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Abstract—We consider the standard line spectral estimation
problem when the number of observed samples is significantly
lower than that prescribed by the Nyquist rate. Two families
of sparsity-based methods have recently been proposed for
this problem. The first one uses an atomic norm minimization
algorithm where the atoms correspond to complex exponentials of
varying frequencies. The second one defines the sparse coefficient
vectors for the signals of interest by designing parametric dictio-
naries that can be leveraged by sparse approximation algorithms
involving clustering and interpolation. This paper compares the
performance of these two algorithm families. Experiments show
their advantages and disadvantages in terms of precision and
complexity.

Index Terms—compressive sensing, line spectral estimation,
parametric dictionary, K-median clustering

I. INTRODUCTION

Atomic norm minimization has been recently proposed to
apply sparsity concepts in line spectral estimation for fully
sampled and subsampled signals [1, 2]. Simultaneously, the
authors and other researchers have propose algorithms for
compressive sensing of spectrally sparse signals that rely on
sparsity dictionaries [3–7]. In particular, both atomic norm
methods [1, 2] and certain greedy methods [7] have been
shown to be successful if there is sufficient spacing between
the unknown frequencies present in the signal. This paper eval-
uates the performance of these new sparsity-based algorithms
for the line spectral estimation problem in comparison with
atomic norm minimization methods.

Both types of methods exploit the sparsity structure of the
signals of interest in line spectral estimation to estimate the
underlying frequencies. By defining a proper penalty function
to measure the sparsity of the signal, the estimation problem
can be solved via an optimization method. Algorithms based
on `1-norm minimization are widely used in parameter esti-
mation when the signal has sparse coefficients in some basis
suitable for estimation purposes [8]. In contrast, the atomic
norm limits the search to the signals that can be expressed as
superpositions of a small number of signal atoms [1, 2], and
provides a direct estimate of the spectrally sparse signal. The
unknown frequencies can then be obtained from the recovered
signal using standard line spectrum estimation algorithms. One
of the drawbacks of atomic norm minimization methods is the
complexity of the semidefinite programming solver involved.

As an alternative, one can introduce parametric dictionaries
(PDs), whose elements are the complex exponentials cor-
responding to frequencies sampled from a fixed frequency
range; the signals of interest can then be expressed as a
linear combination of a small number of dictionary elements.
The sparse dictionary coefficient vector can be recovery by
standard CS algorithms, and the support of the recovered
sparse vector encodes the values of the frequencies present
in the signal. These algorithms, however, are limited by
the increasing coherence between dictionary elements as the
number of sampled frequencies contained increases. Several
recently proposed approaches aim to mitigate the impact of
the coherence on the performance of signal recovery [3–5].

In previous work, we incorporated K-median clustering
within a sparse approximation algorithm and applied it to
compressive parameter estimation to ameliorate the coherence
handicap while providing better measures and guarantees for
the frequency estimation error [6, 7]. Furthermore, using more
sophisticated models on top of sparsity, such as manifold
models, we can refine the estimates of the frequency values so
that they are not restricted to those captured by the dictionary
elements. In this paper, we will show that our algorithms
are applicable beyond the standard compressive sensing setup
and can be extended easily to the line spectral estimation
problem to which atomic norm minimization has been recently
applied. We then perform an experimental comparison for the
performance of both types of algorithms.

II. BACKGROUND

A. Signal Model in Line Spectral Estimation
Line spectral estimation refers to the problem of estimating

the frequencies of a signal composed as a linear combination
of a small number of complex sinusoids. To be precise, the
spectra of the signal of interest x consists of K spikes located
at unknown positions f1, f2, . . . fK in the frequency range
Θ = [0, 1). Thus, each time the samples of interest signal
can be expressed as

x[n] =

K∑
k=1

cke
j2πfkn, n = 0, 1, 2, . . . , N − 1. (1)

