structured sparse approximation algorithm that provides the the best approximation to the input within the set
of allowable (structured) sparse signals. To alleviate coherence issues in PD-based parameter estimation, one can
design a coherence-inhibiting structured sparsity model in which the K nonzero entries in a vector must corre-
spond to dictionary elements that have low coherence (i.e., normalized inner product), in order to inhibit highly
coherent dictionary elements from appearing simultaneously in the signal representation.15,20–22 This structured
sparsity model is defined by a maximum allowed coherence level ⌫ that defines the restriction on the choice
of dictionary elements that can appear simultaneously. Such coherence-inhibiting framework has resulted in a
variety of PD-tailored algorithms, including structured iterative hard thresholding (SIHT),15,20 band-excluded
orthogonal matching pursuit (BOMP),27 and band-excluded interpolating subspace pursuit (BISP).21

Although it is clear that an appropriate choice of the maximum coherence parameter ⌫ can improve the
performance of PD-based parameter estimation, there has not been much research on the sensitivity of the
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aforementioned algorithms to the choice of value of ⌫. Intuitively, setting the parameter too low results in
performance similar to that of standard CS algorithms, which is poor. Alternatively, setting the parameter too
high results in strict requirements on the minimum separation of the parameter values of the observed signal,
resulting in suboptimal performance for observations that do not meet this requirement. Our simulations in
Section 5 illustrate the sensitivity of the choice of the value of ⌫ in the performance of PD-based compressive
parameter estimation.

3. EARTH MOVER’S DISTANCE AND PARAMETRIC DICTIONARIES

The approaches to parameter estimation we have described so far guarantee stable recovery of the coe�cient
vector c under the `2 norm, which underlies the sparse approximation algorithms used by them. More precisely,
both the thresholding operation in classical CS and and the coherence-inhibiting approximation in structured CS
involve approximation steps that return the approximation of the coe�cient vector with the lowest Euclidean-
norm error kc � bck2 among the class of signals of interest (sparse or structured sparse, respectively). However,

such guarantees cannot be translated to the error of parameter estimation k✓ � b
✓k. This is due to the fact

that, except for the stringent case of perfect recovery where bc = c, an `2-norm guarantee cannot translate into
a guarantee on the selection of the support (nonzero entries) of c, which are interpreted to obtain parameter
estimates. Thus, whenever perfect recovery is not possible, one cannot obtain performance bounds on PD-based
parameter estimation. While alternative approaches can provide guarantees on perfect recovery of the signal
support, they do not provide control on the types of errors that may arise when perfect support estimation is
not achievable.28–31

Interestingly, the earth mover’s distance (EMD) provides a notion of error (i.e., distance between two vectors)
that is significantly better suited for application to PD coe�cient vectors. The EMD between two vectors p,
q relies on the notion of mass being assigned to each entry of the two vectors involved, with the goal being to
transfer mass between the entries of the first vector in order to match mass of the entries of the second vector.
The EMD metric captures the di↵erence between two vectors by finding the flow with the smallest amount of
work (measured as the product of the mass to be moved and the transport distance the mass should move)
among all flows that when applied to the first vector yield the second one; the distance itself is the value of such
minimum work.32 For two vectors p, q 2 RL, if fij denotes the flow mass between the i

th component of p and
the j

th component of q, then the EMD is defined as

EMD(p, q) := min
f

LX

i,j=1

fij |i� j| such that
X

j

fij = |pi| 8 i = 1, . . . , N,

X

i

fij = |qj | 8 j = 1, . . . , N. (1)

In the case where
P

i |pi| 6=
P

i |qi|, one can easily add a new flow source or sink that provides or receives the
di↵erence with a larger transport cost, i.e., L+ 1.