Rather than collecting all N time samples at time set D =
{0, 1, . . . , N − 1}, we sample the signal only at a certain



time subset T = {t1, t2, . . . , tM} ⊂ D. The signal can be
subsampled in two ways: random subsampling, where each ti
is selected uniformly at random from the set D; and uniform
subsampling, where ti = i/κ − 1, and κ = M/N is the
subsampling ratio. In this paper, we will focus on random
subsampling since the latter is a straightforward adaption of
the former. Additionally, each coefficient ck is a complex
number with phases drawn independently from the uniform
distribution U [0, 2π). The goal of line spectral estimation is
to estimate those unknown frequencies f1, f2, . . . , fK from the
subsampled observations y = xT , when no noise is involved,
or y = xT + w when some additive noise is present; in both
cases, xT is the vector that contains all samples of signal on
the subset the T .

B. Atomic Norm Minimization

Recently, a new penalty known as the atomic norm has
been introduced for purposes of convex programming-based
frequency estimation [1, 2]. More specifically, a set of atoms
a(f, φ) ∈ CN are defined as

a(f, φ)[n] = ej(2πfn+φ), n ∈ D, (2)

where f ∈ Θ, and φ ∈ [0, 2π) [9]. Then the signal of interest
has the form

x[n] =

K∑
k=1

cke
j2πfkn =

K∑
k=1

|ck|a(fk, φk), (3)

where φk is the phase for the coefficient ck. The set of atoms
A = {a(f, φ) : f ∈ Θ, φ ∈ [0, 2π)} provides an infinite-size
dictionary for the signals of interest x, which can be expressed
as a linear combination of a finite number of elements of A,
in a manner similar to the finite-dimensional sparsity models.

The atomic norm is defined in terms of the most compact
expansion of the signal x in terms of the elements of A:

‖x‖A = inf

{
K∑
k=1

|ck| : x =

K∑
k=1

|ck|a(fk, φk)

}
. (4)

It is easy to see that when the set of elements in A are the
canonical vectors, the atomic norm is exactly the standard `1
norm used in sparse signal recovery. For the set of atoms A
detailed above and noiseless observations, the atomic norm al-
lows us to write the line spectral estimation as the optimization
problem

min
x

‖x‖A
s.t xT = y,

(5)

where the atoms involved in ‖x‖A identify the component
frequencies. The atomic norm has an equivalent semidefinite
programming (SDP) formulation as

‖x‖A = min
x,u,t

1

2N
trace (Toep(u)) +

1

2
t

s.t
[

Toep(u) x
x∗ t

]
� 0

(6)

where Toep(u) is a Hermitian Toeplitz matrix defined by the
vector u. Although the problem (5) is a semidefinite program

for which many solvers exist, it will be more convenient to
solve its dual problem, which has the form

max
q

〈qT , y〉R
s.t ‖q‖∗A ≤ 1

qTC = 0,

(7)

where 〈x, y〉R denotes the real part of inner product between
x and y, and ‖q‖A∗ is dual atomic norm given by

‖q‖∗A = sup
‖x‖A≤1

〈q, x〉R = sup
f∈[0,1]

| 〈q, a(f, 0)〉 |. (8)

Also, the dual problem (7) has an equivalent SDP form [10]
as

q̂ = max
q

〈qT , y〉R

s.t
[
H q
q∗ 1

]
� 0

qTC = 0,

(9)

where H is an Hermitian matrix defined by
N−j∑
i=1

Hi,i+j =

{
1, j = 0

0, j = 1, 2, . . . , N − 1
. (10)

The dual solution q̂ to the dual problem provides a way
to determine the unknown frequencies due to the fact that the
polynomial Q(f) := 〈q̂, a(f, 0)〉 achieves a unit absolute value
if and only if f ∈ {f1, f2, . . . , fk}.

The atomic norm minimization method can estimate any
arbitrary unknown frequencies if they are well separated [11].
However, the precision and complexity of estimation will be
highly depend on the choice of semidefinite program solver
used. In practice, the amount of computation required for
accurate estimation can be large.

C. Compressive Parameter Estimation via Clustering

An alternative approach to compressive parameter estima-
tion proceeds by designing parametric dictionaries (PDs). Let
Ω = {f̃1, f̃2, . . . , f̃l} ⊂ Θ denote a set of parameters (e.g.,
frequencies) sampled with a sampling step ∆. The PD for pa-
rameter estimation collects all parametric signals correspond-
ing to the sampled parameters Ψ = [ψ(f̃1), ψ(f̃2), . . . , ψ(f̃l)],
where ψ(·) is the signal function, e.g., ψ(f̃) = a(f̃ , 0).
Thus, the signal of interest can be expressed as a linear
combination of the dictionary elements x = Ψc, c ∈ Cl, when
all the unknown parameters are contained in the sampling
set Ω. Therefore, finding the unknown parameters from CS
measurements y = Φx, where Φ is the measurement matrix,
reduces to finding all dictionaries appearing in the signal
representation or, equivalently, finding the nonzero entries of
the coefficient vector c.

Following the convention of greedy algorithm in CS, a
proxy of coefficient vectors is obtained via the correlation of
the observations with PD, i.e., v = Ψ∗Φ∗y = (ΦΨ)∗(ΦΨ)c.
The entries of v achieve a local maximum when they corre-
sponds to the nonzero entries of c. Thus, the goal of parameter
estimation reduces to locate the entries of v that are local



maxima, which is usually achieved via a hard thresholding
operator that returns the sparse approximation with smallest
`2 distance to the proxy.

Such PD-based parameter estimation can be perfect only if
the sampling set Ω contains all unknown frequencies. Nonethe-
less, one can attempt to reduce the sparse approximation error
by reducing the parameter step size ∆. However, highly dense
PD sampling increases the similarity between adjacent PD
elements, resulting also in a highly coherent PD [12]. The
coherence of a dictionary is measured by the maximum inner
product of normalized dictionaries, i.e.,

µ(Ω) = max
0≤i 6=j≤l

∣∣∣ψ(f̃i)
∗ψ(f̃j)

∣∣∣
‖ψ(f̃i)‖2‖ψ(f̃2)‖2

. (11)

The high coherence makes it difficult for hard thresholding
to identify the local maxima since it will unavoidably select
entries around the largest local maxima. Furthermore, an
additional issue in PD-based frequency estimation is that the
recovery algorithms in CS can only guarantee small `2-norm
error in the coefficient vector estimate. Such guarantees result
from the core hard thresholding operator. However, these
guarantees are meaningless for parameter estimation because
the `2 norm cannot provide a precise measure of the parameter
estimation error.

We recently introduced an approach to compressive pa-
rameter estimation that relies on the earth mover’s distance
(EMD) to measure the error in the coefficient vector (i.e., the
distance between the estimated and the true coefficient vectors)
in terms of similarity between the values and locations of their
nonzero entries. The EMD between two vectors is obtained
by optimizing the flow of mass among the entries of one
vector to make it match with the other [13, 14]. Let p and
q be two K-sparse coefficient vectors with nonzero entries,
and let I, J ⊂ 0, 1, . . . , l − 1 be their respective supports. The
EMD between p and q will be obtained by the following linear
program:

EMD(p, q) = min
gij

∑
i,j

gijdij

s.t.
∑
j∈J

gij = pi∑
i∈I

gij = qj

gij ≥ 0, i ∈ I, j ∈ J, (12)

where dij is the distance between the entry i and entry j [15].
When the parameter samples are sorted, dij is proportional to
the difference between the sampled parameters f̃i and f̃j , and
thus the EMD between coefficient vectors is proportional to the
corresponding parameter error [7]. This inspires us to find the
EMD-optimal sparse approximation, which returns the closest
sparse approximation to the proxy in terms of EMD, in order
to provide EMD-based guarantees in compressive parameter
estimation.

It can be shown that K-median clustering finds such sparse
approximation: the sparse vector with nonzero entry corre-
sponding to the centroids obtained from K-median clustering
performed on the proxy vector entries has the smallest EMD to
the proxy. By replacing the hard thresholding in standard CS
recovery systems with K-median clustering, one can easily
formulate a EMD-optimal compressive parameter estimation
algorithm.