Consider now the specific case in which the vectors c and bc represent the true and estimated K-sparse PD
coe�cient vectors, respectively, with respective supports � = {�1, . . . , �K} and b� = {b�1, . . . , b�K}. These PD

coe�cients correspond to parameter values ✓ = [�1� . . . �K�] and estimates b
✓ = [b�1� . . . b�K�]. In the case

where the estimate is imperfect, the supports of c and bc do not exactly match each other and the standard CS
error kc� bck2 is potentially independent of the estimation error k✓ � b

✓k. In contrast, in this case one can write
the EMD metric as

EMD(c,bc) = min
f

KX

i,j=1

fij |�i � b�j | such that
X

j

fij = |c[�i]|,
X

i

fij = |bc[b�j ]| 8 i, j = 1, . . . ,K. (2)

Assuming that the estimates of the parameters are su�ciently accurate so that c[�i] ⇡ c[b�i] for i = 1, . . . ,K, the
minimizing flow would yield (perhaps approximately) fi,i = |c[�i]|, with negligibly small values fi,j for i 6= j. In
such case, it is easy to see that the EMD in (2) is approximately

EMD(c,bc) ⇡
KX

i=1

|c[�i]||�i � b�i|,
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where each �i is matched to a b�i. This EMD value which yields an amplitude-weighted metric for parameter
estimation. In particular, when c[�i] are approximately equal to a constant C, we can further write that

EMD(c,bc) ⇡ C

KX

i=1

|�i � b�i| =
C

�

KX

i=1

|✓i � b
✓i| =

C

�
k✓ � b

✓k1. (3)

This approximation motivates the use of EMD as a metric on the PD coe�cients, in order to be able to control
the performance of sparsity-based or compressive parameter estimation.

4. PARAMETER ESTIMATION WITH EARTH MOVER’S DISTANCE

The aforementioned properties of the EMD motivate its integration into the CS framework.33 We develop here a
greedy approach to EMD-based sparse recovery with PDs that follows the principles of structured sparse signal
recovery algorithms.26

4.1 Optimal Sparse Approximation with EMD Metric

A key component to the integration of EMD and CS is the formulation of an optimal sparse approximation
procedure that relies on the EMD metric. First, consider the problem of finding a K-sparse vector bc with fixed
support � that has smallest EMD to an arbitrary vector c. In this case, the minimum-cost flow in the EMD
definition (1) is achieved when the flow is active only between each entry of the vector c and the nearest non-zero
entry of the vector bc. Since the entries of bc are arbitrary, we minimize this EMD by moving the mass from each
entry of the vector c into the corresponding nonzero entry in bc that minimizes the transport distance. That is,
we choose each nonzero value bc[�i] so that it receives through the flow all the mass from all entries of c that are
closest to it. This choice of bc will yield

EMD(c,bc) =
LX

i=1

|ci|min
j2�

|i� j|. (4)

In words, the search for the EMD-closest sparse vector bc with fixed support finds a partition of the components
of c into K di↵erent groups, picking the nonzero components of the vector bc so that the flow work cost function
is minimized. However, to achieve optimal sparse approximation using EMD, we must address the additional
problem of determining the optimal selection of the support of bc (i.e., the indices of its K nonzero entries) that
minimizes the EMD in (4).

A well-known method to solve this search problem is given by K-median clustering.35 Consider a setting
where L points p1, . . . , pL have mutual distances d(pi, pj) and weights wi, i, j = 1, . . . , L. The goal of K-median
clustering is to find a set ⇤ ✓ {p1, . . . , pL} of K centroids that minimize the objective function

LX

i=1

wi min
j2⇤

d(pi, pj).

By setting pi = i, d(pi, pj) = |j� i| and wi = |ci| for i, j = 1, . . . , L, it is easy to see that the resulting K-median
clustering setup solves for the minimum EMD cost in (4) among all sparse signals bc. In fact, the set of centroids ⇤
resulting from the K-median clustering of the points p1, . . . , pL provides the support ⌦ for the optimal K-sparse
approximation bc; the magnitude of those entries are then obtained trivially.

A common K-median clustering approach proceeds iteratively, starting from initial centroids that are ran-
domly chosen, and assigning each point to the cluster with the nearest centroid; the cluster centers are then
updated to be the weighted median of the cluster’s points.35 This algorithm can be adapted for optimal sparse
approximation in the EMD sense as shown in Algorithm 1. This EMD-based approach, in contrast with struc-
tured sparsity-based approaches, does not require the tuning of the maximum allowed coherence level ⌫ and is
more robust to variations in the level of coherence of the PD elements, as highly coherent elements are naturally
assigned into the same cluster by the K-median clustering step; numerical evidence of this property will be
shown in Section 5.
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Algorithm 1 EMD sparse approximation support finder ⌃ = C(c,K)