In addition, when the sampling step ∆ is sufficiently small,
it is possible to interpolate the functional map ψ(·) between
the samples contained in the dictionary [5–7].

III. CLUSTERING METHOD FOR FREQUENCY ESTIMATION

There is a similarity in atomic norm minimization and PD-
based parameter estimation in that both methods exploit the
concept of sparsity for signals of interest in terms of the
set of atoms or the PD, respectively. However, in atomic
norm minimization, the sparsity is enforced by minimizing
the atomic norm, while in PD-based parameter estimation, a
sparse approximation algorithm is used to recover the sparse
coefficient vector.

The atomic norm minimization is highly depend on the
equivalent semidefinite programming (SDP) problem, which
enables the optimization to be solved precisely. However,
it is not easy for such method to be extended to the case
that the observations cannot be obtained by subsampling. The
equivalent SDP form of dual problem in (9) will not exist when
the observations are obtained in the general case y = Φx.

On the contrary, it is quite straightforward to extend the
clustering method to frequency estimation from few samples.
The linear process of subsampling a signal on the time set T
has the matrix representation Φ ∈ RM×N containing only the
rows of the identity matrix corresponding to T , i.e.,

Φij =

{
1, j = ti

0, otherwise
i = 1, 2, . . . ,M, ti ∈ T. (13)

Using this notation, the observations from the subsampling
process can be expressed in the standard CS form y = Φx. It is
possible to show that such random subsampling measurements
are suitable for recovery of spectral sparse signals [16].

A simple modified clustering subspace pursuit (CSP), which
incorporates the clustering method into the subspace pursuit
(SP) sparse recovery algorithm [17], is shown in Algorithm 1.
CSP repeatedly uses the K-median clustering S = C(v,Ω,K)
on a set of points with weights corresponding to the entry
values of the proxy v, and locations given by the sampled
frequencies Ω. The centroids S resulting from the clustering
process indicate the locations of the nonzero entries of the
sparse vector approximation to v, which will be used to refine
the previous estimates after another clustering. In the CSP
algorithm, the proxy is preprocessed by a thresholding step,
cf. step 5, to increase the rate of decay of the autocorrelation
function and to improve the performance of clustering in
the subsequent step. Furthermore, we refine the estimates
of the component frequencies by using polar interpolation
between elements of the PD, which allows us to obtain



Algorithm 1 Clustering Subspace Pursuit (CSP)
Input: measurement vector y, subsampling set T , frequency

number K, set of sampled frequencies Ω, signal function
ψ(·), threshold t

Output: estimated signal x̂, estimated frequencies f̂
1: Initialize: x̂ = 0, generate PD Ψ = ψ(Ω), generate

sensing matrix Φ from T .
2: repeat
3: yr = y − Φx̂ {Compute residual}
4: v = (ΦΨ)∗yr {Obtain proxy from residual}
5: v(|v| ≤ t) = 0 {Threshold proxy}
6: f̂ = f̂ ∪ C(v,Ω,K) {Augment estimates}
7: ΨS = ψ

(
f̂
)

{Obtain PD subset for estiamtes}
8: c = (ΦΨS)+y {Obtain proxy of estimates}
9: f̂ = C(c, f̂ ,K) {Refine estimates}

10: (x̂, f̂) = P(y, f̂ , ψ(·)) {Interpolate estimates}
11: until a convergence criterion is met

frequency estimates of arbitrary resolution in order to bypass
the restriction on the parameter values encoded by the PD, as
will be described in the next section.

IV. POLAR INTERPOLATION

A recently proposed alternative to improve the estimation
performance of PDs when the unknown frequencies are not
all contained in the sampling set of frequency range is to
use interpolation in the PD elements. The motivation behind
such approaches is that the low-dimensional manifold that
expresses the relationship between frequencies and signals can
be approximated well in small neighborhoods by a closed-form
expression that integrates as much knowledge of the manifold
characteristics as possible while remaining computationally
feasible. Therefore, the observation for a frequency value
outside of the sampling set Ω can be accurately estimated
by its surrounding sampled frequencies using interpolation.
Although Taylor series interpolation has been used in this case,
certain applications like frequency estimation feature paramet-
ric invariance of the norm and distances between signals, and
are better suited to a polar interpolation scheme [18, 19].

For frequency estimation, the signals corresponding to nor-
malized complex exponentials at various frequency values
share the same unit magnitude and can be characterized by
a manifold contained in the surface of a high-dimensional
hyper-sphere in CN . A small segment of this manifold can
therefore be approximated by an arc of a circle which is
uniquely determined by a triplet of PD elements corresponding
to the sampled frequencies to be contained in the segment. It
is possible to find a basis for the span of the triplet of elements
that provides a trigonometric map from the angle between the
middle element and the observed signal to the differential of
the frequency values for these two signals.

More specifically, assume that the frequency range is sam-
pled with a step size ∆. The unknown frequency fk is linked
to the closest value f̃l within the sampled set Ω; therefore, the

observed signal ψ(fk) lies on the segment of the manifold
{ψ(f)|f̃l − ∆

2 ≤ f ≤ fl + ∆
2 }. This segment is to be

approximated by the unique circular arc that contains the
triplet of dictionary elements {ψ(fl − ∆

2 ), ψ(fl), ψ(fl + ∆
2 )}.

The polar approximation is obtained as

ψ(fk) ≈ d(f̃l) + r cos

2
(
fk − f̃l

)
∆

σ

u(f̃l)

+ r sin

2
(
fk − f̃l

)
∆

σ

 v(f̃l), (14)

where d(f̃l), u(f̃l), and v(f̃l) are a basis for the circle
corresponding to its center and trigonometric coordinates and
the constants r and σ represent the radius and the half-angle
of the relevant circular arc. The approximation basis elements
can be computed in closed form using the formula[
d(f̃l), u(f̃l), v(f̃l)

]
=

[
ψ

(
f̃l −

∆

2

)
, ψ
(
f̃l

)
, ψ

(
f̃l +

∆

2

)]

×

 1 1 1
r cos(σ) r r cos(σ)
−r sin(σ) 0 r sin(σ)

−1

,

(15)

which intuitively provides the mapping between the angles
{−σ, 0, σ} and the PD element triplet. When multiple frequen-
cies are observed simultaneously, we collect the estimation
basis elements d(f̃l), u(f̃l) and v(f̃l) into the matrices D, U ,
and V so that the observed signal x can be expressed as as

x =

K∑
k=1

ckψ(θk) ≈ Dc+ Uα+ V β, (16)

where c, α and β collect the trigonometric coefficients from
the individual approximations (14). The resulting coefficients
to the equation (16) α and β yield an estimate of the
frequencies via the bijective relation

fk = f̃l +
∆

2σ
arctan

(
βk
αk

)
. (17)

V. NUMERICAL EXPERIMENTS

To compare the performance between the two types of line
spectral estimation methods, we conduct a series of numerical
experiments. In all experiments, the signals are sampled at
integer times D = 0, 1, . . . , N − 1. The subsampling set T
contains M elements randomly selected from D. All K = 4
unknown frequencies are chosen uniformly at random from
the frequency range Θ, while the sampled frequencies used in
the design of Φ are uniformly sampled from Θ with sampling
step ∆ = 0.01Hz.

Our experiments compare the frequency estimation perfor-
mance of clustering subspace pursuit (CSP) and atomic norm
minimization solved by semidefinite programming (SDP). Ad-
ditionally, our experiments consider band-exclusion subspace
pursuit (BSP), which uses band exclusion to prevent the highly
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Fig. 1. Average frequency estimation error as a function of subsampling ratio
when noiseless samples are observed. Dashed lines represents the average
error when the subsampling ratio κ = 1

coherent dictionaries appearing simultaneously in signal repre-
sentation to address the coherence issue in compressive param-
eter estimation [5, 20]. The two subspace pursuit algorithms
are also implemented with polar interpolation to improve the
estimation performance, cf. step 10 of Algorithm 1, and are
denoted CISP and BISP, respectively. Both CSP and CISP
use a threshold level t = 0.15, while the maximum allowed
coherence level for BSP and BISP is set to ν = 0.2. The
SDP problem is solved via the CVX toolbox with the solver
SDPT3 [21, 22].