Input: coe�cient vector c, sparsity K

Output: approximation vector support ⌃
1: Initialize: choose ⌃ as a random K-element subset of {1, . . . , L}.
2: repeat
3: gi = argminj=1,...,K |i� sj | for each i = 1, . . . , L
4: �j = median{i · |ci| : gi = j} for each j = 1, . . . ,K
5: ⌃ = {�1, . . . ,�K}
6: until S does not change

Algorithm 2 Clustering Subspace Pursuit (CSP)

Input: measurement vector y, measurement matrix �, sparsity K, set of PD-sampled parameter values ⌦
Output: estimated signal x, estimated parameter values ✓
1: Initialize x = 0, ⌃ = ;; generate PD  from ⌦.
2: repeat
3: yr = y � �x {Compute residual}
4: cr = (� )T yr {Obtain proxy estimate of PD coe�cients}
5: ⌃ = ⌃ [ C(cr,K) {Augment support estimate using EMD-optimal sparse approximation of proxy}
6: c = (� ⌃)+y {Update PD coe�cient proxy to be 2K-sparse}
7: ⌃ = C(c,K) {Obtain EMD-optimal sparse approximation of proxy}
8: x =  ⌃c {Assemble signal estimate}
9: ✓ = ⌦⌃ {Assemble parameter estimates}

10: until a convergence criterion is met

4.2 Clustering Subspace Pursuit

Since most existing sparse recovery algorithms rely on a thresholding operation to obtain optimal sparse approx-
imations in the `2 metric, it is particularly easy to modify the existing framework to achieve sparse recovery
with an EMD metric. We propose a new PD-based parameter estimation algorithm, called Clustering Subspace
Pursuit (CSP), and shown in Algorithm 2. CSP merges the Subspace Pursuit algorithm36 with EMD-based
sparse approximation (Algorithm 1). CSP replaces the thresholding steps from SP that find candidate support
sets ⌃ from a residual (or proxy) coe�cient vector cr by K-median clustering steps. CSP avoids highly coherent
dictionary elements from appearing simultaneously in the signal representation, while removing the requirement
for a coherence-inhibiting parameter ⌫ that is required when structured sparsity is used. Furthermore, CSP has
the potential to provide EMD-based error guarantees for parameter estimation.

5. NUMERICAL SIMULATIONS

To evaluate the performance of our proposed approach, we consider the time delay estimation problem where
the signal is measured using CS. The continuous signal model is a chirp waveform with time delay s defined as

g(t, s) := p(t� s) exp

✓
j2⇡

✓
f0 + f�

t� s

2T

◆
(t� s)

◆

where f0 = 1MHz is the chirp center frequency, f� = 5MHz is the frequency sweep range, and p(t) is a raised
cosine pulse that windows the chirp signal in time:

p(t) =

⇢
1 + cos(2⇡t/T ), t 2 (0, T ),
0 otherwise.

Here, T = 1µs is the duration of the chirp signal. We sample the chirp signal at a frequency fs = 50MHz and
collect N = 500 samples to generate the discrete signal xs, whose samples can be written as

gs[n] =
1p

1.5Tfs
g

✓
n� 1

fs
, s

◆
, n = 1, . . . , N,
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Figure 1: Average delay estimation error as a function of (a) the CS sub-sampling ratio for noiseless measure-
ments, and (b) the SNR level for noisy measurements, where the chirp duration is 1µs.

where the coe�cient 1p
1.5Tfs

normalizes the chirp. The observed signal can then be written as x =
PK

i=1 akgsk ,

where the parameters sk are selected at arbitrary resolution from the range [0, 10µs], with a minimum separation
between parameters of Ts = 0.02µs, and ak is the magnitude coe�cient for the k

th component. We generate
a PD for this problem by sampling the the time delay (i.e., parameter) space with a spacing of Ts = 0.02µs
(matching the sampling period); this PD can be written as  = [g0, gTs , g2Ts , . . . , g(N�1)Ts

], and its entries are
given by  [i, j] = g(j�1)Ts

[i]. The signal x is then sensed using a CS-based random demodulator37 simulated by
an M ⇥N CS matrix � for a variety of values of M .