The first experiment considers the frequency estimation
performance as a function of the subsampling ratio κ = M/N .
As a reference, dotted lines mark the performance of the
different algorithms when κ = 1, i.e., in the full sampling
case. Figure 1 shows the average frequency estimation error
over 100 randomly drawn spectrally sparse signals for each
subsampling ratio. The parameter error refers to the minimum
match cost between the true and estimated frequencies as
obtained by the Hungarian matching algorithm [23]. When the
numbers of true and estimated frequencies are not matched,
the smaller set is supplemented with an additional cost equal
to the frequency range N . When the subsampling ratio is
small (κ ≤ 0.2), all methods fail to accurately estimate the
frequencies. The poor performance of SDP in low subsampling
ratios is due to the fact that SDP fails to estimate all the
frequencies present. As the subsampling ratio increases, the
performance of all methods improves rapidly. Although both
subspace pursuit algorithms without polar interpolation cannot
exceed the limit of sampling step ∆, their interpolated versions
greatly decrease the average error, even improving on the per-
formance of SDP. Note, however, that it may still be possible
for SDP to have improved performance by selecting more
sophisticated solvers; nonetheless, this is likely to involve an
additional computational cost penalty.

The second experiment considers the frequency estimation
performance as a function of the signal to noise ratio (SNR),
where the observation noise is additive white Gaussian. Fig-
ure 2 shows the average frequency estimation error over 100
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Fig. 2. Average frequency estimation error as a function of the signal to noise
ratio when the subsampling ratio κ = 0.4.
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Fig. 3. Average estimation time as a function of signal length when noiseless
samples are observed and subsampling ratio κ = 0.4

randomly drawn spectrally sparse signals per SNR, where
the subsampling ratio is set to κ = 0.4. Although the SDP
approach shows better performance over different noise levels
than all subspace pursuit methods, the advantage over the
interpolation-aided subspace pursuit algorithms is reduced as
the SNR improves.

The third experiment considers the estimation time as a
function of signal length in noiseless case. Figure 3 shows the
average estimation time over 100 randomly drawn spectrally
sparse signals per signal length when the subsampling ratio is
set to κ = 0.4. The time required for SDP approach increases
rapidly as the signal length increases and will be unacceptable
when the signal length is beyond 350 samples. On the contrary,
our subspace pursuit method implemented with K-median
clustering shows its advantage in computational cost stability.

VI. CONCLUSION

Both atomic norm minimization and PD-based compressive
parameter estimation exploit the sparsity of signals of interest
in a chosen basis or atom set to estimate the underlying fre-
quencies. Atomic norm minimization uses the atomic norm to
form a semidefinite program that solves line spectrum estima-



tion. In contrast, the PD-based parameter estimation methods
convert the spectrum estimation into a sparse coefficient vector
recovery problem. Although atomic norm minimization is able
to obtain estimates precisely and stably with or without noise,
it is not easy to apply the method in the case that signal ob-
servations are not obtained via (sub)sampling. In contrast, the
proposed PD-based parameter estimation algorithms can easily
perform frequency estimation from subsampled observations.
Furthermore, the PD-based parameter estimation algorithms
can be more precise and less time-consuming when aided by
polar interpolation.

Due to the flexibility of PD-based parameter estimation, we
believe that the proposed methods can also be used in the
super-resolution problem, which is the time-frequency dual
problem of line spectrum estimation. In super-resolution, low-
frequency coefficients of a signal that consists of a super-
positions of point sources are observed, and the goal is to
resolve the signals at high frequencies [24]. Our future work
will extend the PD-based parameter estimation to the super-
resolution problem.
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