Our experiments compare the time delay estimation performance of CSP to that of two existing baseline
algorithms: band-excluding subspace pursuit (BSP) and band-excluded orthogonal matching pursuit (BOMP).27

Furthermore, we integrate polar interpolation within these algorithms to accommodate arbitrary values for the
delay outside of the sampled set;21,38 note in particular that the BSP+Polar algorithm is equivalent to BISP.21

We set the maximum allowed coherence level to ⌫ = 0.001 for all structured sparsity (band-excluded) algorithms.

Our first experiments consider compressive time delay estimation from noiseless measurements as a function
of the CS subsampling rate  = M/N , as well as for noisy measurements under AWGN with fixed subsampling
rate  = 0.4 as the function of the SNR level. Figure 1 shows the performance of the algorithms in these setups
averaged over 1000 randomized realizations. While the performance of CSP does not match that of the band-
excluding algorithms when no interpolation is used, there is a significant improvement in estimation performance
when polar interpolation is added to the algorithms. This is indicative of small biases (on the order of the value
of Ts) that are observed in the output from CSP and easily corrected by interpolation. When polar interpolation
is added, BOMP estimates only one time delay at a time; the interference from the remaining copies of the
delayed signal can cause noticeable errors in the interpolation stage.

Our next experiment evaluates the role that the PD coherence level has on the performance of the algorithms.
To vary this coherence level, we vary the duration of chirp signal within the range [1µs, 5µs], which is expected
to increase the number of PD element pairs that are coherent (i.e., change the necessary band exclusion). We
expect that the band-exclusion algorithms will be sensitive to the fixed choice of the maximum allowed coherence
level ⌫. For the duration T = 2µs, Figure 2 replicates the setup of Figure 1 and shows decreased performance for
all algorithms except for CSP and CSP+Polar. Clearly, the drop in performance in the structured sparsity-based
algorithms is due to a suboptimal choice of the parameter ⌫ for the PDs that feature increased coherence. This
gap in performance is expected to become more significant as the spacing between the delays (or parameters in
general) becomes smaller and leads to the selection of elements with coherence above the allowed value ⌫.
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Figure 2: Average delay estimation error as a function of (a) the CS sub-sampling ratio for noiseless measure-
ments, and (b) the SNR level for noisy measurements, where the chirp duration is 2µs.

Our last experiment focuses on this sensitivity on the choice of the maximum allowed coherence parameter
⌫ for BSP in contrast with CSP. We test the performance of these algorithms as a function of the CS subsam-
pling ratio , with and without polar interpolation, for a variety of chirp lengths. Figure 3 shows the average
performance over 100 randomized realizations per setup, and shows both a range of degradation levels in BSP
performance and a sharp degradation in BSP+Polar performance as the PD coherence varies. This is in contrast
to CSP and CSP+Polar, whose performances are essentially stable over the choice of PD.

6. CONCLUSION

The use of PDs for sparsity-based and compressive parameter estimation introduce a tradeo↵ between accuracy
of the sparse signal model, which requires dense parameter space sampling in the PD, and poor estimation
performance caused by the high coherence between PD elements, which is known to a↵ect sparse approximation
algorithms. While structured sparsity can address some of these issues, our experiments show a close dependence
between the application of interest and the coherence-controlling parameter ⌫, which may not be easy to identify
in the most challenging applications. Motivated by the properties of PDs and their interpretation for parameter
estimation, we have introduced the use of EMD-based sparse approximation within PD-based parameter estima-
tion algorithms. We highlighted the connection between EMD sparse approximation and K-median clustering,
which in combination with existing greedy sparse recovery algorithms provide us with an intuitive computational
framework for PD-based parameter estimation. The proposed CSP algorithms matches or improves the perfor-
mance of existing structured sparsity-based algorithms for parameter estimation without requiring careful control
of the coherence of the PD, which is likely key to guarantee acceptable estimation performance. In future work,
we expect to explore the potential for algorithms based on K-median clustering to provide recovery guarantees
that rely on the EMD metric, which will immediately translate into parameter estimation performance guaran-
tees. Future work will also address the sensitivity of the algorithm to the presence of noise and characterize the
estimation bias that is observed by CSP and corrected by interpolation. More sophisticated algorithms should
be formulated to involve the thresholding level, which may alleviate the influence of noise, and extend to higher
dimensional parameter space.
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